The Integration of Hybrid Capacitance Resistance Model and Machine Learning: A Data-Based Workflow for Optimizing Waterflood Performance and Reservoir Management

Authors

  • Syifa Alviola Muhendra Universitas Islam Riau
  • Novia Rita Universitas Islam Riau
  • Fajril Ambia Universitas Islam Riau
  • Agus Dahlia Universitas Islam Riau

DOI:

https://doi.org/10.29017/scog.v48i4.1928

Keywords:

Waterflood, CRM, Interwell Connectivity, Machine Learning, Streamline

Abstract

This study aims to minimize uncertainty in waterflood performance by employing a data-driven workflow that combines the Capacitance Resistance Model (CRM) with Machine Learning. Two CRM variants, CRM-P (Producer-based) and CRM-IP (Injector-Producer-based), are utilized to evaluate interwell connectivity and time constants on three reservoir models: homogeneous, heterogeneous, and a real field scenario (Volve Field). The model is evaluated using R² and Mean Absolute Percentage Error (MAPE) and is compared against the Random Forest and eXtreme Gradient Boosting (XGBoost) techniques. The results indicate that CRM-IP provides more realistic estimates than CRM-P, particularly for response time. XGBoost consistently demonstrates superior prediction accuracy, achieving R² values of 0.76–0.98 and MAPE values of 0.5–10%. Three-dimensional (3D) visualizations of interwell connectivity and streamline analysis strengthen the understanding of fluid flow and sweep efficiency. This further demonstrates that integrating CRM and Machine Learning serves as a decision-support tool for Enhanced Oil Recovery optimization, as evidenced by R² and MAPE analyses that characterize sweep efficiency and the reservoir's capacity to accommodate additional injection.

References

Alshboul, O., Shehadeh, A., Almasabha, G., & Almuflih, A. S. (2022). Extreme Gradient Boosting-Based Machine Learning Approach for Green Building Cost Prediction. Sustainability (Switzerland), 14(11). https://doi.org/10.3390/su14116651

Chakraborty, D., & Elzarka, H. (2019). Advanced machine learning techniques for building performance simulation: a comparative analysis. Journal of Building Performance Simulation, 12(2), 193–207. https://doi.org/10.1080/19401493.2018.1498538

De-Prado-gil, J., Palencia, C., Jagadesh, P., & Martínez-García, R. (2022). A Comparison of Machine Learning Tools that Model the Splitting Tensile Strength of Self-Compacting Recycled Aggregate Concrete. Materials, 15(12). https://doi.org/10.3390/ma15124164

De Holanda, R. W., Gildin, E., Jensen, J. L., Lake, L. W., & Shah Kabir, C. (2018). A state-of-the-art literature review on capacitance resistance models for reservoir characterization and performance forecasting. In Energies (Vol. 11, Issue 12). MDPI AG. https://doi.org/10.3390/en11123368

Du, X., Salasakar, S., & Thakur, G. (2024). A Comprehensive Summary of the Application of Machine Learning Techniques for CO2-Enhanced Oil Recovery Projects. Machine Learning and Knowledge Extraction, 6(2), 917–943. https://doi.org/10.3390/make6020043

Fadzil, M. A. M., Zabiri, H., Razali, A. A., Basar, J., & Syamzari Rafeen, M. (2021). Base oil process modelling using machine learning. Energies, 14(20). https://doi.org/10.3390/en14206527

Fan, D., Lai, S., Sun, H., Yang, Y., Yang, C., Fan, N., & Wang, M. (2025). Review of Machine Learning Methods for Steady State Capacity and Transient Production Forecasting in Oil and Gas Reservoir. Energies, 18(4), 1–25. https://doi.org/10.3390/en18040842

Fu, L., Zhao, L., Chen, S., Xu, A., Ni, J., & Li, X. (2022). A Prediction Method for Development Indexes of Waterflooding Reservoirs Based on Modified Capacitance–Resistance Models. Energies, 15(18). https://doi.org/10.3390/en15186768

Guo, Y., Zhang, L., Zhu, G., Yao, J., Sun, H., Song, W., Yang, Y., & Zhao, J. (2019). A pore-scale investigation of residual oil distributions and enhanced oil recovery methods. Energies, 12(19). https://doi.org/10.3390/en12193732

Ismailova, J. A., Delikesheva, D. N., Akhymbayeva, B. S., Logvinenko, A., & Narikov, K. A. (2021). Improvement of Sweep Efficiency in a Heterogeneous Reservoir. Smart Science, 9(1), 51–59. https://doi.org/10.1080/23080477.2021.1889259

