Rheological Interactions Between Divalent Barium and Sulfate Ions in Hydroxypropyl Guar Polymer Fracturing Fluids
DOI:
https://doi.org/10.29017/scog.v48i4.1904Keywords:
polymer, hydroxypropyl guar, fracturing fluid, barium ion, sulfate ion, rheologyAbstract
The use of produced water as a primary component in formulating polymer-based fracturing fluids is becoming a viable option due to the limited availability of fresh water in the field. Nevertheless, the practical use of production water faces several challenges due to its complex composition, which includes monovalent and divalent ions that considerably affect the fluid’s viscosity. Recent studies have shown that calcium ions substantially influence the viscosity of linear fracturing fluids, whereas magnesium ions, do not have a notable effect. However, the effects of other divalent ions commonly found in production water, such as barium and sulfate, remain underreported. In this study, the influence of barium and sulfate ions on linear fracturing fluids will be examined. The viscosity of linear gel fracturing fluids, prepared using hydroxypropyl guar (HPG) polymer with varying concentrations of barium and sulfate ions, will be investigated under different shear rates and temperatures. The results indicate that produced water contains barium and sulfate ions, which affect the rheology of the linear fracturing fluid. A concentration of 150 ppm of BaCl2 can increase the viscosity by 30%, whereas 150 ppm of Na2SO4 increases the HPG viscosity by 7% at ambient temperature (25 °C). At 70 °C, the effect of barium and sulfate ions on the increase in viscosity of the HPG linear fracturing fluid are observed to be less significant.
References
Al-Hajri, S., Negash, B. M., Rahman, M. M., Haroun, M., & Al-Shami, T. M. (2022). Perspective Review of Polymers as Additives in Water-Based Fracturing Fluids. ACS Omega, 7(9), 7431–7443. https://doi.org/10.1021/acsomega.1c06739
Almond, S. W., & Bland, W. E. (1984). The Effect of Break Mechanism on Gelling Agent Residue and Flow Impairment in 20/40 Mesh Sand. SPE Formation Damage Control Symposium, SPE-12485-MS. https://doi.org/10.2118/12485-MS
Almubarak, T., Ng, J. H. C., AlKhaldi, M., Panda, S., & Nasr-El-Din, H. A. (2020). Insights on Potential Formation Damage Mechanisms Associated with the Use of Gel Breakers in Hydraulic Fracturing. Polymers, 12(11), 2722. https://doi.org/10.3390/polym12112722
Almubarak, T., Ng, J. H. C., Nasr‐El‐Din, H. A., Almubarak, M., & AlKhaldi, M. (2022). Influence of zirconium crosslinker chemical structure and polymer choice on the performance of crosslinked fracturing fluids. The Canadian Journal of Chemical Engineering, 100(6), 1141–1157. https://doi.org/10.1002/cjce.24098
Al-Muntasheri, G. A., Li, L., Liang, F., & Gomaa, A. M. (2018). Concepts in Cleanup of Fracturing Fluids Used in Conventional Reservoirs: A Literature Review. SPE Production & Operations, 33(02), 196–213. https://doi.org/10.2118/186112-PA
Alohaly, M., BinGhanim, A., Rahal, R., & Rahim, S. (2016). Seawater Fracturing Fluid Development Challenges: A Comparison Between Seawater-Based and Freshwater-Based Fracturing Fluids Using Two Types of Guar Gum Polymers. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, SPE-182799-MS. https://doi.org/10.2118/182799-MS
