Long Short-term Memory (LSTM) Networks for Forecasting Reservoir Performances in Carbon Capture, Utilisation, and Storage (CCUS) Operations
Abstract
Keywords
Full Text:
PDFReferences
REFERENCES
Abdel-Nasser, M., & Mahmoud, K. (2019). Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Computing and Applications, 31(7), 2727-2740.
Abdullayeva, F., & Imamverdiyev, Y. (2019). Development of oil production forecasting method based on deep learning. Statistics, Optimization & Information Computing, 7(4), 826-839.
Abedini, M., & Nasseri, M. (2008). Inverse distance weighted revisited. Paper presented at the 4th APHW, Conf. Beijing.
Al-Shabandar, R., Jaddoa, A., Liatsis, P., & Hussain, A. J. (2021). A deep gated recurrent neural network for petroleum production forecasting. Machine Learning with Applications, 3, 100013.
Dama, F., & Sinoquet, C. (2021). Time Series Analysis and Modeling to Forecast: a Survey. arXiv preprint arXiv:2104.00164.
de Oliveira Werneck, R., Prates, R., Moura, R., Gonçalves, M. M., Castro, M., Soriano-Vargas, A., . . . Ferreira, A. (2022). Data-driven deep-learning forecasting for oil production and pressure. Journal of Petroleum Science and Engineering, 210, 109937.
Faltinson, J. E., & Gunter, B. (2011). Net CO2 stored in North American EOR projects. Journal of Canadian Petroleum Technology, 50(07), 55-60.
Fanchi, J. R., & Christiansen, R. L. (2016). Introduction to petroleum engineering: John Wiley & Sons.
Floris, F. J., Bush, M., Cuypers, M., Roggero, F., & Syversveen, A. R. (2001). Methods for quantifying the uncertainty of production forecasts: a comparative study. Petroleum Geoscience, 7(S), S87-S96.
Green, D. W., & Willhite, G. P. (2003). Enhanced Oil Recovery, SPE Textbook Series Vol. 6, the Society of Petroleum Engineers Inc. USA doi, 10.
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5), 359-366.
Iskandar, U. P., & Syahrial, E. (2009). Carbon Capture And Storage (Ccs)-Enhanced Oil Recovery (Eor): Global Potential In Indonesia. Scientific Contributions Oil and Gas, 32(3), 228-238.
Jaubert, J.-N., Avaullee, L., & Souvay, J.-F. (2002). A crude oil data bank containing more than 5000 PVT and gas injection data. Journal of Petroleum Science and Engineering, 34(1-4), 65-107.
Jessen, K., & Stenby, E. H. (2007). Fluid characterization for miscible EOR projects and CO2 sequestration. SPE Reservoir Evaluation & Engineering, 10(05), 482-488.
Khan, H., & Louis, C. (2021). An Artificial Intelligence Neural Networks Driven Approach to Forecast Production in Unconventional Reservoirs–Comparative Analysis with Decline Curve. Paper presented at the International Petroleum Technology Conference.
Kovscek, A., & Cakici, M. (2005). Geologic storage of carbon dioxide and enhanced oil recovery. II. Cooptimization of storage and recovery. Energy conversion and Management, 46(11-12), 1941-1956.
Lyons, J., & Nasrabadi, H. (2013). Well placement optimization under time-dependent uncertainty using an ensemble Kalman filter and a genetic algorithm. Journal of Petroleum Science and Engineering, 109, 70-79.
Negash, B. M., & Yaw, A. D. (2020). Artificial neural network based production forecasting for a hydrocarbon reservoir under water injection.
Petroleum Exploration and Development, 47(2), 383-392.
Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied soft computing, 90, 106181.
Song, X., Liu, Y., Xue, L., Wang, J., Zhang, J., Wang, J., . . . Cheng, Z. (2020). Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model. Journal of Petroleum Science and Engineering, 186, 106682.
Tadjer, A., Hong, A., & Bratvold, R. B. (2021). Machine learning based decline curve analysis for short-term oil production forecast. Energy Exploration & Exploitation, 39(5), 1747-1769.
Tariq, H., Hanif, M. K., Sarwar, M. U., Bari, S., Sarfraz, M. S., & Oskouei, R. J. (2021). Employing Deep Learning and Time Series Analysis to Tackle the Accuracy and Robustness of the Forecasting Problem. Security and Communication Networks, 2021.
Torres, J. F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., & Troncoso, A. (2021). Deep learning for time series forecasting: a survey. Big Data, 9(1), 3-21.
Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Computation, 31(7), 1235-1270. doi:10.1162/neco_a_01199
Wei, X., Zhang, L., Yang, H.-Q., Zhang, L., & Yao, Y.-P. (2021). Machine learning for pore-water pressure time-series prediction: Application of recurrent neural networks. Geoscience Frontiers, 12(1), 453-467.
DOI: https://doi.org/10.29017/SCOG.45.1.943
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.