Development of a New Empirical Formula Using Machine Learning for Pore Pressure Prediction in the South Sumatera Basin
DOI:
https://doi.org/10.29017/scog.v48i3.1885Keywords:
pore pressure prediction, wellbore stability, geomechanics applications, drilling optimization, machine learningAbstract
Accurate pore pressure prediction is crucial for maintaining wellbore stability and preventing drilling hazards. Therefore, this research aimed to present a new empirical method derived from machine learning models, applied to two wells in South Sumatra Basin (S-3 and S-4) comprising 214 depth intervals. The method integrated geomechanics principles, statistical correlation analysis, and neural network optimization to generate an interpretable and transferable equation. The internal parameters of the trained model were extracted and reformulated into a transparent empirical expression that engineers could apply directly in practice. This was distinct from the conventional black-box artificial neural network (ANN). Model performance was rigorously validated against analytical pore pressure measurements. Additionally, the method achieved strong predictive accuracy, with coefficients of determination (R²) of 0.94 and 0.91 for S-3 and for S-4, and root mean square error (RMSE) of 115 psi and 142 psi, respectively. These values represented a significant improvement compared to traditional methods. For example ANN-derived formula reduced RMSE by 28% and 22% in contrast to Eaton’s equation and the Bowers velocity–effective stress relationship. It also outperformed Normal Compaction Trendline (NCT) method in intervals with abrupt lithological changes. The clear identification of significant predictors, namelytemperature, gamma ray, porosity, and water saturation, helped bridges the gap between machine learning accuracy and engineering usability. The results showed that converting advanced computational models into interpretable tools significantly enhanced operational safety, reduced non-productive time, and improved drilling efficiency in Indonesian most prolific hydrocarbon provinces.
References
Abbas, H. (2021). Forecasting Pore Pressure in Oil Wells Using Specific Energy Concept. Petroleum Engineering Journal.
Abdelsamea, T., Yousef, M. A., Alemam, M. K., & Mostafa, Y. G. (2023). Effect of IGS baseline length on GNSS Positioning Accuracy. Rudarsko-geološko-naftni zbornik, 38(3), 81-93.
Aftabi, M., Ahangari, K., & Dehghan, A. N. (2023). Investigating the effect of layering and schistosity on the mechanical behavior of rocks using the discrete element method. Rudarsko-geološko-naftni zbornik, 38(5), 41-48.
Alishahi, A., Noaparast, M., Ashni, A. R., & Nasab, M. H. (2023). The optimization of the strontium compounds production, using a celestine ore sample. Rudarsko-geološko-naftni zbornik, 38(4), 53-6222. Briševac, Z., & Bohanek, V. (2023). Impact of the COVID-19 crisis on the mining sector in Croatia. Rudarsko-geološko-naftni zbornik, 38(4), 63-74.
Bohanek, V., Sućeska, M., Dobrilović, I., & Pleše, P. (2024). Influence of Confining Materials on Detonation Parameters of ANFO Explosive. Rudarsko-geološko-naftni zbornik, 39(1), 35-44.
Chakeri, H., Darbor, M., Maleki, F., & Minaee, T. (2023). Experimental investigation of steel fibers’ effect on the improvement of mechanical properties of concrete segmental lining in mechanized tunneling. Rudarsko-geološko-naftni zbornik, 38(3), 55-63.
Cheberiachko, S., Cheberiachko, Y., Deryugin, O., Kravchenko, B., Nehrii, T., & Zolotarova, O. (2023). Increasing the insulation properties of filter respirators to protect miners' respiratory organs from dust. Rudarsko-geološko-naftni zbornik, 38(4), 27-40.
Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-geološko-naftni zbornik, 38(3), 105-117.
Faramaz, A., Maleki, H., Noaparast, M., & Jozanikohan, G. (2024). Implementation of flotation to recover lead and barite from Komsheche Mine jig tailings. Rudarsko-geološko-naftni zbornik, 39(1), 11-20.
Francia, R., & Moraes, J. (2022). Impact of Pore Pressure Estimation Methods on Shale Properties. Journal of Petroleum Science.
Getaldic, A., Mihić, M. S., Veinović, Ž., Skoko, B., & Petrinec, B. (2023). Remediation of coal ash and slag disposal site: Comparison of radiological risk assessments. Rudarsko-geološko-naftni zbornik, 38(3), 95-104.
Grandis, H., & Junian, W. E. (2023). Hybrid particle swarm optimization and grey wolf optimizer algorithm for Controlled Source Audio-frequency Magnetotellurics (CSAMT) one-dimensional inversion modelling. Rudarsko-geološko-naftni zbornik, 38(3), 65-80.
Gunawan, R. M. P., & Suhendro, I. S. (2023). Chemical and textural studies of the youngest pyroclastic deposits at Mt. Seminung (South Sumatra, Indonesia): A window for understanding the explosive behavior of a post-caldera volcano. Rudarsko-geološko-naftni zbornik, 38(5), 61-77.
Hamka, A. A. M., Saleki, M., Nabavi, Z., & Dehghani, H. (2024). Impacts of Ammonium Sulfate Leaching on Ion Adsorption Rare Earths and Soil Mechanical Properties. Rudarsko-geološko-naftni zbornik, 39(1), 21-34.
Handyarso, A., Permana, H., Hanafi, M., Sendjaja, P., & Mukti, M. (2023). Extensional Tectonic Investigation based on Gravity and Magnetic Data Analysis in the Gulf of Tomini, Indonesia. Rudarsko-geološko-naftni zbornik, 38(4), 1-18.
