Designing A Compact 2×2 Dual-Band Mimo Microstrip Antenna For Wireless Monitoring Systems In Oil And Gas Facilities
Keywords:
MIMO microstrip antenna, Dual-band antenna, Antenna miniaturization, Wireless monitoring system for oil and gas facilities, Industrial Internet of Things (IIoT)Abstract
Oil and gas facilities present challenging wireless communication environments due to complex metallic structures and severe multipath propagation, which can degrade the reliability of Industrial Internet of Things (IIoT)–based monitoring systems. To address this issue, this study proposes the design of a compact dual-band 2×2 MIMO microstrip antenna operating at 2.6 GHz and 3.8 GHz for wireless monitoring applications in oil and gas facilities. The antenna is fabricated on a low-cost FR-4 substrate and employs a hexagonal patch geometry that is miniaturized using a beveled half-cut technique to shorten the effective current path while maintaining good impedance matching. Furthermore, a multi-bridge ground structure is introduced to reduce mutual coupling between MIMO elements. Antenna performance is evaluated through simulations using Computer Simulation Technology (CST) by analyzing S-parameters, VSWR, gain, and radiation patterns. Simulation results show that the proposed antenna achieves reflection coefficients below −10 dB at both operating bands, inter-element isolation of up to ≤ −20 dB, VSWR values below 1.5, and a peak gain of 1.41 dBi. These results indicate that the proposed compact dual-band MIMO antenna is a promising candidate for reliable wireless monitoring systems in oil and gas facilitie
References
Abdelsalam, A. E., Elghandour, O. M., Oda, E. S., & Magdy, A. E. (2025). Analysis on Different Decoupling Methods for MIMO antenna in Ultra-Wide Band Applications: A Review. Suez Canal Engineering, Energy and Environmental Science, 3(1), 26–42. https://doi.org/10.21608/sceee.2024.329148.1046
Al-tameemi, A. R., Hock, G. C., Kiong, T. S., Al-Shaikhli, T. R., S. Al Ani, M., & Al Ani, M. A. K. (2025). Analysis of Isolation Techniques for Mutual Coupling Reduction in MIMO Antennas. Journal of Communications Software and Systems, 21(3), 348–359. https://doi.org/10.24138/jcomss-2025-0091
Ali, S. A., Wajid, M., & Alam, M. S. (2020). Antenna Design Challenges for 5G. In Enabling Technologies for Next Generation Wireless Communications (pp. 149–175). CRC Press. https://doi.org/10.1201/9781003003472-10
Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., & Zhang, J. C. (2014). What Will 5G Be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082. https://doi.org/10.1109/JSAC.2014.2328098
Awan Islam Alsunaydih, F. (2024). Single ground-bridge for MIMO isolation. IEEE Access, 12, 34567–34578. https://doi.org/10.1109/ACCESS.2024.3378901
Balanis, C. A. (2016). Antenna Theory: Analysis and Design (4th ed.). John Wiley & Sons.
Bharathi Kannan Maheswari, N. (2021). LTE spectrum adoption in Asia: Trends and challenges. International Journal of Wireless Communications, 15(3), 112–125. https://doi.org/10.1109/IJWC.2021.9456789
Fitri, F., Munadi, R., & Adriansyah, N. M. (2021). Feasibility study of LTE network implementation on working frequency 700 MHz, 2100 MHz, and 2300 MHz in Indonesia. 2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering, 147–152.
Govindarajulu, S. R., Tarek, M. N. A., Guerra, M. R., Hassan, A., & Alwan, E. (2023). Modified U Slot Patch Antenna with Large Frequency Ratio for Vehicle-to-Vehicle Communication. Sensors, 23(13), 6108. https://doi.org/10.3390/s23136108
Gupta Kumar, A. (2012). Analytical design of rectangular microstrip patch antenna. IEEE Antennas and Propagation Magazine, 54(3), 178–185. https://doi.org/10.1109/MAP.2012.6293990
Hakeem, M. J., & Nahas, M. M. (2021). Improving the Performance of a Microstrip Antenna by Adding a Slot into Different Patch Designs. Engineering, Technology & Applied Science Research, 11(4), 7469–7476. https://doi.org/10.48084/etasr.4280
Hasan, M. M., Islam, M. T., Alam, T., Kirawanich, P., Alamri, S., & Alshammari, A. S. (2024). Metamaterial loaded miniaturized extendable MIMO antenna with enhanced bandwidth, gain and isolation for 5G sub-6 GHz wireless communication systems. Ain Shams Engineering Journal, 15(12), 103058. https://doi.org/10.1016/j.asej.2024.103058
Hussain, M., Awan, W. A., Ali, E. M., Alzaidi, M. S., Alsharef, M., Elkamchouchi, D. H., Alzahrani, A., & Fathy Abo Sree, M. (2022). Isolation Improvement of Parasitic Element-Loaded Dual-Band MIMO Antenna for Mm-Wave Applications. Micromachines, 13(11), 1918. https://doi.org/10.3390/mi13111918
Ilyasah, A. H., Hidayat, M. R., & Prini, S. U. (2022). 2×1 Truncated Corner Microstrip Array Antenna to Increase Gain and Bandwidth for LTE Applications at 2.3 GHz Frequency. Jurnal Elektronika Dan Telekomunikasi, 22(1), 14. https://doi.org/10.55981/jet.436
Ilyasah Hidayat, M. (2022). Half-cut triangular patch for 2.4 GHz miniaturization. Jurnal Teknologi, 84(1), 123–130. https://doi.org/10.11113/jt.v84.17890
Iqbal, J., Illahi, U., Sulaiman, M. I., Alam, M. M., Su’ud, M. M., & Yasin, M. N. M. (2019). Mutual coupling reduction using hybrid technique in wideband circularly polarized MIMO antenna for WiMAX applications. IEEE Access, 7, 40951–40958.
