The Significance of Nanofluids as Working Fluids in Energy Extraction Process on Geothermal Heat Exchanger System Utilizing Abandoned Oil Wells: A Review
Keywords:
geothermal, nanoparticle, nanofluid, thermal performanceAbstract
Geothermal energy offers significant potential as an environmentally friendly renewable resource; however, large-scale deployment remains constrained by high drilling and infrastructure costs. Repurposing abandoned oil and gas wells as geothermal heat exchanger systems has emerged as a promising alternative, yet research on the application of nanofluids in such systems remains limited and fragmented. This review employs a narrative synthesis approach to analyze more than 80 peer-reviewed studies related to wellbore geothermal heat exchangers, working fluids, and nanofluid thermal enhancement mechanisms. The review identifies a clear knowledge gap regarding the integration of nanofluids into geothermal heat extraction processes in deep coaxial and U-tube systems, particularly with respect to long-term stability, pressure drop, and techno-economic feasibility. Findings indicate that nanofluids—especially metal-oxide and hybrid formulations—can substantially enhance thermal conductivity and heat transfer performance, with TiO₂- and CuO-based nanofluids showing the most promising results. However, challenges remain in optimizing concentration, ensuring stability, and mitigating increased pumping power. Overall, this review provides a consolidated understanding of existing research and highlights key directions for future development to improve heat extraction efficiency in geothermal systems utilizing abandoned wells.
References
Adun, H., Wole-Osho, I., Okonkwo, E. C., Kavaz, D., & Dagbasi, M. 2021. A critical review of specific heat capacity of hybrid nanofluids for thermal energy applications. Journal of Molecular Liquids, 340, 116890. https://doi.org/10.1016/j.molliq.2021.116890
Akbari, O. A., Toghraie, D., Karimipour, A., Marzban, A., & Ahmadi, G. R. 2016. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid. The Effect of Velocity and Dimension of Solid Nanoparticles on Heat Transfer in Non-Newtonian Nanofluid, Numerical simulation Nanofluid Carboxy methyl cellulose Microchannel.
Akhgar, A., & Toghraie, D. 2018. An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: Developing a new correlation. In Powder Technology (Vol. 338, pp. 806–818). https://doi.org/10.1016/j.powtec.2018.07.086
Alimonti, C., & Soldo, E. 2016. Study of geothermal power generation from a very deep oil well with a wellbore heat exchanger. Renewable Energy, 86, 292–301. https://doi.org/10.1016/j.renene.2015.08.031
Allahvirdizadeh, P. 2020. A review on geothermal wells: Well integrity issues. Journal of Cleaner Production, 275, 124009. https://doi.org/10.1016/j.jclepro.2020.124009
Almanassra, I. W., Manasrah, A. D., Al-Mubaiyedh, U. A., Al-Ansari, T., Malaibari, Z. O., & Atieh, M. A. 2020. An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study. Journal of Molecular Liquids, 304, 111025. https://doi.org/10.1016/j.molliq.2019.111025
Armstrong, M., Sivasubramanian, M., & Selvapalam, N. 2021. Experimental investigation on the heat transfer performance analysis in silver nano-coated double pipe heat exchanger using displacement reaction. Materials Today: Proceedings, 45, 2482–2490. https://doi.org/10.1016/j.matpr.2020.11.100
Asadi, A., Pourfattah, F., Miklós Szilágyi, I., Afrand, M., Żyła, G., Seon Ahn, H., Wongwises, S., Minh Nguyen, H., Arabkoohsar, A., & Mahian, O. 2019. Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrasonics Sonochemistry, 58(July). https://doi.org/10.1016/j.ultsonch.2019.104701
Beier, R. A., Acuña, J., Mogensen, P., & Palm, B. 2012. Vertical temperature profiles and borehole resistance in a U-tube borehole heat exchanger. Geothermics, 44, 23–32. https://doi.org/10.1016/j.geothermics.2012.06.001
