Rheological Interactions Between Divalent Barium and Sulfate Ions in Hydroxypropyl Guar Polymer Fracturing Fluids

Authors

  • Dewi Asmorowati Institut Teknologi Bandung
  • Miftah Hidayat Department of Petroleum Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung
  • Dedi Kristanto Universitas Pembangunan Nasional "Veteran" Yogyakarta
  • Ardhi Hakim Lumban Gaol Institut Teknologi Bandung
  • Tutuka Ariadji Institut Teknologi Bandung
  • Taufan Marhaendrajana Institut Teknologi Bandung

DOI:

https://doi.org/10.29017/scog.v48i4.1904

Keywords:

polymer, hydroxypropyl guar, fracturing fluid, barium ion, sulfate ion, rheology

Abstract

The use of produced water as a primary component in formulating polymer-based fracturing fluids is becoming a viable option due to the limited availability of fresh water in the field. Nevertheless, the practical use of production water faces several challenges due to its complex composition, which includes monovalent and divalent ions that considerably affect the fluid’s viscosity. Recent studies have shown that calcium ions substantially influence the viscosity of linear fracturing fluids, whereas magnesium ions, do not have a notable effect. However, the effects of other divalent ions commonly found in production water, such as barium and sulfate, remain underreported. In this study, the influence of barium and sulfate ions on linear fracturing fluids will be examined. The viscosity of linear gel fracturing fluids, prepared using hydroxypropyl guar (HPG) polymer with varying concentrations of barium and sulfate ions, will be investigated under different shear rates and temperatures. The results indicate that produced water contains barium and sulfate ions, which affect the rheology of the linear fracturing fluid. A concentration of 150 ppm of BaCl2 can increase the viscosity by 30%, whereas 150 ppm of Na2SO4  increases the HPG viscosity by 7% at ambient temperature (25 °C). At 70 °C, the effect of barium and sulfate ions on the increase in viscosity of the HPG linear fracturing fluid are observed to be less significant.

References

Al-Hajri, S., Negash, B. M., Rahman, M. M., Haroun, M., & Al-Shami, T. M. (2022). Perspective Review of Polymers as Additives in Water-Based Fracturing Fluids. ACS Omega, 7(9), 7431–7443. https://doi.org/10.1021/acsomega.1c06739

Almond, S. W., & Bland, W. E. (1984). The Effect of Break Mechanism on Gelling Agent Residue and Flow Impairment in 20/40 Mesh Sand. SPE Formation Damage Control Symposium, SPE-12485-MS. https://doi.org/10.2118/12485-MS

Almubarak, T., Ng, J. H. C., AlKhaldi, M., Panda, S., & Nasr-El-Din, H. A. (2020). Insights on Potential Formation Damage Mechanisms Associated with the Use of Gel Breakers in Hydraulic Fracturing. Polymers, 12(11), 2722. https://doi.org/10.3390/polym12112722

Almubarak, T., Ng, J. H. C., Nasr‐El‐Din, H. A., Almubarak, M., & AlKhaldi, M. (2022). Influence of zirconium crosslinker chemical structure and polymer choice on the performance of crosslinked fracturing fluids. The Canadian Journal of Chemical Engineering, 100(6), 1141–1157. https://doi.org/10.1002/cjce.24098

Al-Muntasheri, G. A., Li, L., Liang, F., & Gomaa, A. M. (2018). Concepts in Cleanup of Fracturing Fluids Used in Conventional Reservoirs: A Literature Review. SPE Production & Operations, 33(02), 196–213. https://doi.org/10.2118/186112-PA

Alohaly, M., BinGhanim, A., Rahal, R., & Rahim, S. (2016). Seawater Fracturing Fluid Development Challenges: A Comparison Between Seawater-Based and Freshwater-Based Fracturing Fluids Using Two Types of Guar Gum Polymers. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, SPE-182799-MS. https://doi.org/10.2118/182799-MS

Al-Roomi, Y. M., & Hussain, K. F. (2016). Potential kinetic model for scaling and scale inhibition mechanism. Desalination, 393, 186–195. https://doi.org/10.1016/j.desal.2015.07.025