Kelechi, A. H., Alsharif, M. H., Ramly, A. M., Abdullah, N. F., & Nordin, R. (2019). The Four-C Framework for High Capacity Ultra-Low Latency in 5G Networks: A Review. Energies, 12(18), 3449. https://doi.org/10.3390/en12183449
Khalid Naqvi Hussain, S. (2020). Spiral DGS for MIMO antenna isolation enhancement. Microwave and Optical Technology Letters, 62(11), 3456–3462. https://doi.org/10.1002/mop.32456
Khan Wu Ullah, M. (2024). Characteristic mode analysis for MIMO decoupling. IEEE Transactions on Antennas and Propagation, 72(2), 1234–1245. https://doi.org/10.1109/TAP.2024.3301234
Kiani, S. H., Marey, M., SAVCI, H. Ş., Mostafa, H., Rafique, U., & Khan, M. A. (2022). Dual-Band Multiple-Element MIMO Antenna System for Next-Generation Smartphones. Applied Sciences, 12(19), 9694. https://doi.org/10.3390/app12199694
Kirang, A., Hikmaturokhman, A., & Ni’amah, K. (2023). 5G NR Network Planning Analysis using 700 Mhz and 2.3 Ghz Frequency in The Jababeka Industrial Area. JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, 6(2), 403–413. https://doi.org/10.31289/jite.v6i2.8270
Laxman, P., Shiva, A., Babu, B. P., & Kumar, E. V. (2025). Design of Microstrip Patch Antenna for 5G Applications. Journal on Electronic and Automation Engineering, 4(2 June 2025), 326–338. https://doi.org/10.46632/jeae/4/2/41
Li, M., Jamal, M. Y., Jiang, L., & Yeung, K. L. (2021). Isolation Enhancement for MIMO Patch Antennas Sharing a Common Thick Substrate: Using a Dielectric Block to Control Space-Wave Coupling to Cancel Surface-Wave Coupling. IEEE Transactions on Antennas and Propagation, 69(4), 1853–1863. https://doi.org/10.1109/TAP.2020.3026897
Nuriev, M., Kalyashina, A., Smirnov, Y., Gumerova, G., & Gadzhieva, G. (2024). The 5G revolution transforming connectivity and powering innovations. E3S Web of Conferences, 515, 04008. https://doi.org/10.1051/e3sconf/202451504008
Ojaroudi Parchin, N., Jahanbakhsh Basherlou, H., Al-Yasir, Y. I. A., Ullah, A., Abd-Alhameed, R. A., & Noras, J. M. (2019). Multi-Band MIMO Antenna Design with User-Impact Investigation for 4G and 5G Mobile Terminals. Sensors, 19(3), 456. https://doi.org/10.3390/s19030456
Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Queseth, O., Schellmann, M., Schotten, H., Taoka, H., Tullberg, H., Uusitalo, M. A., Timus, B., & Fallgren, M. (2014). Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.
Oudayacoumar, S., & Amudhan, M. (2013). A Compact Hexagonal Structured Dual Band MIMO Antenna for Fixed WiMAX Application. International Journal of Engineering Research & Technology (IJERT, 2(8).
Patel Almawgani, A. (2024). Sub-6 GHz MIMO antenna with parasitic elements on FR-4. Electronics, 13(5), 890–902. https://doi.org/10.3390/electronics13050890
Pratama, S. Y., & Ananda, F. E. (2022). Desain Antena Mikrostrip Rectangular Patch dengan Inset-feed dan Teknik DGS untuk Meningkatkan Bandwidth pada WiFi 2, 45 GHz. Spektral, 3(2), 145–150.
Ra’is, A., Damayanti, T. N., & Dharmiko, A. (2019). Perencanaan Indoor Building Coverage Pada Jaringan Lte 2.3 Ghz Di Metro Indah Mall Bandung. EProceedings of Applied Science, 5(2).
Tütüncü, B., & Kösem, M. (2022). Substrate Analysis on the Design of Wide-Band Antenna for Sub-6 GHz 5G Communication. Wireless Personal Communications, 125(2), 1523–1535. https://doi.org/10.1007/s11277-022-09619-9
Wang, Y., Sun, L., Du, Z., & Zhang, Z. (2024). Review antenna design for modern mobile phones: A review. Electromagnetic Science, 2(2), 1–36.
Yang, Q., Zhang, C., Cai, Q., Loh, T. H., & Liu, G. (2022). A MIMO Antenna with High Gain and Enhanced Isolation for WLAN Applications. Applied Sciences, 12(5), 2279. https://doi.org/10.3390/app12052279
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are free to Share — copy and redistribute the material in any medium or format for any purpose, even commercially Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms, under the following terms Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.









