Biobutanol Production from Microalgae Nannochloropsis sp. Biomasses by Clostridium acetobutylicum Fermentation

Onie Kristiawan, Usman Sumo Friend Tambunan

Abstract


Biobutanol is an example of alternative energy sources to replace liquid fuel with the carbon-neutral characteristic. It has more benefits to the environment compared to the fossil fuel. Biobutanol is synthesized through fermentation of microalgae cells wall or other organism parts as the carbon sources. The aim of this study is to determine the ability of Clostridium acetobutylicum bacteria in the fermentation of Nannochloropsis sp. to produce biobutanol. Fermentation of Nannochloropsis sp. for biobutanol production was used as an initial treatment before lipid extraction. Fermentation was performed with C. acetobutylicum bacteria for 96 hours. The result showed that C. acetobutylicum was able to produce 2.61% v/v butanol. This
process used Nannochloropsis sp. microalgae hydrolysates and biomass of viscozyme hydrolysis yield. The process of hydrolysis with cellulose and viscozyme can produce simple sugars, with the highest obtained yield of 1738.38 ppm from hydrolysis using viscozyme.


Keywords


biobutanol, fermentation, Clostridium acetobutylicum, Nannochloropsis. sp

Full Text:

PDF

References


Chen, C.-Y.et al., 2013. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78(15), pp. 1-10.

Chisti, Y., 2007. Biodiesel from microalgae. Biodiesel from microalgae, 25(3), pp. 294-306.

Ezeji, T. C., Qureshi, N. & Blaschek, H. P., 2007. Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping. Journal of Industrial Microbiology and Biotechnology, 34(12), p. 771–777.

Gottumukkala, L. D., Haigh, K. & Görgens, J., 2017. Trends and advances in conversion of lignocellulosic biomass to biobutanol: Microbes, bioprocesses and industrial viability. Renewable and Sustainable Energy Reviews, Volume 76, pp. 963-973.

Guo, H., Chang, Y. & Lee, D.-J., 2018. Enzymatic saccharification of lignocellulosic biorefinery: Research focuses. Bioresource Technology, Volume 252, pp. 198-215.

Hendriks, A. & Zeeman, G., 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), pp. 10-18.

Juárez, J. M. et al., 2016. Saccharification of microalgae biomass obtained from wastewater treatment by enzymatic hydrolysis. Effect of alkaline-peroxide pretreatment. Bioresource Technology, Volume 218, pp. 265-271.

Juturu, V. & Wu, J. C., 2014. Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews, Volume 33, pp. 188-203.

Kussuryani, Y. & Rani, D. S., 2015. Produksi Biobutanol sebagai Bahan Bakar Terbarukan Melalui Proses Fermentasi. Lembaran Publikasi Minyak dan Gas Bumi, 49(2), pp. 101-110.

Lee, O. K. et al., 2013. Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresource Technology, Volume 132, pp. 197-201.

Li, Y. et al., 2014. A comparative study : the impact of different lipid extraction methods on current microalgal lipid research. Microbial Cell Factories, Volume 13, pp. 1-9.

Maffei, G. et al., 2018. Effect of an enzymatic treatment with cellulase and mannanase on the structural properties of Nannochloropsis microalgae. Bioresource Technology, Volume 249, pp. 592-598.

Servinsky, M. D., Kiel, J. T., Dupuy, N. F. & Sund, C. J., 2010. Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum. Microbiology, 156(11), p. 3478–3491.

Wang, Y. et al., 2017. Current advances on fermentative biobutanol production using third generation feedstock. Biotechnology Advances, 35(8), pp. 1049-1059.




DOI: https://doi.org/10.29017/SCOG.43.2.524

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.