Izadmehr, M., Daryasafar, A., Bakhshi, P., Tavakoli, R., & Ghayyem, M. A. (2018). Determining influence of different factors on production optimization by developing production scenarios. Journal of Petroleum Exploration and Production Technology, 8(2), 505–520. https://doi.org/10.1007/s13202-017-0351-1

Jiang, Y., Zhang, H., Zhang, K., Wang, J., Cui, S., Han, J., Zhang, L., & Yao, J. (2022). Reservoir Characterization and Productivity Forecast Based on Knowledge Interaction Neural Network. Mathematics, 10(9), 1–22. https://doi.org/10.3390/math10091614

Krogstad, S., Lie, K. A., Nilsen, H. M., Berg, C. F., & Kippe, V. (2017). Efficient flow diagnostics proxies for polymer flooding. Computational Geosciences, 21(5–6), 1203–1218. https://doi.org/10.1007/s10596-017-9681-9

Li, W., Dong, Z., Lee, J. W., Ma, X., & Qian, S. (2022). Development of Decline Curve Analysis Parameters for Tight Oil Wells Using a Machine Learning Algorithm. Geofluids, 2022. https://doi.org/10.1155/2022/8441075

Liu, B., Xu, T., Xu, Y., Zhao, H., & Li, B. (2025). Automated Reservoir History Matching Framework: Integrating Graph Neural Networks, Transformer, and Optimization for Enhanced Interwell Connectivity Inversion. Processes, 13(5). https://doi.org/10.3390/pr13051386

Liu, J. (2020). Potential for Evaluation of Interwell Connectivity under the Effect of Intraformational Bed in Reservoirs Utilizing Machine Learning Methods. Geofluids, 2020(Cm). https://doi.org/10.1155/2020/1651549

Makhotin, I., Orlov, D., & Koroteev, D. (2022). Machine Learning to Rate and Predict the Efficiency of Waterflooding for Oil Production. Energies, 15(3). https://doi.org/10.3390/en15031199

Malvi´c, T., Ivšinovi´c, J., Veli´c, J., Sremac, J., & Barudžija, U. (2020). Increasing Efficiency of Field Water Re-Injection during Water-Flooding in Mature Hydrocarbon Reservoirs: A Case Study from the Sava Depression, Northern Croatia. Sustainability, c. https://doi.org/https://doi.org/10.3390/su12030786

Maurenza, F., Yasutra, A., & Tungkup, I. L. (2023). Production Forecasting Using Arps Decline Curve Model with The Effect of Artificial Lift Installation. Scientific Contributions Oil and Gas, 46(1), 9–18. https://doi.org/10.29017/SCOG.46.1.1310

Moradi, S., Omar, A., Zhou, Z., Agostino, A., Gandomkar, Z., Bustamante, H., Power, K., Henderson, R., & Leslie, G. (2023). Forecasting and Optimizing Dual Media Filter Performance via Machine Learning. Water Research, 235(March), 119874. https://doi.org/10.1016/j.watres.2023.119874

Ng, C. S. W., Jahanbani Ghahfarokhi, A., & Nait Amar, M. (2022). Well production forecast in Volve field: Application of rigorous machine learning techniques and metaheuristic algorithm. Journal of Petroleum Science and Engineering, 208(PB), 109468. https://doi.org/10.1016/j.petrol.2021.109468

Nguyen, A. P. (2012). Capacitance Resistance Modeling for Primary.

Ogbeiwi, P., Aladeitan, Y., & Udebhulu, D. (2018). An approach to waterflood optimization: case study of the reservoir X. Journal of Petroleum Exploration and Production Technology, 8(1), 271–289. https://doi.org/10.1007/s13202-017-0368-5

Pandey, A., Kesarwani, H., Saxena, A., Azin, R., & Sharma, S. (2023). Effect of heterogeneity and injection rates on the recovery of oil from conventional sand packs: A simulation approach. Petroleum Research, 8(1), 96–102. https://doi.org/10.1016/j.ptlrs.2022.05.005

Pratama, H. B., & Saptadji, N. M. (2021). Study of Production-Injection Strategies for Sustainable Production in Geothermal Reservoir Two-Phase by Numerical Simulation. Indonesian Journal on Geoscience, 18(1), 25–38. https://doi.org/10.17014/ijog.8.1.25-38

Rahmanifard, H., & Gates, I. (2024). A Comprehensive review of data-driven approaches for forecasting production from unconventional reservoirs: best practices and future directions. Artificial Intelligence Review, 57(8). https://doi.org/10.1007/s10462-024-10865-5

Ramadhan, R., Novriansyah, A., Erfando, T., Tangparitkul, S., Daniati, A., Permadi, A. K., & Abdurrahman, M. (2023). Heterogeneity Effect on Polymer Injection: a Study of Sumatra Light Oil. Scientific Contributions Oil and Gas, 46(1), 45–58. https://doi.org/10.29017/SCOG.46.1.1334

