Comparison of Facies Estimation of Well Log Data Using Machine Learning
Abstract
Keywords
Full Text:
PDFReferences
Al-Mudhafar, W. J. (2017). Integrating well log interpretations for lithofacies classification and permeability modeling through advanced machine learning algorithms. Journal of Petroleum Exploration and Production Technology, 7(4), 1023–1033. https://doi.org/10.1007/s13202-017-0360-0
Al-Mudhafar, W. J., Abbas, M. A., & Wood, D. A. (2022). Performance evaluation of boosting machine learning algorithms for lithofacies classification in heterogeneous carbonate reservoirs. Marine and Petroleum Geology, 145, 105886. https://doi.org/10.1016/j.marpetgeo.2022.105886
Dell’Aversana, P. (2019). Comparison of different Machine Learning algorithms for lithofacies classification from well logs. Bollettino Di Geofisica Teorica Ed Applicata, 60(1).
Dixit, N., McColgan, P., & Kusler, K. (2020). Machine Learning-Based Probabilistic Lithofacies Prediction from Conventional Well Logs: A Case from the Umiat Oil Field of Alaska. Energies, 13(18), Article 18. https://doi.org/10.3390/en13184862
Dramsch, J. S. (2019). Machine learning in 4D seismic data analysis: Deep neural networks in geophysics.
Dubois, M. K., Bohling, G. C., & Chakrabarti, S. (2007). Comparison of four approaches to a rock facies classification problem. Computers & Geosciences, 33(5), 599–617. https://doi.org/10.1016/j.cageo.2006.08.011
Hall, M. (2016). A user guide to the geophysical tutorials. The Leading Edge, 35(2), 190–191. https://doi.org/10.1190/tle35020190.1
Hardanto, L. T., & Wulandhari, L. A. (2021). Lithofacies Classification Using Supervised and Semi-Supervised Machine Learning Approach. International Journal on Advanced Science, Engineering and Information Technology, 11(2), 542. https://doi.org/10.18517/ijaseit.11.2.11764
Imamverdiyev, Y., & Sukhostat, L. (2019). Lithological facies classification using deep convolutional neural network. Journal of Petroleum Science and Engineering, 174, 216–228. https://doi.org/10.1016/j.petrol.2018.11.023
Mandal, P. P., & Rezaee, R. (2019). Facies classification with different machine learning algorithm – An efficient artificial intelligence technique for improved classification. ASEG Extended Abstracts, 2019(1), 1–6. https://doi.org/10.1080/22020586.2019.12072918
Merembayev, T., Kurmangaliyev, D., Bekbauov, B., & Amanbek, Y. (2021). A Comparison of Machine Learning Algorithms in Predicting Lithofacies: Case Studies from Norway and Kazakhstan. Energies, 14(7), Article 7. https://doi.org/10.3390/en14071896
Mohamed, I. M., Mohamed, S., Mazher, I., & Chester, P. (2019). Formation Lithology Classification: Insights into Machine Learning Methods. Day 2 Tue, October 01, 2019, D021S033R005. https://doi.org/10.2118/196096-MS
Prabowo, U. N., Ferdiyan, A., Raharjo, S. A., Sehah, S., & Candra, A. D. (2023). Comparison Of Facies Estimation Using Support Vector Machine (SVM) And K-Nearest Neighbor (KNN) Algorithm Based On Well Log Data. Aceh International Journal of Science and Technology, 12(2), Article 2. https://doi.org/10.13170/aijst.12.2.28428
Pratama, H., Syahputra, L. A., Albany, M. F., Abdullah, A., Suhardja, S. K., Kusumah, E., Astuti, W., & Mujihardi, B. (2020). Early Results of Comparison between K-Nearest Neighbor and Artificial Neural Network Method for Facies Estimation. Jurnal Geofisika, 18(1), 7–13.
Saroji, S., Winata, E., Pratama, P., Hidayat, W., Prakoso, S., & Herdiansyah, F. (2021). The implementation of machine learning in lithofacies classification using multi well logs data. Aceh Int. J. Sci. Technol, 10, 9–17.
Singh, H., Seol, Y., & Myshakin, E. M. (2020). Automated Well-Log Processing and Lithology Classification by Identifying Optimal Features Through Unsupervised and Supervised Machine-Learning Algorithms. SPE Journal, 25(05), 2778–2800. https://doi.org/10.2118/202477-PA
DOI: https://doi.org/10.29017/SCOG.47.1.1593
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.