Comparative Study of Capacitance Resistance Model and Machine Learning for Sensitivity Analysis of Polymer Injection Performance

Authors

  • Azri Agus Rizal Universitas Islam Riau
  • Fajril Ambia Universitas Islam Riau
  • Novia Rita Universitas Islam Riau
  • Ira Herawati Universitas Islam Riau

DOI:

https://doi.org/10.29017/scog.v48i4.1929

Keywords:

Polymer Injection, CRM, DCA, Machine Learning, XGBoost, Random Forest, EOR, Volve Field

Abstract

The objective of this study was to evaluate the performance of polymer injection in the Volve Field by validating full-physics tNavigator simulation results. This process was performed using two independent data-driven approaches: the Capacitance Resistance Model (CRM) and machine-learning algorithms Random Forest and XGBoost. This validation framework addresses uncertainty in flow-parameter and ensures that simulated production responses align with data-driven injection–production behavior. The simulation model was constructed using 20 years of historical field data, consisted of five years of polymer injection at 1000–3000 ppm, followed by 15 years of chase water flooding. The simulation results showed that polymer injection increased the oil recovery factor from 21.12% to 21.30% in the best-case scenario, indicating a modest improvement in sweep efficiency. CRM, applied through CRM-P and CRM-IP configurations, successfully reconstructed production profiles and quantified interwell connectivity (R² = 0.94; MAPE < 10%). Machine-learning validation further confirmed these results, with Random Forest achieving R² = 0.92 (MAPE < 1%) and XGBoost achieving R² = 0.99 (MAPE < 1%). Overall, CRM and machine learning provide effective and independent validation pathways, enhancing confidence in simulation outcomes and allowing for reliable assessment of polymer-injection performance in field applications.

References

A. Al Shabaan, M., & N. Nemer, Z. (2024). Oil and Gas Production Forecasting Using Decision Trees, Random Forest, and XGBoost. Journal of Al-Qadisiyah for Computer Science and Mathematics, 16(1), 9–20. https://doi.org/10.29304/jqcsm.2024.16.11431

Abbasov, A. A., Abbasov, E. M., & Suleymanov, A. A. (2023). Estimation of the waterflooding process efficiency based on a capacitive-resistive model with a nonlinear productivity index. 1(1), 19–26. https://doi.org/http://dx.doi.org/10.5510/OGP2023SI100820

Alvarado, V., & Manrique, E. (2010). Enhanced Oil Recovery: An Update Review. 1529–1575. https://doi.org/10.3390/en3091529

Auni, N. R., Afdhol, M. K., Ridha, M., & Erfando, T. (2023). Potensi Polimer Sintetik Sebagai Bahan Chemical Enhaced Oil Recovery Untuk Meningkatkan Sweep Efficiency pada Skala Pengujian Laboratorium. 57(1), 11–23.

Borovina, A., Hincapie, R. E., Clemens, T., Hoffmann, E., & Wegner, J. (2022). Selecting EOR Polymers through Combined Approaches—A Case for Flooding in a Heterogeneous Reservoir. Polymers, 14(24). https://doi.org/10.3390/polym14245514

Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination, R-squared, is more informative than SMAPE, MAE, MAPE, MSE, and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, 1–24. https://doi.org/10.7717/PEERJ-CS.623

Davudov, D., Malkov, A., & Venkatraman, A. (2020). Integration of capacitance resistance model with reservoir simulation. Proceedings - SPE Symposium on Improved Oil Recovery, April 18–22. https://doi.org/10.2118/200332-MS

De Holanda, R. W., Gildin, E., Jensen, J. L., Lake, L. W., & Shah Kabir, C. (2018). A state-of-the-art literature review on capacitance resistance models for reservoir characterization and performance forecasting. Energies, 11(12). https://doi.org/10.3390/en11123368

Erfando, T., Rita, N., & Ramadhan, R. (2019). The Key Parameter Effect Analysis Of Polymer Flooding On Oil Recovery Using Reservoir Simulation. Journal of Geoscience, Engineering, Environment, and Technology, 4(1), 49. https://doi.org/10.25299/jgeet.2019.4.1.2107

Fajrul Haqqi, M., Saroji, S., & Prakoso, S. (2023). An implementation of the XGBoost algorithm to estimate effective porosity on well log data. Journal of Physics: Conference Series, 2498(1). https://doi.org/10.1088/1742-6596/2498/1/012011