Antony, A., Low, J. H., Gray, S., Childress, A. E., Le-Clech, P., & Leslie, G. (2011). Scale formation and control in high pressure membrane water treatment systems: A review. Journal of Membrane Science, 383(1–2), 1–16. https://doi.org/10.1016/j.memsci.2011.08.054

Asmorowati, D., Kristanto, D., Helmy, M. F., Yudha, F., Tarsila, N. I., & Yusanto, S. B. (n.d.). Compatibility of Guar Gum-Based Fracturing Fluid and Breaker Due to Residue and Proppant Carrying Performance. https://doi.org/10.11648/j.ogce.20221005.11

Barati, R., & Liang, J. (2014). A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. Journal of Applied Polymer Science, 131(16), app.40735. https://doi.org/10.1002/app.40735

Budiman, O., & Alajmei, S. (2023). Seawater-Based Fracturing Fluid: A Review. ACS Omega, 8(44), 41022–41038. https://doi.org/10.1021/acsomega.3c05145

Cheng, Y. (2012). Impact of Water Dynamics in Fractures on the Performance of Hydraulically Fractured Wells in Gas-Shale Reservoirs. Journal of Canadian Petroleum Technology, 51(02), 143–151. https://doi.org/10.2118/127863-PA

Coulter, A. W., Frick, E. K., & Samuelson, M. L. (1983). Effect of Fracturing Fluid pH on Formation Permeability. SPE Annual Technical Conference and Exhibition, SPE-12150-MS. https://doi.org/10.2118/12150-MS

Delgado, F. A., Pachón Contreras, Z. D. P., & Molina Velasco, D. R. (2014). Post-fracturing treatments design to redress the damage caused by fracturing fluid polymers. CT&F - Ciencia, Tecnología y Futuro, 5(5), 23–38. https://doi.org/10.29047/01225383.31

Delshad, M., Kim, D. H., Magbagbeola, O. A., Huh, C., Pope, G. A., & Tarahhom, F. (2008). Mechanistic Interpretation and Utilization of Viscoelastic Behavior of Polymer Solutions for Improved Polymer-Flood Efficiency. SPE Symposium on Improved Oil Recovery, SPE-113620-MS. https://doi.org/10.2118/113620-MS

Dodi, G., Hritcu, D., & Popa, M. I. (n.d.). CARBOXYMETHYLATION OF GUAR GUM: SYNTHESIS AND CHARACTERIZATION.

Domelen, M. L. van, & Haggstrom, J. A. (2011). Methods for Minimizing Fresh Water Requirements in Unconventional Reservoir Fracturing Operations. https://api.semanticscholar.org/CorpusID:132164499

Elsarawy, A. M., Nasr-El-Din, H. A., & Cawiezel, K. E. (2016a). Laboratory Study on Using Produced Water in High pH Borate Gels Used in Hydraulic Fracturing. SPE Improved Oil Recovery Conference, SPE-179553-MS. https://doi.org/10.2118/179553-MS

Elsarawy, A. M., Nasr-El-Din, H. A., & Cawiezel, K. E. (2016b). The Effect of Chelating Agents on the Use of Produced Water in Crosslinked-Gel-Based Hydraulic Fracturing. SPE Low Perm Symposium, SPE-180215-MS. https://doi.org/10.2118/180215-MS

Esmaeilirad, N., White, S., Terry, C., Prior, A., & Carlson, K. (2016). Influence of inorganic ions in recycled produced water on gel-based hydraulic fracturing fluid viscosity. Journal of Petroleum Science and Engineering, 139, 104–111. https://doi.org/10.1016/j.petrol.2015.12.021

Goel, N., Shah, S. N., & Asadi, M. (2000). New Empirical Correlation To Predict Apparent Viscosity of Borate-Crosslinked Guar Gel in Fractures. SPE Production & Facilities, 15(02), 90–95. https://doi.org/10.2118/63011-PA