Al-Roomi, Y. M., & Hussain, K. F. (2016). Potential kinetic model for scaling and scale inhibition mechanism. Desalination, 393, 186–195. https://doi.org/10.1016/j.desal.2015.07.025
Antony, A., Low, J. H., Gray, S., Childress, A. E., Le-Clech, P., & Leslie, G. (2011). Scale formation and control in high pressure membrane water treatment systems: A review. Journal of Membrane Science, 383(1–2), 1–16. https://doi.org/10.1016/j.memsci.2011.08.054
Asmorowati, D., Kristanto, D., Helmy, M. F., Yudha, F., Tarsila, N. I., & Yusanto, S. B. (n.d.). Compatibility of Guar Gum-Based Fracturing Fluid and Breaker Due to Residue and Proppant Carrying Performance. https://doi.org/10.11648/j.ogce.20221005.11
Barati, R., & Liang, J. (2014). A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. Journal of Applied Polymer Science, 131(16), app.40735. https://doi.org/10.1002/app.40735
Budiman, O., & Alajmei, S. (2023). Seawater-Based Fracturing Fluid: A Review. ACS Omega, 8(44), 41022–41038. https://doi.org/10.1021/acsomega.3c05145
Cheng, Y. (2012). Impact of Water Dynamics in Fractures on the Performance of Hydraulically Fractured Wells in Gas-Shale Reservoirs. Journal of Canadian Petroleum Technology, 51(02), 143–151. https://doi.org/10.2118/127863-PA
Coulter, A. W., Frick, E. K., & Samuelson, M. L. (1983). Effect of Fracturing Fluid pH on Formation Permeability. SPE Annual Technical Conference and Exhibition, SPE-12150-MS. https://doi.org/10.2118/12150-MS
Delgado, F. A., Pachón Contreras, Z. D. P., & Molina Velasco, D. R. (2014). Post-fracturing treatments design to redress the damage caused by fracturing fluid polymers. CT&F - Ciencia, Tecnología y Futuro, 5(5), 23–38. https://doi.org/10.29047/01225383.31
Delshad, M., Kim, D. H., Magbagbeola, O. A., Huh, C., Pope, G. A., & Tarahhom, F. (2008). Mechanistic Interpretation and Utilization of Viscoelastic Behavior of Polymer Solutions for Improved Polymer-Flood Efficiency. SPE Symposium on Improved Oil Recovery, SPE-113620-MS. https://doi.org/10.2118/113620-MS
Dodi, G., Hritcu, D., & Popa, M. I. (n.d.). CARBOXYMETHYLATION OF GUAR GUM: SYNTHESIS AND CHARACTERIZATION.
Domelen, M. L. van, & Haggstrom, J. A. (2011). Methods for Minimizing Fresh Water Requirements in Unconventional Reservoir Fracturing Operations. https://api.semanticscholar.org/CorpusID:132164499
Elsarawy, A. M., Nasr-El-Din, H. A., & Cawiezel, K. E. (2016a). Laboratory Study on Using Produced Water in High pH Borate Gels Used in Hydraulic Fracturing. SPE Improved Oil Recovery Conference, SPE-179553-MS. https://doi.org/10.2118/179553-MS
Elsarawy, A. M., Nasr-El-Din, H. A., & Cawiezel, K. E. (2016b). The Effect of Chelating Agents on the Use of Produced Water in Crosslinked-Gel-Based Hydraulic Fracturing. SPE Low Perm Symposium, SPE-180215-MS. https://doi.org/10.2118/180215-MS
Esmaeilirad, N., White, S., Terry, C., Prior, A., & Carlson, K. (2016). Influence of inorganic ions in recycled produced water on gel-based hydraulic fracturing fluid viscosity. Journal of Petroleum Science and Engineering, 139, 104–111. https://doi.org/10.1016/j.petrol.2015.12.021
Goel, N., Shah, S. N., & Asadi, M. (2000). New Empirical Correlation To Predict Apparent Viscosity of Borate-Crosslinked Guar Gel in Fractures. SPE Production & Facilities, 15(02), 90–95. https://doi.org/10.2118/63011-PA
Gong, H., Liu, M., Chen, J., Han, F., Gao, C., & Zhang, B. (2012). Synthesis and characterization of carboxymethyl guar gum and rheological properties of its solutions. Carbohydrate Polymers, 88(3), 1015–1022. https://doi.org/10.1016/j.carbpol.2012.01.057