Beier, R. A., Acuña, J., Mogensen, P., & Palm, B. 2014. Transient heat transfer in a coaxial borehole heat exchanger. Geothermics, 51, 470–482. https://doi.org/10.1016/j.geothermics.2014.02.006
Bottini, J. L., Zhu, L., Ooi, Z. J., Zhang, T., & Brooks, C. S. 2020. Experimental study of boiling flow in a vertical heated annulus with local two-phase measurements and visualization. International Journal of Heat and Mass Transfer, 155, 119712. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119712
Bu, X., Ma, W., & Li, H. 2012. Geothermal energy production utilizing abandoned oil and gas wells. Renewable Energy, 41, 80–85. https://doi.org/10.1016/j.renene.2011.10.009
Caulk, R. A., & Tomac, I. 2017. Reuse of abandoned oil and gas wells for geothermal energy production. Renewable Energy, 112, 388–397. https://doi.org/10.1016/j.renene.2017.05.042
Chakraborty, S. 2019. An investigation on the long-term stability of TiO2 nanofluid. Materials Today: Proceedings, 11, 714–718. https://doi.org/10.1016/j.matpr.2019.03.032
Chakraborty, S., & Panigrahi, P. K. 2020. Stability of nanofluid: A review. Applied Thermal Engineering, 174(December 2019). https://doi.org/10.1016/j.applthermaleng.2020.115259
Chen, K., Zheng, J., Li, J., Shao, J., & Zhang, Q. 2022. Numerical study on the heat performance of enhanced coaxial borehole heat exchanger and double U borehole heat exchanger. Applied Thermal Engineering, 203(August 2021), 117916. https://doi.org/10.1016/j.applthermaleng.2021.117916
Cheng, S. W. Y., Kurnia, J. C., Ghoreishi-Madiseh, S. A., & Sasmito, A. P. 2019. Optimization of geothermal energy extraction from abandoned oil well with a novel well bottom curvature design utilizing Taguchi method. Energy, 188, 116098. https://doi.org/10.1016/j.energy.2019.116098
Cheng, W. L., Li, T. T., Nian, Y. Le, & Wang, C. L. 2013. Studies on geothermal power generation using abandoned oil wells. Energy, 59, 248–254. https://doi.org/10.1016/j.energy.2013.07.008
Cheng, W. L., Li, T. T., Nian, Y. Le, & Xie, K. 2014. Evaluation of working fluids for geothermal power generation from abandoned oil wells. Applied Energy, 118, 238–245. https://doi.org/10.1016/j.apenergy.2013.12.039
Ciriaco, A. E., Zarrouk, S. J., & Zakeri, G. 2020. Geothermal resource and reserve assessment methodology: Overview, analysis and future directions. Renewable and Sustainable Energy Reviews, 119(February 2019), 109515. https://doi.org/10.1016/j.rser.2019.109515
Córcoles, J. I., Moya-Rico, J. D., Molina, A. E., & Almendros-Ibáñez, J. A. 2020. Numerical and experimental study of the heat transfer process in a double pipe heat exchanger with inner corrugated tubes. International Journal of Thermal Sciences, 158(July). https://doi.org/10.1016/j.ijthermalsci.2020.106526
Daneshipour, M., & Rafee, R. 2017. Nanofluids as the circuit fluids of the geothermal borehole heat exchangers. International Communications in Heat and Mass Transfer, 81, 34–41. https://doi.org/10.1016/j.icheatmasstransfer.2016.12.002
Das, P. K., Mallik, A. K., Ganguly, R., & Santra, A. K. 2016. Synthesis and characterization of TiO2-water nanofluids with different surfactants. International Communications in Heat and Mass Transfer, 75, 341–348. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.011
Dhinesh Kumar, D., & Valan Arasu, A. 2018. A comprehensive review of preparation, characterization, properties and stability of hybrid nanofluids. Renewable and Sustainable Energy Reviews, 81(July 2017), 1669–1689. https://doi.org/10.1016/j.rser.2017.05.257
Gharibi, S., Mortezazadeh, E., Hashemi Aghcheh Bodi, S. J., & Vatani, A. 2018. Feasibility study of geothermal heat extraction from abandoned oil wells using a U-tube heat exchanger. Energy, 153, 554–567. https://doi.org/10.1016/j.energy.2018.04.003
