Prediction of Hydraulic Fractured Well Performance Using Empirical Correlation and Machine Learning
Abstract
Keywords
Full Text:
PDFReferences
Economides, M. J., Hill, A. D., Ehlig-Economides, C. & Up, D. Z., 2013. Petroleum Production System. 2nd ed. Masscachusetts: Prentice Hall.
Economides, M. J. & Nolte, K. G., 2010. Reservoir Stimulation. 3rd ed. New Jersey: Prentice Hall.
Friedman., J. H., 2001. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5), pp. 1189 - 1232.
Holditch, S. A. & Ma, Y. Z., 2016. Unconventional Oil and Gas Resources Handbook: Evaluation and Development:Elsevier/Gulf Professional Publishing.
Kang, S., 2021. k-Nearest Neighbor Learning with graph neural networks. Mathematics, 9(8), p. 830.
Makhotin, I., Koroteev,, D. & Burnaev, E., 2019. Gradient boosting to boost the efficiency of hydraulic fracturing. Journal of Petroleum Exploration and Production Technology, pp. 1-7.
Mutalova, R. F., Mozorov, A.D., Osiptsov, A.A., Vainshtein, A.L., Burnaev, E.V., Shel, E.V., & Paderin, G.V., 2019. Machine learning on field data for hydraulic fracturing design optimization. Journal of Petroleum Science & Engineering. Special Issue: Petroleum Data Science, pp. 1-21.
Pearson, K., 1920. Notes on the history of correlation. Biometrika, 13(1), pp. 25-45.
Ribarič, M. & Šušteršič, L., 2017. Empirical formulas for prediction of experimental data & appendix, Slovenia: Jožef Stefan Institute, Ljubljana.
Smola , A. & Viswanathan, S. V. N., 2008. Introduction to machine learning. Cambridge: Cambridge University Press.
Temizel, C., Canbaz, C.H., Palabiyik, Y., Aydin, H., Tran, M., Ozyurtkan, M.H., Yurukcu, M., & Johnson, P., 2021. A thorough review of machine learning applications in oil and gas industry. Virtual, SPE/IATMI.
DOI: https://doi.org/10.29017/SCOG.44.2.589
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.