Haghshenas, A., & Nasr-El-Din, H. A. (2014). Effect of dissolved solids on reuse of produced water at high temperature in hydraulic fracturing jobs. Journal of Natural Gas Science and Engineering, 21, 316–325. https://doi.org/10.1016/j.jngse.2014.08.013
Hai, Q., Liancheng, R., Wenhao, H., Tingxue, J., & Yiming, Y. (2018). Successful Application of Clean Fracturing Fluid Replacing Guar Gum Fluid to Stimulate Tuffstone in San Jorge Basin, Argentina. SPE International Conference and Exhibition on Formation Damage Control, D011S004R005. https://doi.org/10.2118/189478-MS
Hasan, A. M. A., & Abdel-Raouf, M. E. (2018a). Applications of guar gum and its derivatives in petroleum industry: A review. Egyptian Journal of Petroleum, 27(4), 1043–1050. https://doi.org/10.1016/j.ejpe.2018.03.005
Hasan, A. M. A., & Abdel-Raouf, M. E. (2018b). Applications of guar gum and its derivatives in petroleum industry: A review. Egyptian Journal of Petroleum, 27(4), 1043–1050. https://doi.org/10.1016/j.ejpe.2018.03.005
Hashmet, M. R., Onur, M., & Tan, I. M. (2014). Empirical Correlations for Viscosity of Polyacrylamide Solutions with the Effects of Concentration, Molecular Weight and Degree of Hydrolysis of Polymer. Journal of Applied Sciences, 14(10), 1000–1007. https://doi.org/10.3923/jas.2014.1000.1007
Hasson, D., Shemer, H., & Sher, A. (2011). State of the Art of Friendly “Green” Scale Control Inhibitors: A Review Article. Industrial & Engineering Chemistry Research, 50(12), 7601–7607. https://doi.org/10.1021/ie200370v
Hu, X., Wu, K., Li, G., Tang, J., & Shen, Z. (2018). Effect of proppant addition schedule on the proppant distribution in a straight fracture for slickwater treatment. Journal of Petroleum Science and Engineering, 167, 110–119. https://doi.org/10.1016/j.petrol.2018.03.081
Hua, M., Yongjun, L., Baoshan, G., Xiaohui, Q., Wei, L., & Fa, Y. (2016). A Cellulose Fracturing Fluid with Instant Solution and No Residue. SPE Asia Pacific Oil & Gas Conference and Exhibition, SPE-182374-MS. https://doi.org/10.2118/182374-MS
Huang, F., Gundewar, R., Steed, D., & Loughridge, B. (2005). Feasibility of Using Produced Water for Crosslinked Gel-Based Hydraulic Fracturing. SPE Production Operations Symposium, SPE-94320-MS. https://doi.org/10.2118/94320-MS
Kamal, M., Mohammed, M., Mahmoud, M., & Elkatatny, S. (2018). Development of Chelating Agent-Based Polymeric Gel System for Hydraulic Fracturing. Energies, 11(7), 1663. https://doi.org/10.3390/en11071663
Kelland, M. A. (2011). Effect of Various Cations on the Formation of Calcium Carbonate and Barium Sulfate Scale with and without Scale Inhibitors. Industrial & Engineering Chemistry Research, 50(9), 5852–5861. https://doi.org/10.1021/ie2003494
Korlepara, N. K. (2019). Rheological Study of Slickwater Fluid Systems Consisting of High-Vis Friction Reducers Additives for Hydraulic Fracturing Applications. Indian Oil & Gas Chemistry, Chemicals and Additives Conference. Indian Oil & Gas Chemistry, Chemicals and Additives Conference, India. https://www.researchgate.net/publication/337439668
Lee, S., & Lee, C. H. (2005). Scale formation in NF/RO: Mechanism and control. Water Science and Technology, 51(6–7), 267–275. https://doi.org/10.2166/wst.2005.0646
