BIOREMEDIATION IN PETROLEUM CONTAMINATED SOIL TREATMENT USING PLANT-MICROORGANISMS COMBINATION (Case Study: Reduction Level of TPH and BTEX in Bioremediation Process)

Cut Nanda Sari, Tyas Putri Sativa, Setyo Sarwanto Moersidik

Abstract


Oil spills, in both aquatic and terrestrial environments, are very detrimental to people and the environment due to hydrocarbon compounds that are contained in oil which are not only be harmful for the balance of the ecosystem and the environment but also carcinogenic to humans and animals. Therefore remediation needs to be done. One of the methods is by using a combination of microorganisms and plants. The aim of this research is to analyze the in􀃀 uences between several different treatments that are applied for TPH and BTEX removal in the process of remediation. In this research, bioremediation was conducted by using four different treatments which are: by adding compost (C), plants and compost (P), microorganisms and compost (B), and compost, plants and microorganisms (BP), to soil with oil content of 5% and 10%. The following test results of TPH in soil contaminated with 5% oil content are: 2.10% (C); 1.31% (B); 1.66% (P); and 0.68% (BP). The TPH test results in soil contaminated with oil content of 10% are: 3.30% (C); 2.54 (B); 3.91% (P); and 3.31% (BP). The highest percentage of TPH degradation in contaminated soil of 5% oil content was found in BP treatment (87.1%), while in the contaminated soil of 10% oil content the largest TPH removal percentage is by the treatment of adding bacteria (B) which is 76.19%. BTEX removal percentage in 5% oil contaminated soil in BP treatment is 68.35% while in 10% oil contaminated soil with B treatment the removal percentage is 84.91%. Based on statistical tests, both on contaminated soil with 5% and 10% oil content, TPH degradation signi􀂿 cantly affects the pH value as p < 0.05 but TPH degradation does not affect temperature values as p > 0.05.


Keywords


Acinetobacter baumannii; Crude Oil; Bioremediation; BTEX; Phytoremediation; Ryegrass; TPH.

Full Text:

PDF

References


Abdel-El-Haleem, D. (2003). Acinetobacter: Environmental and Biotechnological Applications. Academic Journal, 71-74.

Al-Mailem, D., Sorkhoh, N., Al-Awadhi, H., Eliyas, M., & Radwan, S. (2010). Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles, 321-328.

Ayu, K., Toyama, T., & Mori, K. (2011). Bioremediation of crude oil by white rot fungi Polyporus sp. S133. J Microbiol Biotechnol 21, 995-1000.

Chaudhry, Q., Blom-Zandstra, M., Gupta, S., & Joner, E. (2005). Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ. Sci. Pollut. Res. 12, 34-48.

Gerhardt, K., Huang, X., Glick, B., & Greenberg, B. (2009). Phytoremediation and Rhizoremediation of organic soil contaminants: potential and challenges. Plant Science, 20-30.

Kaimi, E., Mukaidani, T., Miyoshi, S., & Tamaki, M. (2006). Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environmental and Experimental Botany 55, 110-119.

Leme, D., Grummt, T., De Oliveira, D., Sehr, A., Renz, S., Reinel, S., Marin-Morales, M. (2012). Genotoxicity assessment of watersoluble fractions of biodiesel and its diesel blends using the Salmonella assay and the in vitro MicroFlow kit (Litron) assay. . Chemosphere

, 512-520.

Maqbool, F., Wang, Z., Malik, A., Pervez, A., & Bhatti, Z. (2013). Rhizospheric biodegradation of crude oil from contaminated soil. Advan Sci Lett 19, 2618-2621.

Mohsenzadeh, F., Nasseri, S., Mesdaghinia, A., Nabizadeh, R., Zafari, D., Khodakaramian, G., & Chehregani, A. (2010). Phytoremediation of Petroleum-polluted Soils: Application of Polygonum aviculare and Its Root-associated (penetrated) Fungal Strains for Bioremediation of Petroleum-polluted Soils. Ecotoxicology and Environmental Safety 73, 613-319.