Gonçalves, I., Souza, R., Coutinho, G., Miranda, J., Moita, A., Pereira, J. E., Moreira, A., & Lima, R. 2021. Thermal conductivity of nanofluids: A review on prediction models, controversies and challenges. Applied Sciences (Switzerland), 11(6). https://doi.org/10.3390/app11062525
Gordon, D., Bolisetti, T., Ting, D. S. K., & Reitsma, S. 2018. Experimental and analytical investigation on pipe sizes for a coaxial borehole heat exchanger. Renewable Energy, 115, 946–953. https://doi.org/10.1016/j.renene.2017.08.088
Harris, B. E., Lightstone, M. F., & Reitsma, S. 2021. A numerical investigation into the use of directionally drilled wells for the extraction of geothermal energy from abandoned oil and gas wells. Geothermics, 90(May 2020), 101994. https://doi.org/10.1016/j.geothermics.2020.101994
Hegde, R., Rao, S. S., & Reddy, R. P. 2010. Critical heat flux enhancement in pool boiling using alumina nanofluids. Heat Transfer - Asian Research, 39(5), 323–331. https://doi.org/10.1002/htj.20301
Hozien, O., El-Maghlany, W. M., Sorour, M. M., & Mohamed, Y. S. 2021. Experimental study on heat transfer and pressure drop characteristics utilizing three types of water based nanofluids in a helical coil under isothermal boundary condition. Journal of the Taiwan Institute of Chemical Engineers, 128, 237–252. https://doi.org/10.1016/j.jtice.2021.08.028
Hu, X., Banks, J., Guo, Y., & Liu, W. V. 2021. Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production—a numerical investigation. Renewable Energy, 176, 115–134. https://doi.org/10.1016/j.renene.2021.05.061
Hu, X., Banks, J., Wu, L., & Liu, W. V. 2020. Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta. Renewable Energy, 148, 1110–1123. https://doi.org/10.1016/j.renene.2019.09.141
Jalili, P., Ganji, D. D., & Nourazar, S. S. 2018. Investigation of convective-conductive heat transfer in geothermal system. Results in Physics, 10(June), 568–587. https://doi.org/10.1016/j.rinp.2018.06.047
Jama, M., Singh, T., Gamaleldin, S. M., Koc, M., Samara, A., Isaifan, R. J., & Atieh, M. A. 2016. Critical Review on Nanofluids: Preparation, Characterization, and Applications. Journal of Nanomaterials, 2016. https://doi.org/10.1155/2016/6717624
Jhia, Z., Zhu, L., Bottini, J. L., & Brooks, C. S. 2022. Identification of flow regimes in boiling flows in a vertical annulus channel with machine learning techniques. International Journal of Heat and Mass Transfer, 185, 122439. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122439
Jia, G. S., Ma, Z. D., Xia, Z. H., Zhang, Y. P., Xue, Y. Z., Chai, J. C., & Jin, L. W. 2022. A finite-volume method for full-scale simulations of coaxial borehole heat exchangers with different structural parameters, geological and operating conditions. Renewable Energy, 182, 296–313. https://doi.org/10.1016/j.renene.2021.10.017
Khodadadi, H., Toghraie, D., & Karimipour, A. 2019. Effects of nanoparticles to present a statistical model for the viscosity of MgO-Water nanofluid. Powder Technology, 342, 166–180. https://doi.org/10.1016/j.powtec.2018.09.076
Kristiawan, B., Rifa’i, A. I., Enoki, K., Wijayanta, A. T., & Miyazaki, T. 2020. Enhancing the thermal performance of TiO2/water nanofluids flowing in a helical microfin tube. In Powder Technology (Vol. 376, pp. 254–262). Elsevier B.V. https://doi.org/10.1016/j.powtec.2020.08.020
Kujawa, T., Nowak, W., & Stachel, A. A. 2006. Utilization of existing deep geological wells for acquisitions of geothermal energy. Energy, 31(5), 650–664. https://doi.org/10.1016/j.energy.2005.05.002
Kumar, A., & Hardik, B. K. 2022. Heat transfer distribution and pressure fluctuations during flow boiling in a pipe with different orientations. Applied Thermal Engineering, 201(PB), 117822. https://doi.org/10.1016/j.applthermaleng.2021.117822