Fu, L., Zhao, L., Chen, S., Xu, A., Ni, J., & Li, X. (2022). A Prediction Method for Development Indexes of Waterflooding Reservoirs Based on Modified Capacitance–Resistance Models. Energies, 15(18). https://doi.org/10.3390/en15186768

Hafidz, M., & Fauzi, E. (2025). A COMPARATIVE STUDY OF ARIMA, XGBOOST, AND HYBRID ARIMA–XGBOOST APPROACHES FOR FORECASTING IT PROJECT DEMAND. 8. https://doi.org/https://doi.org/10.31539/intecoms.v8i3.15848

Hidayat, F., & Astsauri, T. M. S. (2021). Applied random forest for parameter sensitivity of low-salinity water injection (LSWI). https://doi.org/https://doi.org/10.1016/j.aej.2021.06.096

Hou, D., Han, G., Chen, S., Zhang, S., & Liang, X. (2024). A Study on a Novel Production Forecasting Method of Unconventional Oil and Gas Wells Based on Adaptive Fusion. Processes, 12(11). https://doi.org/10.3390/pr12112515

Imankulov, T., Kenzhebek, Y., Makhmut, E., & Akhmed-Zaki, D. (2022). Using machine learning algorithms to solve the polymer flooding problem. European Conference on the Mathematics of Geological Reservoirs 2022, ECMOR 2022, 40(6), 35–40. https://doi.org/10.3997/2214-4609.202244056

Khalbia, D. (2021). Coupled Capacitance Resistance Model and Aquifer Model for Waterflood Performance Prediction.

Lesan, A., Ehsan Eshraghi, S., Bahroudi, A., Reza Rasaei, M., & Rahami, H. (2018). State-of-the-Art Solution of Capacitance Resistance Model by Considering Dynamic Time Constants as a Realistic Assumption. Journal of Energy Resources Technology, Transactions of the ASME, 140(1). https://doi.org/10.1115/1.4037368

Maurenza, F., Yasutra, A., & Tungkup, I. L. (2023). Production Forecasting Using the ARPS Decline Curve Model with The Effect of Artificial Lift Installation. Scientific Contributions Oil and Gas, 46(1), 17–26. https://doi.org/10.29017/SCOG.46.1.1310

Mbise, P. K. (2019). Enhanced Oil Recovery for Norne Field E-Segment using Alkaline Surfactant-Polymer Flooding. August.

Noshi, C. I., Eissa, M. R., Abdalla, R. M., & Schubert, J. J. (2019). An intelligent data-driven approach for production prediction. Proceedings of the Annual Offshore Technology Conference, 2019-May. https://doi.org/10.4043/29243-ms

Nugroho, I. D. R., Trisna, M. D., & Saroji, S. (2024). An Implementation of XGBoost and Random Forest Algorithm to Estimate Effective Porosity and Permeability on Well Log Data at Fajar Field, South Sumatra Basin, Indonesia. Indonesian Journal of Applied Physics, 14(2), 271. https://doi.org/10.13057/ijap.v14i2.82901

Nugroho, M. H., Aslam, B., & Marhaendrajana, T. (2021). Capacitance Resistance Model (CRM) Application To Rapidly Evaluate and Optimize Production in the Peripheral Waterflood Field, Pandhawa Field Case Study. PETRO:Jurnal Ilmiah Teknik Perminyakan, 10(3), 149–162. https://doi.org/10.25105/petro.v10i3.9827

Nwogu, I. C., Ayo, A., Asemota, O., & Ajibade, O. (2019). Successful application of capacitance resistance modeling to understand reservoir dynamics in a brown field waterflood – A Niger delta swamp field case study. Society of Petroleum Engineers - SPE Nigeria Annual International Conference and Exhibition 2019, NAIC 2019. https://doi.org/10.2118/198819-MS

Palyanitsina, A., Safiullina, E., Byazrov, R., Podoprigora, D., & Alekseenko, A. (2022). Environmentally Safe Technology to Increase Efficiency of High-Viscosity Oil Production for the Objects with Advanced Water Cut. Energies, 15(3). https://doi.org/10.3390/en15030753

Pramadika, H., Samsol, S., & Satiyawira, B. (2019). The effect of the addition of polymer on the viscosity of the fluid for industrial oil and gas injection in the EOR method. Journal of Physics: Conference Series, 1402(2). https://doi.org/10.1088/1742-6596/1402/2/022053