Li, L., Al-Muntasheri, G. A., & Liang, F. (2016). A review of crosslinked fracturing fluids prepared with produced water. Petroleum, 2(4), 313–323. https://doi.org/10.1016/j.petlm.2016.10.001
Li, T., & Wan, J. (2017). Study of Cyclic Fracturing in Vertical CBM Wells. The Open Petroleum Engineering Journal, 10(1), 108–117. https://doi.org/10.2174/1874834101710010108
Li, X., Liu, G., Zhang, F., Guan, B., & Sun, J. (2020). Water management in hydraulic fracturing technology. IOP Conference Series: Earth and Environmental Science, 467(1), 012138. https://doi.org/10.1088/1755-1315/467/1/012138
Madhavan, N. K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092
Makmur, T. (2004). The Influence Of Ph And Concentration Of Phosphonate Inhibitor—Tests On Change Of Barium Sulfate Scale Morphology By Using Scanning Electron Microscope. Scientific Contributions Oil and Gas, 27(2), 3–9. https://doi.org/10.29017/SCOG.27.2.873
Montgomery, C. (2013). Fracturing Fluid Components. In R. Jeffrey (Ed.), Effective and Sustainable Hydraulic Fracturing. InTech. https://doi.org/10.5772/56422
Mudgil, D., Barak, S., & Khatkar, B. S. (2014). Guar gum: Processing, properties and food applications—A Review. Journal of Food Science and Technology, 51(3), 409–418. https://doi.org/10.1007/s13197-011-0522-x
Müller, R. (2002). Biodegradability of Polymers: Regulations and Methods for Testing. In A. Steinbüchel (Ed.), Biopolymers Online (1st ed.). Wiley. https://doi.org/10.1002/3527600035.bpola012
Muqtadir, A., Elkatatny, S., Mahmoud, M., Abdulraheem, A., & Gomaa, A. (2018). Effect of the Type of Fracturing Fluid on the Breakdown Pressure of Tight Sandstone Rocks. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, SPE-192365-MS. https://doi.org/10.2118/192365-MS
Murthy, R. V. V. R., & Chavali, M. (2020). A novel hydraulic fracturing gel realization for unconventional reservoirs. Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 37. https://doi.org/10.1186/s43088-020-00063-x
Oetjen, K., Chan, K. E., Gulmark, K., Christensen, J. H., Blotevogel, J., Borch, T., Spear, J. R., Cath, T. Y., & Higgins, C. P. (2018). Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse. Science of The Total Environment, 619–620, 654–664. https://doi.org/10.1016/j.scitotenv.2017.11.078
Olajire, A. A. (2015). A review of oilfield scale management technology for oil and gas production. Journal of Petroleum Science and Engineering, 135, 723–737. https://doi.org/10.1016/j.petrol.2015.09.011
Ospennikov, A. S., Shibaev, A. V., & Philippova, O. E. (2023). Double Photocrosslinked Responsive Hydrogels Based on Hydroxypropyl Guar. International Journal of Molecular Sciences, 24(24), 17477. https://doi.org/10.3390/ijms242417477
Othman, A., Aljawad, M. S., Kamal, M. S., Mahmoud, M., Patil, S., & Alkhowaildi, M. (2022). Rheological Study of Seawater-Based Fracturing Fluid Containing Polymer, Crosslinker, and Chelating Agent. ACS Omega, 7(35), 31318–31326. https://doi.org/10.1021/acsomega.2c03606
Othman, A., Aljawad, M. S., Kamal, M. S., Mahmoud, M., Patil, S., & Kalgaonkar, R. (2023). Individual Seawater Ions’ Impact on the Rheology of Crosslinked Polymers in the Presence of a Chelating Agent. Energy & Fuels, 37(10), 7328–7338. https://doi.org/10.1021/acs.energyfuels.3c00701
Pasha, M., & Ngn, S. (2008). DERIVATIZATION OF GUAR TO SODIUM CARBOXY METHYL HYDROXY PROPYL DERIVATIVE; CHARACTERIZATION AND EVALUATION. Pak. J. Pharm. Sci.