Kurnia, J. C., Putra, Z. A., Muraza, O., Ghoreishi-Madiseh, S. A., & Sasmito, A. P. 2021. Numerical evaluation, process design and techno-economic analysis of geothermal energy extraction from abandoned oil wells in Malaysia. Renewable Energy, 175, 868–879. https://doi.org/10.1016/j.renene.2021.05.031
Li, C., Guan, Y., Yang, R., Lu, X., Xiong, W., & Long, A. 2020. Effect of inner pipe type on the heat transfer performance of deep-buried coaxial double-pipe heat exchangers. Renewable Energy, 145, 1049–1060. https://doi.org/10.1016/j.renene.2019.06.101
Lin, Y., Luo, Y., Li, J., & Li, W. 2021. Heat transfer, pressure drop and flow patterns of flow boiling on heterogeneous wetting surface in a vertical narrow microchannel. International Journal of Heat and Mass Transfer, 172, 121158. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121158
Liu, J., Liu, J., Li, R., & Xu, X. 2018. Experimental study on flow boiling characteristics in a high aspect ratio vertical rectangular mini-channel under low heat and mass flux. Experimental Thermal and Fluid Science, 98(January), 146–157. https://doi.org/10.1016/j.expthermflusci.2018.05.019
Lyu, Z., Song, X., Li, G., Hu, X., Shi, Y., & Xu, Z. 2017. Numerical analysis of characteristics of a single U-tube downhole heat exchanger in the borehole for geothermal wells. Energy, 125, 186–196. https://doi.org/10.1016/j.energy.2017.02.125
Menni, Y., Chamkha, A. J., & Ameur, H. 2020. Advances of nanofluids in heat exchangers—A review. Heat Transfer, 49(8), 4321–4349. https://doi.org/10.1002/htj.21829
Minea, A. A. 2017. Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches. International Journal of Heat and Mass Transfer, 104, 852–860. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.012
Mohamed, A., Salehi, S., & Ahmed, R. 2021. Significance and complications of drilling fluid rheology in geothermal drilling: A review. Geothermics, 93(December 2020), 102066. https://doi.org/10.1016/j.geothermics.2021.102066
Morchio, S., Fossa, M., & Beier, R. A. 2022. Study on the best heat transfer rate in thermal response test experiments with coaxial and U-pipe borehole heat exchangers. Applied Thermal Engineering, 200(August 2021), 117621. https://doi.org/10.1016/j.applthermaleng.2021.117621
Muneeshwaran, M., Srinivasan, G., Muthukumar, P., & Wang, C. C. 2021. Role of hybrid-nanofluid in heat transfer enhancement – A review. International Communications in Heat and Mass Transfer, 125(May), 105341. https://doi.org/10.1016/j.icheatmasstransfer.2021.105341
Nian, Y. Le, & Cheng, W. L. 2018a. Evaluation of geothermal heating from abandoned oil wells. Energy, 142, 592–607. https://doi.org/10.1016/j.energy.2017.10.062
Nian, Y. Le, & Cheng, W. L. 2018b. Insights into geothermal utilization of abandoned oil and gas wells. Renewable and Sustainable Energy Reviews, 87(February), 44–60. https://doi.org/10.1016/j.rser.2018.02.004
Noorollahi, Y., Pourarshad, M., Jalilinasrabady, S., & Yousefi, H. 2015. Numerical simulation of power production from abandoned oil wells in Ahwaz oil field in southern Iran. Geothermics, 55, 16–23. https://doi.org/10.1016/j.geothermics.2015.01.008
Piasecka, M., Strąk, K., & Maciejewska, B. 2021. Heat transfer characteristics during flow along horizontal and vertical minichannels. International Journal of Multiphase Flow, 137. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103559
Rahmati, A. R., Akbari, O. A., Marzban, A., Toghraie, D., Karimi, R., & Pourfattah, F. 2017. Simultaneous investigations the effects of non-Newtonian nanofluid flow in different volume fractions of solid nanoparticles with slip and no-slip boundary condition (pp. 263–277). Elsevier Ltd. https://doi.org/https://doi.org/10.1016/j.tsep.2017.12.006
Raj, B., Angayarkanni, S. A., & Philip, J. 2017. Nano fluids for Efficient Heat Transfer Applications. Nanotechnology for Energy Sustainability, First Edition, 997–1027.