Pyatibratov, P. V., & Zammam, M. (2023). Waterflooding optimization based on the CRM and solving the linear programming problem. 2(2), 59–67. https://doi.org/http://dx.doi.org/10.5510/10.5510/OGP2023SI200890

Rahmanifard, H., & Gates, I. (2024). A Comprehensive review of data-driven approaches for forecasting production from unconventional reservoirs: best practices and future directions. Artificial Intelligence Review, 57(8). https://doi.org/10.1007/s10462-024-10865-5

Ramadhan, R., Abdurahman, M., & Srisuriyachai, F. (2020). Sensitivity Analysis Comparison of Synthetic Polymer and Biopolymer using Reservoir Simulation. Scientific Contributions Oil and Gas, 43(3), 143–152. https://doi.org/10.29017/scog.43.3.516

Ramadhan, R., Novriansyah, A., Erfando, T., Tangparitkul, S., Daniati, A., Permadi, A. K., & Abdurrahman, M. (2023). Heterogeneity Effect on Polymer Injection: a Study of Sumatra Light Oil. Scientific Contributions Oil and Gas, 46(1), 39–52. https://doi.org/10.29017/SCOG.46.1.1334

Salehian, M., & Çınar, M. (2019). Reservoir characterization using dynamic capacitance–resistance model with application to shut-in and horizontal wells. Journal of Petroleum Exploration and Production Technology, 9(4), 2811–2830. https://doi.org/10.1007/s13202-019-0655-4

Saputra, D. D. S. M., Prasetiyo, B. D., Eni, H., Taufantri, Y., Damara, G., & Rendragraha, Y. D. (2022). Investigation of Polymer Flood Performance in Light Oil Reservoir: Laboratory Case Study. Scientific Contributions Oil and Gas, 45(2), 81–86. https://doi.org/10.29017/SCOG.45.2.1181

Sayarpour, M., Kabir, C. S., & Lake, L. W. (2008). Field applications of capacitance-resistive models in waterfloods. SPE Reservoir Evaluation and Engineering, 12(6), 853–864. https://doi.org/10.2118/114983-pa

Sayarpour, M., Zuluaga, E., Kabir, C. S., & Lake, L. W. (2009). The use of capacitance-resistance models for rapid estimation of waterflood performance and optimization. Journal of Petroleum Science and Engineering, 69(3–4), 227–238. https://doi.org/10.1016/j.petrol.2009.09.006

Shang, C., Ng, W., Nait, M., Jahanbani, A., & Struen, L. (2023). A Survey on the Application of Machine Learning and Metaheuristic Algorithms for Intelligent Proxy Modeling in Reservoir Simulation. Computers and Chemical Engineering, 170(December 2022), 108107. https://doi.org/10.1016/j.compchemeng.2022.108107

Simanjuntak, R., & Irawan, D. (2021). Applying Artificial Neural Network and XGBoost to Improve Data Analytics in the Oil and Gas Industry. Indonesian Journal of Energy, 4(1), 26–35. https://doi.org/10.33116/ije.v4i1.103

Weber, D. (2009). The Use of Capacitance-Resistance Models to Optimize Injection Allocation and Well Location in Water Floods. 292.

Yan, S., Li, W., Zhang, M., & Wang, Z. (2023). An Innovative Method for Hydraulic Fracturing Parameters Optimization to Enhance Production in Tight Oil Reservoirs. 1–24. https://doi.org/10.14800/IOGR.1262

Zhao, W., & Liu, T. (2023). Approaches of Combining Machine Learning with NMR-based Pore Structure Characterization for Reservoir Evaluation. https://doi.org/10.20944/preprints202312.0444.v1

Zhou, H., Liu, J., Fei, J., & Shi, S. (2023). A Model Based on the Random Forest Algorithm That Predicts the Total Oil–Water Two-Phase Flow Rate in Horizontal Shale Oil Wells. Processes, 11(8). https://doi.org/10.3390/pr11082346

Zhu, R., Li, N., Duan, Y., Li, G., Liu, G., Qu, F., Long, C., Wang, X., Liao, Q., & Li, G. (2024). Well-Production Forecasting Using Machine Learning with Feature Selection and Automatic Hyperparameter Optimization. Energies, 18(1). https://doi.org/10.3390/en18010099

Published

16-12-2025

Issue

Section

Articles