Paudel, D., Tian, S., Joseph, G., Prodes, E., Nair, D. V. T., & Singh, V. (2022). Guar Gum-Induced Changes in Gut Microbiota Metabolic Activity and Intestinal Immune Response Augments Susceptibility to Experimental Colitis. Current Developments in Nutrition, 6, 992. https://doi.org/10.1093/cdn/nzac068.021
Reddy, B. R. (2014). Laboratory Characterization of Gel Filter Cake and Development of Nonoxidizing Gel Breakers for Zirconium-Crosslinked Fracturing Fluids. SPE Journal, 19(04), 662–673. https://doi.org/10.2118/164116-PA
Roman, A. (2012). Permeability of Fractured Media under Confining Pressure: A Simplified Model. The Open Petroleum Engineering Journal, 5(1), 36–41. https://doi.org/10.2174/1874834101205010036
Ruyle, B., & Fragachan, F. E. (2015). Quantifiable Costs Savings by Using 100% Raw Produced Water in Hydraulic Fracturing. SPE Latin American and Caribbean Petroleum Engineering Conference, D011S005R002. https://doi.org/10.2118/177135-MS
Setyo Rahayu, T., Kartini, R., Chandra Adhitya, D., Rahalintar, P., Rosiani, D., & Ibnu Satria, A. R. (2024). SCREENING PASIR ALAM SEBAGAI PROPPANT BERDASARKAN STANDART API RP19C. Lembaran Publikasi Minyak Dan Gas Bumi, 58(3), 147–161. https://doi.org/10.29017/LPMGB.58.3.1698
Shi, H.-Y., & Zhang, L.-M. (2007). New grafted polysaccharides based on O-carboxymethyl-O-hydroxypropyl guar gum and N-isopropylacrylamide: Synthesis and phase transition behavior in aqueous media. Carbohydrate Polymers, 67(3), 337–342. https://doi.org/10.1016/j.carbpol.2006.06.005
Speight, J. G. (2020). Monomers, polymers, and plastics. In Handbook of Industrial Hydrocarbon Processes (pp. 597–649). Elsevier. https://doi.org/10.1016/B978-0-12-809923-0.00014-X
Sun, H., Li, L., Mayor, J., & Carman, P. (2015). Study on Abnormal Viscosity Development in High-TDS Produced Water. SPE International Symposium on Oilfield Chemistry, D021S007R001. https://doi.org/10.2118/173784-MS
Szopinski, D., Kulicke, W.-M., & Luinstra, G. A. (2015). Structure–property relationships of carboxymethyl hydroxypropyl guar gum in water and a hyperentanglement parameter. Carbohydrate Polymers, 119, 159–166. https://doi.org/10.1016/j.carbpol.2014.11.050
Theocharidou, A., Lousinian, S., Tsagaris, A., & Ritzoulis, C. (2022). Interactions and rheology of guar gum–mucin mixtures. Food Hydrocolloids, 133, 107903. https://doi.org/10.1016/j.foodhyd.2022.107903
Trivedi, J. H., Kalia, K., Patel, N. K., & Trivedi, H. C. (2005). Ceric-induced grafting of acrylonitrile onto sodium salt of partially carboxymethylated guar gum. Carbohydrate Polymers, 60(1), 117–125. https://doi.org/10.1016/j.carbpol.2004.11.027
Usman, U., Marino, D., & Soelistijono, M. (2010). Study On Productivity Improvement Of Low Permeability Gas Reservoir By Hydraulic Fracturing. Scientific Contributions Oil and Gas, 33(2), 120–128. https://doi.org/10.29017/SCOG.33.2.815
Valadbeygian, V., Hajipour, M., & Behnood, M. (2023). Static and dynamic evaluation of formation damage due to barium sulfate scale during water injection in carbonate reservoirs. Journal of Petroleum Exploration and Production Technology, 13(8), 1819–1831. https://doi.org/10.1007/s13202-023-01652-z
Venugopal, K. N. (2010). STUDY OF HYDRATION KINETICS AND RHEOLOGICAL BEHAVIOUR OF GUAR. International Journal of Pharma Sciences and Research (IJPSR), 1 (1).