Returi, M. C., Konijeti, R., & Dasore, A. 2019. Heat transfer enhancement using hybrid nanofluids in spiral plate heat exchangers. Heat Transfer - Asian Research, 48(7), 3128–3143. https://doi.org/10.1002/htj.21534
Singh Rajput, N., Dilipbhai Shukla, D., Ishan, L., & Seshu Madhav, K. 2019. Enhancement of Nusselt number by using Al2O3and TiO2Nanofluids in Heat Exchangers. Materials Today: Proceedings, 47, 6515–6521. https://doi.org/10.1016/j.matpr.2021.08.191
Soltani, O., & Akbari, M. 2016. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: Experimental study. Physica E: Low-Dimensional Systems and Nanostructures, 84, 564–570. https://doi.org/10.1016/j.physe.2016.06.015
Song, X., Wang, G., Shi, Y., Li, R., Xu, Z., Zheng, R., Wang, Y., & Li, J. 2018. Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system. Energy, 164, 1298–1310. https://doi.org/10.1016/j.energy.2018.08.056
Stacy, S. C., Zhang, X., Pantoya, M., & Weeks, B. 2014. The effects of density on thermal conductivity and absorption coefficient for consolidated aluminum nanoparticles. International Journal of Heat and Mass Transfer, 73, 595–599. https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.050
Suresh, S., Venkitaraj, K. P., Selvakumar, P., & Chandrasekar, M. 2011. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 388(1–3), 41–48. https://doi.org/10.1016/j.colsurfa.2011.08.005
Tang, F., & Nowamooz, H. 2018. Long-term performance of a shallow borehole heat exchanger installed in a geothermal field of Alsace region. Renewable Energy, 128, 210–222. https://doi.org/10.1016/j.renene.2018.05.073
Templeton, J. D., Ghoreishi-Madiseh, S. A., Hassani, F., & Al-Khawaja, M. J. 2014. Abandoned petroleum wells as sustainable sources of geothermal energy. Energy, 70, 366–373. https://doi.org/10.1016/j.energy.2014.04.006
Vallejo, J. P., Prado, J. I., & Lugo, L. 2022. Hybrid or mono nanofluids for convective heat transfer applications. A critical review of experimental research. Applied Thermal Engineering, 203(November 2021), 117926. https://doi.org/10.1016/j.applthermaleng.2021.117926
Verma, S. K., & Tiwari, A. K. 2017. Characterization of Nanofluids as an advanced heat transporting medium for Energy Systems. Materials Today: Proceedings, 4(2), 4095–4103. https://doi.org/10.1016/j.matpr.2017.02.313
Zhang, H., Qing, S., Gui, Q., Zhang, X., & Zhang, A. 2022. Effects of surface modification and surfactants on stability and thermophysical properties of TiO2/water nanofluids. Journal of Molecular Liquids, 349, 118098. https://doi.org/10.1016/j.molliq.2021.118098
Zhong, D., Zhong, H., & Wen, T. 2020. Investigation on the thermal properties, heat transfer and flow performance of a highly self-dispersion TiO2 nanofluid in a multiport mini channel. International Communications in Heat and Mass Transfer, 117(July). https://doi.org/10.1016/j.icheatmasstransfer.2020.104783
Zhou, J., Ye, T., Zhang, D., Song, G., Sun, R., Deng, J., Tian, W., Su, G. H., & Qiu, S. 2021. Experimental study on vertically upward steam-water two-phase flow patterns in narrow rectangular channel. Nuclear Engineering and Technology, 53(1), 61–68. https://doi.org/10.1016/j.net.2020.06.003
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are free to Share — copy and redistribute the material in any medium or format for any purpose, even commercially Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms, under the following terms Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.









