The Effect of TiO2 Nanoparticles on The Performance of Kappaphycus Alvarezii Biopolymer for Enhanced Oil Recovery

Authors

  • Muhammad Taufiq Fathaddin Universitas Trisakti
  • Onnie Ridaliani Prapansya Universitas Trisakti
  • Pri Agung Rakhmanto Universitas Trisakti
  • Dwi Atty Mardiana Universitas Trisakti
  • Wydhea Ayu Septianingrum Universitas Trisakti
  • Sonny Irawan Nazarbayev University
  • Ridho Abdillah Universitas Trisakti

DOI:

https://doi.org/10.29017/scog.v48i3.1909

Keywords:

Kappaphycus alvarezii, TiO₂ nanoparticle, salinity, enhanced oil recovery, wettability

Abstract

This study investigates the performance of a novel, environmentally friendly nanocomposite, utilizing the natural biopolymer Kappaphycus alvarezii enhanced with TiO2 nanoparticles, for Enhanced Oil Recovery (EOR) via polymer flooding. The application of this nanocomposite was aimed to simultaneously enhance microscopic displacement and macroscopic sweep efficiency. The research method used was laboratory testing which included solution stability, viscosity, interfacial tension (IFT), and rock wettability tests in various polymer concentrations (2,000–6,000 ppm), TiO₂ (2,000–4,000 ppm), and salinity (6,000–30,000 ppm) at temperatures of 30–80°C. Quantitative laboratory results confirm fluid property improvements: TiO2 addition increased the solution viscosity by up to 11 cP where an average increase up to 7.11% in high-salinity brines, reduced the Interfacial Tension (IFT) from 7.54 dyne/cm to 6.80 dyne/cm (a 9.8% reduction), and decreased the contact angle from 39.05° to 28.51°, confirming enhanced water-wetness. Core flooding experiments demonstrated that the polymer flooding yielded an incremental oil recovery factor after waterflooding ranging from 6.67% to 27.67%. The maximum total oil recovery achieved was 69.17% at the optimal concentration of Polymer 4,000 ppm and TiO2 2,000 ppm. These specific findings highlight the significant potential of the Kappaphycus alvarezii–TiO2 nanocomposite as an effective EOR agent.

References

Abdullah, A. A., 2021, Teknik Budidaya Rumput Laut (Kappaphycus alvarezii) dengan Metode Rakit Apung di Desa Tanjung, Kecamatan Saronggi, Kabupaten Sumenep, Jawa Timur, Jurnal Ilmiah Perikanan Dan Kelautan, vol. 3, no. 1, pp. 21–26. doi: 10.20473/jipk.v3i1.11619.

Al-Anssari, S., Barifcani, A., Wang, S., Maxim, L. & Iglauer, S., 2016, Wettability alteration of oil-wet carbonate by silica nanofluid, Journal of Colloid and Interface Science, vol. 461, pp. 435–442. doi: 10.1016/j.jcis.2015.09.051.

Aprianti, G. E., Edhi Suyatma, N., & Arpah, M. 2023, Karakteristik Fisik Komposit Biopolimer Sebagai Alternatif Gelatin. Jurnal Teknologi Pangan Dan Hasil Pertanian, 18(2), 32. https://doi.org/10.26623/jtphp.v18i2.7362

Cheraghian, G., Khalili Nezhad, S. S., Kamari, M. Hemmati, M., Masihi, M. & Bazgir, S., 2014, Adsorption polymer on reservoir rock and role of the nanoparticles, clay and SiO2, International Nano Letters, vol. 4, no. 3. doi: 10.1007/s40089-014-0114-7.

Corredor, L., Husein, M. M. & Maini, B. B., 2019, Impact of PAM-grafted nanoparticles on the Performance of Hydrolyzed Polyacrylamide Solutions for Heavy Oil Recovery at Different Salinities, Industrial & Engineering Chemistry Research, pp. 1–46. doi: https://doi.org/ 10.1021/acs.iecr.9b01290.

Corredor, L. M., Husein, M. M. & Maini, B. B., 2019, A review of polymer nanohybrids for oil recovery, Advances in Colloid and Interface Science, vol. 272. doi: 10.1016/j.cis.2019. 102018.

Ehtesabi, H., Ahadian, M. M., Taghikhani, V. & Ghazanfari, M. H., 2013, Enhanced heavy oil recovery in sandstone cores using TiO2 nanofluids, Energy & Fuels, vol. 28, no. 1, pp. 423–430. https://doi.org/10.1021/ef401338c.

Erniati, Erlangga, & Andika, Y., 2022, Rumput Laut Perairan Aceh. Penerbit KBM Indonesia, Yogyakarta.