Munawar, Mukhtasor, & Surtiningsih, T. (2007). Bioremediasi Tumpahan Minyak Mentah Dengan Metode Biostimulasi Nutrien Organik di Lingkungan Pantai Surabaya Timur. Berk. Penel. Hayati, 91-96.

Muratova, A. Y., Golubev, S., Wittenmayer, L., Dmitrieva, T., Bondarenkova, A., Hirche, F., Turkovskaya, O. (2009). Effect of the polycyclic aromatic hydrocarbon phenanthrene on root exudation

of Sorghum bicolor (L.). Moench. Envirron. Exp. Bot. 66, 514-521.

Nie, M., Zhang, X., Wang, J., Jiang L. F., Yang, J., Quan, Z., Li, B. (2009). Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as in􀃀 uenced by petroleum

contamination and soil salinization. Soil Biol. Biochem. 41, 2535-2542.

Nugroho, A. (2006). Biodegradasi ‘Sludge’ Minyak Bumi Dalam Skala Mikrokosmos. Makara Teknologi 10 (2), 82-89.

Pusdiklat Migas. (2011). Laporan Arus Minyak Pusdiklat Migas Cepu Tahun 2011. Cepu.

Salt, D.E., R.D. Smith and I. Raskin. 1998. Annual Review Plant Physicology and Plant Molecular Biology: Phytoremediation. Annual Reviews. USA. 501-662.

Setyawan, E. Y., & Nanto, R. D. (2011). Bioremediasi Lahan Terkontaminasi Minyak Bumi Dengan Menggunakan Bakteri Bacillus cereus Pada Slurry Bioreaktor. Surabaya: Institut Teknologi Sepuluh

Nopember.

Sugoro, I. (2002). Bioremediasi ‘Sludge’ Limbah Minyak Bumi Lahan Tercemar Dengan Teknik ‘Land Farming’ Dalam Skala Laboratorium. Bandung: ITB.

Sulistyono, S. M. (2012). Kajian Dampak Tumpahan Minyak dari Kegiatan Operasi Kilang Minyak Terhadap Kualitas Air dan Tanah (Studi Kasus Kilang Minyak Pusdiklat Migas Cepu). Jurnal Ekosains Vol. IV, 2.

Susaria, S., Medina, V., & McCutcheon, S. (2002). Phytoremediation: an ecological solution to organic chemical contamination. Ecol. Eng. 18, 647-658.

Tang, J., Wang, R., Niu, X., Wang, M., Chu, H., & Zhou, Q. (2010). Characterisation of the rhizoremediation of petroleum-contaminated soil: effect of in􀃀 uencing factors. Biogeosciences, 3961-3969.

Yousaf, S., Andria, V., Reichenauer, T. G., Smalla, K., & Sessitsch, A. (2010). Phylogenetic and Functional Diversity of Alkane Degrading Bacteria Associated with Italian Ryegrass (Lolium multiflorum) and

Birdsfoot Trefoil (Lotus corniculatus) in a Petroleum Oil-contaminaterd Environment. Journal of Hazardous Materials, 523-432.

Yu, X., Wu, S., Wu, F., & Wong, M. (2011). Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. Journal of Hazardous, 1206-1217.

Zhang, Z., Zhou, Q., Peng, S., & Cai, Z. (2010). Remediation of Petroleum Contaminated Soils by Joint Action of Pharbitis nil L. and Its Microbial Community. Science of the Total Environment, 5600 -5605. http://www.egr.msu.edu/tosc/akron/factsheets/fs_pdf.

pdf diakses pada 9 Desember 2014, pukul 23.24. http://www.epa.gov/teach/chem_summ/BENZ_summary.pdf diakses pada 16 November 2014, pukul 23.11. http://www.esdm.go.id/berita/56-artikel/4586-peluanginvestasi-migas-di-indonesia.pdf diakses pada 4 Desember15.16.




DOI: https://doi.org/10.29017/SCOG.39.1.532

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.