Build of Machine Learning Proxy Model for Prediction of Wax Deposition Rate in Two Phase Flow Water-Oil

Jalest Septiano, Amega Yasutra, Silvya Dewi Rahmawati

Abstract


Wax deposit is one of the major fl ow assurance experienced in the process of oil production and transportation from sub- surface to surface. Large amounts of data are required to perform modeling using existing thermodynamic models such as carbon number data from HGTC. In this paper, a machine learning algorithm using unifi ed model approach from Huang (2008). Two types of input are implemented in order to simulate infl uence of feature selection used in training and testing machine learning which are input A consists of water volume fraction (fw), shear stress (τw), effective viscosity (μe), wax concentration gradient (dC/dT), and temperature gradient (dT/dR) and input B consists of water volume fraction (fw), shear stress (τw), effective viscosity (μe), wax concentration gradient (dC/dT), temperature gradient (dT/dR), shear stripping variable (SV) dan diffusion variable (DV). The random forest with Ntree = 500 known to be the best machine learning method compared to others. Based on accuracy parameter it achieves error parameter R-squared (R2) for training, testing and total data for input A and B are 0.999, 0.992, 0.9975 and 0.999, 0.993, 0.9977, respectively.


Keywords


wax deposit, machine learning, wax deposition rate, two-phase water in oil fl ow.

Full Text:

PDF

References


Agustin, M. & Prahasto, T., 2012. Penggunaan Jaringan

Syaraf Tiruan Backpropagation Untuk Seleksi

Penerimaan Mahasiswa Baru Pada Jurusan Teknik

Komputer Di Politeknik Negeri Sriwijaya. Jurnal

Sistem Informasi Bisnis, 2(2), pp. 089-097.

Azevedo, L. F. A. & Teixeira, A. M., 2003. A Critical

Review of the Modeling of Wax Deposition. Journal

Petroleum Science & Technology, 21(3), pp. 393-408.

Burger, E. D., Perkins, T. K. & Striegler, J. H., 1981.

Studies of Wax Deposition in the Trans Alaska Pipeline.

Journal Of Petroleum Technology, 33(06), p. 1075–

Chi, Y., Daraboina, N. & Sarica, C., 2017. Effect of the

Flow Field on the Wax Deposition and Performance of

Wax Inhibitors: Cold Finger and Flow Loop Testing.

Energy Fuels, 31(5), pp. 4915-4924.

Chu, Z.-Q., Sasanipour, J., Saeedi, M., Baghban, A.,

& Mansoori, H., 2017. Modeling of Wax Deposition

Produced in The Pipelines Using PSO-ANFIS

Approach. Journal Petroleum Science and Technology,

(20), pp. 1974-1981.

Fan, K., Huang, Q., Li, S. & Yu, W., 2015. Wax Deposition

Rate of Water-in-Crude Oil Emulsions Based on

Laboratory Flow Loop Experiment. Journal of

Dispersion Science and Technology, 38(1), pp. 1-53.

Giacchetta, G., Marchetti, B., Leporini, M., Terenzi, A.,

Dall’Acqua, D., Capece, L., & Grifoni, R.C., 2019.

Pipeline Wax Deposition Modeling: A Sensitivity

Study on Two Commercial Software. Petroleum, 5(2),

pp. 206-213.

Huang, Q., Li, Y. & Zhang, J., 2008. Unified wax

deposition model. Project: Physical properties of wax

deposits on the walls of crude pipelines, Volume 29,

pp. 459-462.

Huang, Q. & Ma, J., 2008. Prediction of Wax Deposition

of Crude Using Statistical and Neural Network

Methods. Calgary, Alberta, Canada, International

Pipeline Conference.

Hu, Z., Meng, D., Liu, Y., Dai, Z., Jiang, N., & Zhuang,

Z., 2019. Study of Wax Deposition Law by Cold

Finger Device. Journal Petroleum Science and

Technology, 37(15), pp. 1846-1853.

Joshi, R. R., 2017. Modeling and Simulation of Wax

Deposition in Crude Oil Pipeline. International

Journal of Engineering Research and Technology,

Volume 10, pp. 297-300.

Kamari, A., Mohammadi , A. H., Bahadori, A. &

Zendehboudid, S., 2014. A Reliable Model for

Estimating the Wax Deposition Rate During Crude Oil

Production and Processing. Journal Petroleum Science

and Technology, Volume 32, pp. 2837-2844.

Matzain, A., Apte, M.S., Zhang, H.-Q., Volk, M., Redus,

C.L., Brill, J.P., & Creek, J.L., 2000. Multiphase

Flow Wax Deposition Modelling. Banff, Canada,

ETCE, pp. 415-441.

Montero, F., 2020. Wax Deposition Analysis for Oil

and Gas Multiphase Flow in Pipelines. Copenhagen,

Denmark: Aalborg University.

Mulyahati, I. L., 2020. Implementasi Machine Learning

Prediksi Harga Sewa Apartemen Menggunakan

Algoritma Random Forest Melalui Framework

Website Flask Python. Yogyakarta: Universitas Islam

Indonesia.

Obaseki, M. & Elijah, P. T., 2020. Dynamic Modelling

and Prediction of Wax Deposition Thickness in Crude

Oil Pipelines. Journal of King Saud University -

Engineering Sciences, 33(6), pp. 437-445.

Octaviani, P. A., Wilandari, Y. & Ispriyanti , D., 2014.

Penerapan Metode Klasifi kasi Support Vector Machine

(SVM) Pada Data Akreditasi Sekolah Dasar (SD)

Di Kabupaten Magelang. Jurnal Gaussian, 3(4), pp.

-820.

Pedersen, K. S., Skovborg, P. & Roenningsen, H.

P., 1991. Wax precipitation from north sea crude

oils-Thermodynamic modeling. Energy Fuels, 5(6),

p. 924–932.

Singh, P., Venkatesan, R., Fogler, H. S. & Nagarajan,

N., 2000. Formation and aging of incipient thin fi lm

wax-oil gels. AIChE Journal, 46(5), pp. 1059-1074.

Sousa, A. M., Matos, H. A. & Guerreiro, L., 2019. Wax

Deposition Mechanisms and The Effect of Emulsions

and Carbon Dioxide. Journal Petroleum, 6(3),

pp. 216-226.

Sutton, C. D., 2004. Classifi cation and Regression Trees,

Bagging, and Boosting. Handbook of Statistics,

Volume 24, pp. 303-329.

Wang, W. & Huang, Q., 2014. Prediction for Wax

Deposition in Pipeline Validated by fi eld Pigging.

Journal of the Energy Institute, 87(3), pp. 196-207.

Wei, Y., Wu, M. & Zhao, L., 2010. Wax Deposition Rate

Model for Crude Oil Pipeline. Yantai, China, IEEE.

Xie, Y. & Xing, Y., 2017. A Prediction Method for

the Wax Deposition Rate Based on a Radial Basis

Function Neural Network. Petroleum, 3(2), pp. 237-

Zheng, S., 2017. Wax Deposition from Single-Phase

Oil Flows and Water-Oil Two-Phase Flows in Oil

Transportation Pipelines. Ann Arbor, Michigan: The

University of Michigan.

Zhou, Y., Gong, J. & Wang, P., 2015. Modeling of

Wax Deposition for Water-In-Oil Dispersed Flow.

Asia-Pacifi c Journal Chemical Engineering, 11(1),

pp. 108-117.




DOI: https://doi.org/10.29017/SCOG.45.1.922

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.