Gong, H., Liu, M., Chen, J., Han, F., Gao, C., & Zhang, B. (2012). Synthesis and characterization of carboxymethyl guar gum and rheological properties of its solutions. Carbohydrate Polymers, 88(3), 1015–1022. https://doi.org/10.1016/j.carbpol.2012.01.057

Haghshenas, A., & Nasr-El-Din, H. A. (2014). Effect of dissolved solids on reuse of produced water at high temperature in hydraulic fracturing jobs. Journal of Natural Gas Science and Engineering, 21, 316–325. https://doi.org/10.1016/j.jngse.2014.08.013

Hai, Q., Liancheng, R., Wenhao, H., Tingxue, J., & Yiming, Y. (2018). Successful Application of Clean Fracturing Fluid Replacing Guar Gum Fluid to Stimulate Tuffstone in San Jorge Basin, Argentina. SPE International Conference and Exhibition on Formation Damage Control, D011S004R005. https://doi.org/10.2118/189478-MS

Hasan, A. M. A., & Abdel-Raouf, M. E. (2018a). Applications of guar gum and its derivatives in petroleum industry: A review. Egyptian Journal of Petroleum, 27(4), 1043–1050. https://doi.org/10.1016/j.ejpe.2018.03.005

Hasan, A. M. A., & Abdel-Raouf, M. E. (2018b). Applications of guar gum and its derivatives in petroleum industry: A review. Egyptian Journal of Petroleum, 27(4), 1043–1050. https://doi.org/10.1016/j.ejpe.2018.03.005

Hashmet, M. R., Onur, M., & Tan, I. M. (2014). Empirical Correlations for Viscosity of Polyacrylamide Solutions with the Effects of Concentration, Molecular Weight and Degree of Hydrolysis of Polymer. Journal of Applied Sciences, 14(10), 1000–1007. https://doi.org/10.3923/jas.2014.1000.1007

Hasson, D., Shemer, H., & Sher, A. (2011). State of the Art of Friendly “Green” Scale Control Inhibitors: A Review Article. Industrial & Engineering Chemistry Research, 50(12), 7601–7607. https://doi.org/10.1021/ie200370v

Hu, X., Wu, K., Li, G., Tang, J., & Shen, Z. (2018). Effect of proppant addition schedule on the proppant distribution in a straight fracture for slickwater treatment. Journal of Petroleum Science and Engineering, 167, 110–119. https://doi.org/10.1016/j.petrol.2018.03.081

Hua, M., Yongjun, L., Baoshan, G., Xiaohui, Q., Wei, L., & Fa, Y. (2016). A Cellulose Fracturing Fluid with Instant Solution and No Residue. SPE Asia Pacific Oil & Gas Conference and Exhibition, SPE-182374-MS. https://doi.org/10.2118/182374-MS

Huang, F., Gundewar, R., Steed, D., & Loughridge, B. (2005). Feasibility of Using Produced Water for Crosslinked Gel-Based Hydraulic Fracturing. SPE Production Operations Symposium, SPE-94320-MS. https://doi.org/10.2118/94320-MS

Kamal, M., Mohammed, M., Mahmoud, M., & Elkatatny, S. (2018). Development of Chelating Agent-Based Polymeric Gel System for Hydraulic Fracturing. Energies, 11(7), 1663. https://doi.org/10.3390/en11071663

Kelland, M. A. (2011). Effect of Various Cations on the Formation of Calcium Carbonate and Barium Sulfate Scale with and without Scale Inhibitors. Industrial & Engineering Chemistry Research, 50(9), 5852–5861. https://doi.org/10.1021/ie2003494

Korlepara, N. K. (2019). Rheological Study of Slickwater Fluid Systems Consisting of High-Vis Friction Reducers Additives for Hydraulic Fracturing Applications. Indian Oil & Gas Chemistry, Chemicals and Additives Conference. Indian Oil & Gas Chemistry, Chemicals and Additives Conference, India. https://www.researchgate.net/publication/337439668

Lee, S., & Lee, C. H. (2005). Scale formation in NF/RO: Mechanism and control. Water Science and Technology, 51(6–7), 267–275. https://doi.org/10.2166/wst.2005.0646