Fang, Y., et al., 2013, Conformation and rheological properties of polysaccharides influenced by ionic strength. Food Hydrocolloids, vol. 31, no. 2, pp. 121–126.

Fathaddin, M.T., Mardiana, D. A., Sutiadi, A. & Maulida, F., 2025, Viscosity Modeling and Prediction of Amorphophallus oncophyllus and Sapindus rarak Using Machine Learning Methods, Jurnal Fisika dan Aplikasinya, vol. 21, no. 1, pp. 13-20. http://dx.doi.org/ 10.12962%2Fj24604682.v21i1.8997

Keykhosravi, A., Vanani, M. B. & Aghayari, C., 2021, TiO2 nanoparticle-induced Xanthan Gum Polymer for EOR: Assessing the underlying mechanisms in oil-wet carbonates, Journal of Petroleum Science and Engineering, vol. 204, doi: 10.1016/j.petrol.2021.108756.

Koottungal, L., 2010, Worldwide EOR survey, Oil Gas Journal, vol. 108, no. 14, pp. 41–53, 2010.

Labenua, R. & Aris, M., 2021, Suitability of Kappaphycus alvarezi Cultivation In Obi Island, North Maluku, Jurnal Ilmiah Platax, vol. 9, no. 2, p. 217. doi: 10.35800/jip.9.2.2021.33048.

Lamas, L. F. Botechia, V. E. Schiozer, D. J. Rocha, M. L. & Delshad, M. 2024, Application of polymer flooding in the revitalization of a mature heavy oil field, Journal of Petroleum Science and Engineering, vol. 204. doi: 10.1016/j.petrol.2021.108695.

Li, X., Zhang, F. & Liu, G., 2021, Review on Polymer Flooding Technology. IOP Conference Series: Earth and Environmental Science 675, no. 1, 012199. https://doi.org/10.1088/1755-1315/675/1/012199.

Martone, P. T., Janot, K., Fujita, M., Wasteneys, G., Ruel, K., Joseleau, J.-P., & Estevez, J. M., 2019, Cellulose-rich secondary walls in wave-swept red macroalgae fortify flexible tissues. Planta, 250(6), pp. 1867-1879. https://doi.org/10.1007/s00425-019-03269-1.

Mohd, T. A. T., Taib, N. M., Adzmi, A. F., Lah, N. K. I. N. A., Sauki, A., & Jaafar, M. Z., 2018, Evaluation of polymer properties for potential selection in enhanced oil recovery. Chemical Engineering Transsactions, 65, 343–348. https://doi.org/10.3303/cet1865058.

Mualam, A. M. A., Widigdo, B. & Zairion, N., 2022, Analisis Kawasan Budidaya Rumput Laut (Kappaphycus alvarezii) Berdasarkan Indikator Kesesuaian Dan Daya Dukung Di Pesisir Kota Baubau, Jurnal Ilmu Dan Teknologi Kelautan Tropis, vol. 14, no. 1, pp. 81–93. doi: 10.29244/jitkt.v14i1.37659.

Mulyani, S., Tuwo, A., Syamsuddin, R., Jompa, J. & Cahyono, I., 2012, Relationship of the viscosity of carrageenan extracted from Kappaphycus alvarezii with seawater physical and chemical properties at different planting distances and depth, AACL Bioflux, vol. 14, no. 1, p. 328-336. http://www.bioflux.com.ro /aacl.

Navaie, F., Esmaeilnezhad, E. & Choi, H. J., 2022, Effect of rheological properties of polymer solution on polymer flooding characteristics, Polymers, vol. 14, no. 24, p. 5555. doi: 10.3390/polym14245555.

Nguyen, P.T., Huu DO, B.P., Pham, D.K., Nguyen, H.A., Dao, D.Q.P. & Nguyen, B.D., 2012, Evaluation on the EOR Potential Capacity of the Synthesized Composite Silica-Core/ Polymer-Shell Nanoparticles Blended with Surfactant Systems for the HPHT Offshore Reservoir Conditions, SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, June 2012. doi: https://doi.org/10.2118/157127-MS.

Nurani,W., Anwar, Y., Batubara, I., Arung, E. T. & Fatriasari, W., 2024, Kappaphycus alvarezii as a renewable source of kappa-carrageenan and other cosmetic ingredients, International Journal of Biological Macromolecules, vol. 260, p. 129458. doi: 10.1016/j.ijbiomac.2024.129458.