Vetter, O. J. G. (1975). How Barium Sulfate Is Formed: An Interpretation. Journal of Petroleum Technology, 27(12), 1515–1524. https://doi.org/10.2118/4217-PA
Wang, F., Sun, Z., Shi, X., Wang, L., Zhang, W., & Zhang, Z. (2023). Mechanism analysis of hydroxypropyl guar gum degradation in fracture flowback fluid by homogeneous sono-Fenton process. Ultrasonics Sonochemistry, 93, 106298. https://doi.org/10.1016/j.ultsonch.2023.106298
Wang, J., Zhou, F., Bai, H., Li, Y., & Yang, H. (2020). A Comprehensive method to evaluate the viscous slickwater as fracturing fluids for hydraulic fracturing applications. Journal of Petroleum Science and Engineering, 193, 107359. https://doi.org/10.1016/j.petrol.2020.107359
Weaver, J., Schmelzl, E., Jamieson, M., & Schiffner, G. (2002). New Fluid Technology Allows Fracturing Without Internal Breakers. SPE Gas Technology Symposium, SPE-75690-MS. https://doi.org/10.2118/75690-MS
Whistler, R. L. (1993). INTRODUCTION TO INDUSTRIAL GUMS. In Industrial Gums (pp. 1–19). Elsevier. https://doi.org/10.1016/B978-0-08-092654-4.50005-X
Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. Journal of the American Chemical Society, 77(14), 3701–3707. https://doi.org/10.1021/ja01619a008
Wilson, I., Patel, H., Sreenivasan, H., & Krishna, S. (2024). Performance evaluation of methane hydrate inhibitor (NaCl) integrated polymer gels for extremely low temperature hydraulic fracturing applications. Gas Science and Engineering, 125, 205295. https://doi.org/10.1016/j.jgsce.2024.205295
Xu, Z., Zhao, M., Liu, J., Zhang, Y., Gao, M., Song, X., Sun, N., Li, L., Wu, Y., & Dai, C. (2024). Study on formation process and reservoir damage mechanism of blockages caused by polyacrylamide fracturing fluid in production wells. Fuel, 358, 130154. https://doi.org/10.1016/j.fuel.2023.130154
Yao, E., Xu, H., Li, Y., Ren, X., Bai, H., & Zhou, F. (2021). Reusing Flowback and Produced Water with Different Salinity to Prepare Guar Fracturing Fluid. Energies, 15(1), 153. https://doi.org/10.3390/en15010153
Zhang, C., Wang, Y., Wang, Z., Wang, H., Liang, S., Xu, N., & Li, D. (2023). Mechanism analysis of enhancing the temperature and shear resistance of hydroxypropyl guar gum fracturing fluid by boron-functionalized nanosilica colloidal crosslinker. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 676, 132154. https://doi.org/10.1016/j.colsurfa.2023.132154
Zhang, C., Wang, Y., Yin, Z., Yan, Y., Wang, Z., & Wang, H. (2024). Quantitative characterization of the crosslinking degree of hydroxypropyl guar gum fracturing fluid by low-field NMR. International Journal of Biological Macromolecules, 277, 134445. https://doi.org/10.1016/j.ijbiomac.2024.134445
Zhao, M., Yan, X., Zhang, L., Yan, R., Liu, S., Ma, Z., & Dai, C. (2024). Development of degradable fiber slickwater system and enhanced proppants-carrying mechanism. Geoenergy Science and Engineering, 237, 212822. https://doi.org/10.1016/j.geoen.2024.212822
Zhao, M.-W., Ma, Z.-F., Dai, C.-L., Wu, W., Sun, Y.-Q., Song, X.-G., Cheng, Y.-L., & Wang, X.-Y. (2024). Preparation and performance evaluation of the slickwater using novel polymeric drag reducing agent with high temperature and shear resistance ability. Petroleum Science, 21(2), 1113–1121. https://doi.org/10.1016/j.petsci.2023.11.004
Published
Issue
Section
License
Copyright (c) 2025 © Copyright by Authors. Published by LEMIGAS

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are free to Share — copy and redistribute the material in any medium or format for any purpose, even commercially Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms, under the following terms Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.