Li, L., Al-Muntasheri, G. A., & Liang, F. (2016). A review of crosslinked fracturing fluids prepared with produced water. Petroleum, 2(4), 313–323. https://doi.org/10.1016/j.petlm.2016.10.001

Li, T., & Wan, J. (2017). Study of Cyclic Fracturing in Vertical CBM Wells. The Open Petroleum Engineering Journal, 10(1), 108–117. https://doi.org/10.2174/1874834101710010108

Li, X., Liu, G., Zhang, F., Guan, B., & Sun, J. (2020). Water management in hydraulic fracturing technology. IOP Conference Series: Earth and Environmental Science, 467(1), 012138. https://doi.org/10.1088/1755-1315/467/1/012138

Madhavan, N. K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092

Makmur, T. (2004). The Influence Of Ph And Concentration Of Phosphonate Inhibitor—Tests On Change Of Barium Sulfate Scale Morphology By Using Scanning Electron Microscope. Scientific Contributions Oil and Gas, 27(2), 3–9. https://doi.org/10.29017/SCOG.27.2.873

Montgomery, C. (2013). Fracturing Fluid Components. In R. Jeffrey (Ed.), Effective and Sustainable Hydraulic Fracturing. InTech. https://doi.org/10.5772/56422

Mudgil, D., Barak, S., & Khatkar, B. S. (2014). Guar gum: Processing, properties and food applications—A Review. Journal of Food Science and Technology, 51(3), 409–418. https://doi.org/10.1007/s13197-011-0522-x

Müller, R. (2002). Biodegradability of Polymers: Regulations and Methods for Testing. In A. Steinbüchel (Ed.), Biopolymers Online (1st ed.). Wiley. https://doi.org/10.1002/3527600035.bpola012

Muqtadir, A., Elkatatny, S., Mahmoud, M., Abdulraheem, A., & Gomaa, A. (2018). Effect of the Type of Fracturing Fluid on the Breakdown Pressure of Tight Sandstone Rocks. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, SPE-192365-MS. https://doi.org/10.2118/192365-MS

Murthy, R. V. V. R., & Chavali, M. (2020). A novel hydraulic fracturing gel realization for unconventional reservoirs. Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 37. https://doi.org/10.1186/s43088-020-00063-x

Oetjen, K., Chan, K. E., Gulmark, K., Christensen, J. H., Blotevogel, J., Borch, T., Spear, J. R., Cath, T. Y., & Higgins, C. P. (2018). Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse. Science of The Total Environment, 619–620, 654–664. https://doi.org/10.1016/j.scitotenv.2017.11.078

Olajire, A. A. (2015). A review of oilfield scale management technology for oil and gas production. Journal of Petroleum Science and Engineering, 135, 723–737. https://doi.org/10.1016/j.petrol.2015.09.011

Ospennikov, A. S., Shibaev, A. V., & Philippova, O. E. (2023). Double Photocrosslinked Responsive Hydrogels Based on Hydroxypropyl Guar. International Journal of Molecular Sciences, 24(24), 17477. https://doi.org/10.3390/ijms242417477

Othman, A., Aljawad, M. S., Kamal, M. S., Mahmoud, M., Patil, S., & Alkhowaildi, M. (2022). Rheological Study of Seawater-Based Fracturing Fluid Containing Polymer, Crosslinker, and Chelating Agent. ACS Omega, 7(35), 31318–31326. https://doi.org/10.1021/acsomega.2c03606

Othman, A., Aljawad, M. S., Kamal, M. S., Mahmoud, M., Patil, S., & Kalgaonkar, R. (2023). Individual Seawater Ions’ Impact on the Rheology of Crosslinked Polymers in the Presence of a Chelating Agent. Energy & Fuels, 37(10), 7328–7338. https://doi.org/10.1021/acs.energyfuels.3c00701

Pasha, M., & Ngn, S. (2008). DERIVATIZATION OF GUAR TO SODIUM CARBOXY METHYL HYDROXY PROPYL DERIVATIVE; CHARACTERIZATION AND EVALUATION. Pak. J. Pharm. Sci.