Obuebite, A. A., Gbonhinbor, J. R. Onyekonwu, M. & Akaranta, O., 2021, Comparative analysis of synthetic and natural polymer for enhanced oil recovery, International Journal of Science and Engineering Investigations, vol. 10, no. 113, pp. 14-19. https://www.ijsei.com/papers/ijsei-1011321-03.pdf.

Padawan, F., Indrawati, E. & Mulyani, S., 2020, Analisis Lokasi Budidaya Terhadap Kandungan Karagenan Rumput Laut (Kappaphicus alvarezii) Di Perairan Teluk Kosiwo Yapen – Papua, Journal of Aquaculture and Environment, vol. 3, no. 1, pp. 11–14. doi: 10.35965/jae.v3i1.269.

Radiarta, I. N., Erlania, E. and Sugama, K., 2014, Budidaya Rumput Laut, Kappaphycus Alvarezii Secara Terintegrasi Dengan Ikan Kerapu Di Teluk Gerupuk Kabupaten Lombok Tengah, Nusa Tenggara Barat,” Jurnal Riset Akuakultur, vol. 9, no. 1, p. 125. doi: 10.15578/jra.9.1.2014.125-134.

Rezvani, H., Riazi, M., Tabaei, M., Kazemzadeh, Y. & Sharifi, M., 2018, Experimental investigation of interfacial properties in the EOR mechanisms by the novel synthesized Fe3O4@Chitosan nanocomposites, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 544, pp. 15–27. doi: 10.1016/j.colsurfa.2018.02.012.

Sadeghi, R. & Jahani, F., 2012, Salt effects on the cloud point and solubility of hydrophilic polymers in aqueous solutions. Journal of Physical Chemistry B, 116(15), pp. 4680–4688.

Sharma, T., Iglauer, S. & Sangwai, J. S., 2016, Silica Nanofluids in an Oilfield Polymer Polyacrylamide: Interfacial Properties, Wettability Alteration, and Applications for Chemical Enhanced Oil Recovery, Industrial and Engineering Chemistry Research, vol. 55, no. 48, pp. 12387–12397, Dec. 2016, doi: 10.1021/acs.iecr.6b03299.

Soleimani, H., Baig, M. K., Yahya, N., Khodapanah, L., Sabet, M., Demiral, B. M. R., & Burda, M., 2018, Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding, Results in Physics, vol. 9, pp. 39–48. doi: https://doi.org/10.1016/j.rinp.2018.01.072.

Subagio, S. & Kasim, M. S. H., 2019, Identifikasi Rumput Laut (Seaweed) di Perairan Pantai Cemara, Jerowaru Lombok Timur Sebagai Bahan Informasi Keanekaragaman Hayati Bagi Masyarakat. JISIP (Jurnal Ilmu Sosial Dan Pendidikan), 3(1). https://doi.org/10.58258/jisip.v3i1.945.

Sugihardjo, S. & Eni, H., 2022, Substitution of Petroleum Base with MES Base Surfactant for EOR: Laboratory Screening. Scientific Contributions Oil and Gas, 37(1), 35–44. https://doi.org/10.29017/scog.37.1.622

Sun, Y., Zhang, W., Li, J., Han, R. & Lu, C., 2023, “Mechanism and Performance Analysis of Nanoparticle-Polymer fluid for Enhanced oil Recovery: a review,” Molecules, vol. 28, no. 11, p. 4331. doi: 10.3390/molecules28114331.

Tobing, E. & Hestuti, E., 2013, Peningkatan Perolehan Reservoir Minyak R dengan Injeksi Alkali-Surfaktan-Polimer pada Skala Laboratorium. Lembaran Publikasi Minyak dan Gas Bumi, 47(2), 87–96.

Tola, S., Sasaki, K. & Sugai, Y., 2017, Wettability alteration of sandstone with zinc oxide nano-particles, Society of Petrophysicists and Well-Log Analysts SPWLA-JFES, vol. 4.

Verma, J. & Mandal, A., 2021, Potential effective criteria for selection of polymer in enhanced oil recovery. Petroleum Science and Technology, 40(7), pp. 879–892. https://doi.org/10.1080/ 10916466.2021.2007951.

Wang, D., Zhao, L., Cheng, J. & Wu, J., 2003, Actual Field Data Show that Production Costs of Polymer Flooding can be Lower than Water Flooding, The SPE International Improved Oil Recovery Conference in Asia Pacific, Kuala Lumpur, Malaysia, October 2003. doi: https://doi.org/10.2118/84849-MS.

Zhao, C., et al., 2016, Influence of ionic strength on polyelectrolyte chain conformation. Macromolecules, vol. 49, no. 14, pp. 5106–5116.

Published

31-10-2025

Issue

Section

Articles