Reginato, L. F., Gioria, R. dos S., & Sampaio, M. A. (2023). Hybrid Machine Learning for Modeling the Relative Permeability Changes in Carbonate Reservoirs under Engineered Water Injection. Energies, 16(13). https://doi.org/10.3390/en16134849

Ruhiat, D., & Effendi, A. (2018). Pengaruh Faktor Musiman Pada Pemodelan Deret Waktu Untuk Peramalan Debit Sungai Dengan Metode Sarima. TEOREMA : Teori Dan Riset Matematika, 2(2), 117. https://doi.org/10.25157/teorema.v2i2.1075

Sayarpour, M., Zuluaga, E., Kabir, C. S., & Lake, L. W. (2009). The use of capacitance-resistance models for rapid estimation of waterflood performance and optimization. Journal of Petroleum Science and Engineering, 69(3–4), 227–238. https://doi.org/10.1016/j.petrol.2009.09.006

Shahani, N. M., Zheng, X., Liu, C., Hassan, F. U., & Li, P. (2021). Developing an XGBoost Regression Model for Predicting Young’s Modulus of Intact Sedimentary Rocks for the Stability of Surface and Subsurface Structures. Frontiers in Earth Science, 9(October), 1–13. https://doi.org/10.3389/feart.2021.761990

Sidiq, H., Abdulsalam, V., & Nabaz, Z. (2019). Reservoir simulation study of enhanced oil recovery by sequential polymer flooding method. Advances in Geo-Energy Research, 3(2), 115–121. https://doi.org/10.26804/ager.2019.02.01

Soltanmohammadi, R., Iraji, S., Rodrigues de Almeida, T., Basso, M., Ruidiaz Munoz, E., & Campane Vidal, A. (2024). Investigation of pore geometry influence on fluid flow in heterogeneous porous media: A pore-scale study. Energy Geoscience, 5(1), 100222. https://doi.org/10.1016/j.engeos.2023.100222

Sri Chandrahas, N., Choudhary, B. S., Vishnu Teja, M., Venkataramayya, M. S., & Krishna Prasad, N. S. R. (2022). XG Boost Algorithm to Simultaneous Prediction of Rock Fragmentation and Induced Ground Vibration Using Unique Blast Data. Applied Sciences (Switzerland), 12(10). https://doi.org/10.3390/app12105269

Unless, R., Act, P., Rose, W., If, T., & Rose, W. (2017). This is a repository copy of The Impact of Fine-scale Reservoir Geometries on Streamline Flow Patterns in Submarine Lobe Deposits Using Outcrop Analogues from the Karoo Version : Accepted Version Article : The Impact of Fine-scale Reservoir Geometries on .

Usman, & Haans, A. (2017). Mengoptimalkan Perolehan Minyak Pada Lahan Terbatas Menggunakan Sumur Berarah Dan Pendesakan Air. Lembaran Publikasi Minyak Dan Gas Bumi, 51(1), 1–11. https://doi.org/10.29017/LPMGB.51.1.9

Wang, G., Pickup, G. E., Sorbie, K. S., & Mackay, E. J. (2019). Analysis of Compositional Effects on Global Flow Regimes in CO2 Near-Miscible Displacements in Heterogeneous Systems. Transport in Porous Media, 129(3), 743–759. https://doi.org/10.1007/s11242-019-01304-z

Weijermars, R., & van Harmelen, A. (2017). Advancement of sweep zones in waterflooding: conceptual insight based on flow visualizations of oil-withdrawal contours and waterflood time-of-flight contours using complex potentials. Journal of Petroleum Exploration and Production Technology, 7(3), 785–812. https://doi.org/10.1007/s13202-016-0294-y

Widodo, A. P., Sarwoko, E. A., & Firdaus, Z. (2017). Akurasi Model Prediksi Metode Backpropagation Menggunakan Kombinasi Hidden Neuron Dengan Alpha. Matematika, 20(2), 79–84.

Yousef, A. A., Gentil, P., Jensen, J. L., & Lake, L. W. (2006). A capacitance model to infer interwell connectivity from production- and injection-rate fluctuations. SPE Reservoir Evaluation and Engineering, 9(6), 630–646. https://doi.org/10.2118/95322-PA

Zainuri, A. P. P., Sinurat, P. D., Irawan, D., & Sasongko, H. (2023). Trap Prevention in Machine Learning in Prediction of Petrophysical Parameters: A Case Study in The Field X. Scientific Contributions Oil and Gas, 46(3), 115–127. https://doi.org/10.29017/SCOG.46.3.1586

Published

16-12-2025

Issue

Section

Articles