Paudel, D., Tian, S., Joseph, G., Prodes, E., Nair, D. V. T., & Singh, V. (2022). Guar Gum-Induced Changes in Gut Microbiota Metabolic Activity and Intestinal Immune Response Augments Susceptibility to Experimental Colitis. Current Developments in Nutrition, 6, 992. https://doi.org/10.1093/cdn/nzac068.021

Reddy, B. R. (2014). Laboratory Characterization of Gel Filter Cake and Development of Nonoxidizing Gel Breakers for Zirconium-Crosslinked Fracturing Fluids. SPE Journal, 19(04), 662–673. https://doi.org/10.2118/164116-PA

Roman, A. (2012). Permeability of Fractured Media under Confining Pressure: A Simplified Model. The Open Petroleum Engineering Journal, 5(1), 36–41. https://doi.org/10.2174/1874834101205010036

Ruyle, B., & Fragachan, F. E. (2015). Quantifiable Costs Savings by Using 100% Raw Produced Water in Hydraulic Fracturing. SPE Latin American and Caribbean Petroleum Engineering Conference, D011S005R002. https://doi.org/10.2118/177135-MS

Setyo Rahayu, T., Kartini, R., Chandra Adhitya, D., Rahalintar, P., Rosiani, D., & Ibnu Satria, A. R. (2024). SCREENING PASIR ALAM SEBAGAI PROPPANT BERDASARKAN STANDART API RP19C. Lembaran Publikasi Minyak Dan Gas Bumi, 58(3), 147–161. https://doi.org/10.29017/LPMGB.58.3.1698

Shi, H.-Y., & Zhang, L.-M. (2007). New grafted polysaccharides based on O-carboxymethyl-O-hydroxypropyl guar gum and N-isopropylacrylamide: Synthesis and phase transition behavior in aqueous media. Carbohydrate Polymers, 67(3), 337–342. https://doi.org/10.1016/j.carbpol.2006.06.005

Speight, J. G. (2020). Monomers, polymers, and plastics. In Handbook of Industrial Hydrocarbon Processes (pp. 597–649). Elsevier. https://doi.org/10.1016/B978-0-12-809923-0.00014-X

Sun, H., Li, L., Mayor, J., & Carman, P. (2015). Study on Abnormal Viscosity Development in High-TDS Produced Water. SPE International Symposium on Oilfield Chemistry, D021S007R001. https://doi.org/10.2118/173784-MS

Szopinski, D., Kulicke, W.-M., & Luinstra, G. A. (2015). Structure–property relationships of carboxymethyl hydroxypropyl guar gum in water and a hyperentanglement parameter. Carbohydrate Polymers, 119, 159–166. https://doi.org/10.1016/j.carbpol.2014.11.050

Theocharidou, A., Lousinian, S., Tsagaris, A., & Ritzoulis, C. (2022). Interactions and rheology of guar gum–mucin mixtures. Food Hydrocolloids, 133, 107903. https://doi.org/10.1016/j.foodhyd.2022.107903

Trivedi, J. H., Kalia, K., Patel, N. K., & Trivedi, H. C. (2005). Ceric-induced grafting of acrylonitrile onto sodium salt of partially carboxymethylated guar gum. Carbohydrate Polymers, 60(1), 117–125. https://doi.org/10.1016/j.carbpol.2004.11.027

Usman, U., Marino, D., & Soelistijono, M. (2010). Study On Productivity Improvement Of Low Permeability Gas Reservoir By Hydraulic Fracturing. Scientific Contributions Oil and Gas, 33(2), 120–128. https://doi.org/10.29017/SCOG.33.2.815

Valadbeygian, V., Hajipour, M., & Behnood, M. (2023). Static and dynamic evaluation of formation damage due to barium sulfate scale during water injection in carbonate reservoirs. Journal of Petroleum Exploration and Production Technology, 13(8), 1819–1831. https://doi.org/10.1007/s13202-023-01652-z

Venugopal, K. N. (2010). STUDY OF HYDRATION KINETICS AND RHEOLOGICAL BEHAVIOUR OF GUAR. International Journal of Pharma Sciences and Research (IJPSR), 1 (1).

Vetter, O. J. G. (1975). How Barium Sulfate Is Formed: An Interpretation. Journal of Petroleum Technology, 27(12), 1515–1524. https://doi.org/10.2118/4217-PA

Wang, F., Sun, Z., Shi, X., Wang, L., Zhang, W., & Zhang, Z. (2023). Mechanism analysis of hydroxypropyl guar gum degradation in fracture flowback fluid by homogeneous sono-Fenton process. Ultrasonics Sonochemistry, 93, 106298. https://doi.org/10.1016/j.ultsonch.2023.106298

Wang, J., Zhou, F., Bai, H., Li, Y., & Yang, H. (2020). A Comprehensive method to evaluate the viscous slickwater as fracturing fluids for hydraulic fracturing applications. Journal of Petroleum Science and Engineering, 193, 107359. https://doi.org/10.1016/j.petrol.2020.107359

Weaver, J., Schmelzl, E., Jamieson, M., & Schiffner, G. (2002). New Fluid Technology Allows Fracturing Without Internal Breakers. SPE Gas Technology Symposium, SPE-75690-MS. https://doi.org/10.2118/75690-MS

Whistler, R. L. (1993). INTRODUCTION TO INDUSTRIAL GUMS. In Industrial Gums (pp. 1–19). Elsevier. https://doi.org/10.1016/B978-0-08-092654-4.50005-X

Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. Journal of the American Chemical Society, 77(14), 3701–3707. https://doi.org/10.1021/ja01619a008

Wilson, I., Patel, H., Sreenivasan, H., & Krishna, S. (2024). Performance evaluation of methane hydrate inhibitor (NaCl) integrated polymer gels for extremely low temperature hydraulic fracturing applications. Gas Science and Engineering, 125, 205295. https://doi.org/10.1016/j.jgsce.2024.205295

Xu, Z., Zhao, M., Liu, J., Zhang, Y., Gao, M., Song, X., Sun, N., Li, L., Wu, Y., & Dai, C. (2024). Study on formation process and reservoir damage mechanism of blockages caused by polyacrylamide fracturing fluid in production wells. Fuel, 358, 130154. https://doi.org/10.1016/j.fuel.2023.130154

Yao, E., Xu, H., Li, Y., Ren, X., Bai, H., & Zhou, F. (2021). Reusing Flowback and Produced Water with Different Salinity to Prepare Guar Fracturing Fluid. Energies, 15(1), 153. https://doi.org/10.3390/en15010153

Zhang, C., Wang, Y., Wang, Z., Wang, H., Liang, S., Xu, N., & Li, D. (2023). Mechanism analysis of enhancing the temperature and shear resistance of hydroxypropyl guar gum fracturing fluid by boron-functionalized nanosilica colloidal crosslinker. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 676, 132154. https://doi.org/10.1016/j.colsurfa.2023.132154

Zhang, C., Wang, Y., Yin, Z., Yan, Y., Wang, Z., & Wang, H. (2024). Quantitative characterization of the crosslinking degree of hydroxypropyl guar gum fracturing fluid by low-field NMR. International Journal of Biological Macromolecules, 277, 134445. https://doi.org/10.1016/j.ijbiomac.2024.134445

Zhao, M., Yan, X., Zhang, L., Yan, R., Liu, S., Ma, Z., & Dai, C. (2024). Development of degradable fiber slickwater system and enhanced proppants-carrying mechanism. Geoenergy Science and Engineering, 237, 212822. https://doi.org/10.1016/j.geoen.2024.212822

Zhao, M.-W., Ma, Z.-F., Dai, C.-L., Wu, W., Sun, Y.-Q., Song, X.-G., Cheng, Y.-L., & Wang, X.-Y. (2024). Preparation and performance evaluation of the slickwater using novel polymeric drag reducing agent with high temperature and shear resistance ability. Petroleum Science, 21(2), 1113–1121. https://doi.org/10.1016/j.petsci.2023.11.004

Published

21-11-2025

Issue

Section

Articles