Hartanto, P., Lubis, R. F., Syah Alam, B. Y. C. S. S., Sendjaja, Y. A., Ismawan, I., Iskandarsyah, T. Y. W. M., & Hendarmawan, H. (2024). Multivariate Data Analysis to Assess Groundwater Hydrochemical Characterization in Rawadanau Basin, Banten Indonesia. Rudarsko-geološko-naftni zbornik, 39(1), 141-154.
Ildikó, F., & Mucsi, G. (2023). Influence of raw material properties on waste-based glass foam. Rudarsko-geološko-naftni zbornik, 38(4), 75-84.
Irianto, E., Setiawan, T., & Surya, D. (2023). New Empirical Formula Using Machine Learning Method for Pore Pressure Prediction in Complex Geological Settings. Rudarsko-geološko-naftni zbornik, 38(4), 87-105. https://doi.org/10.17794/rgn.2023.4.8.
Khodorovskyi, A., Apostolov, A., Yelistratova, L., & Romanciuc, I. (2023). Oil and gas potential territories prediction based on remote sensing data. Case of: Skvortsivsko-Yuliyivsk test site of the Dnieper-Donets Depression of Ukraine. Rudarsko-geološko-naftni zbornik, 38(5), 1-17.
Khomenko, O., Rudakov, D., Lkhagva, T., Sala, D., Buketov, V., & Dychkovskyi, R. (2023). Managing the Horizon-oriented In-Situ Leaching for the Uranium Deposits of Mongolia. Rudarsko-geološko-naftni zbornik, 38(5), 49-60.
Khoshzaher, E., Chakeri, H., Bazargan, S., & Mousapour, H. (2023). The prediction of EPB-TBM performance using firefly algorithms and particle swarm optimization. Rudarsko-geološko-naftni zbornik, 38(5), 79-86.
Khosravimanesh, S., Esmaeilzadeh, A., Akhyani, M., Mikaeil, R., & Mokhtarian Asl, M. (2024). Accurate prediction of drill bit penetration rate in rock using supervised machine learning techniques based on laboratory test data. Rudarsko-geološko-naftni zbornik, 39(1), 115-130.
Kononenko, M., Khomenko, O., Kovalenko, I., Kosenko, A., Zahorodnii, R., & Dychkovskyi, R. (2023). Determining the performance of explosives for blasting management. Rudarsko-geološko-naftni zbornik, 38(3), 19-28.
Mališ, T., Hrženjak, P., & Jaguljnjak Lazarević, A. (2023). Application of the SAP2000 computer programme in the modelling of an underground quarry of dimension stone. Rudarsko-geološko-naftni zbornik, 38(4), 19-25.
Mareška, A., Kordová, T., & Míka, M. (2023). Study of water composition in the glass industry. Rudarsko-geološko-naftni zbornik, 38(4), 41-52.
Maričić, A., Briševac, Z., Hrženjak, P., & Jezidžić, H. (2023). Natural building stone in the construction and renovation of the Zagreb Cathedral. Rudarsko-geološko-naftni zbornik, 38(3), 29-42.
Momeni, A., Moradi, S. S. T., & Tabatabaei-Nejad, S. A. (2024). A Review on Glycerol-Based Drilling Fluids and Glycerine as a Drilling Fluid Additive. Rudarsko-geološko-naftni zbornik, 39(1), 87-99.
Moro, A., Mezga, A., & Mikša, G. (2023). Characteristics of the facies and radiolitid paleoenvironment of the Upper Cenomanian shallow-water succession from the southern part of the Adriatic Carbonate Platform, northwestern side of Korčula Island, Croatia. Rudarsko-geološko-naftni zbornik, 38(5), 19-30.
Mutlu, B. (2023). The performance analysis of the post-mission web-based static and kinematic PPP-AR service. Rudarsko-geološko-naftni zbornik, 38(4), 103-115.
Paglia, F., Wang, S., & Liu, M. (2019). Bayesian Real-Time Pore Pressure Prediction. Journal of Applied Geophysics.
Pavelić, D., Kovačić, M., Vrsaljko, D., & Avanić, R. (2024). Alluvial-lacustrine-marine complex of Mount Medvednica: the early syn-rift deposition and palaeogeography (Early to Middle Miocene, North Croatian Basin). Rudarsko-geološko-naftni zbornik, 39(1), 65-85.
Ponte, F., Silva, M., & Santos, A. (2020). Multivariate Geostatistics for Pore Pressure Prediction. Geostatistics and Petroleum Journal.
Pranata, B., Ramdhan, M., Hanif, M., Sulaiman, M. I., Maulana, M. P., Widiyantoro, S., Suhardja, S. K., Hidayat, E., Supendi, P., Kusnandar, R., & Setyonegoro, W. (2023). Seismic imaging beneath Sumatra Island and its surroundings, Indonesia, from local-regional P-wave earthquake tomography. Rudarsko-geološko-naftni zbornik, 38(3), 119-132.
Pri Martireni, A. (2024). Comparative Analysis and Evaluation of the Conversion Formula for Rebound Number of Schmidt Hammer Test and Unconfined Compressive Strength Test – Case Study: Andesite Rock Slope in Graha Puspa, Lembang Fault. Rudarsko-geološko-naftni zbornik, 39(1), 45-54.
Putri Gunawan, R.M.P., & Suhendro, I. (2023). "Chemical and Textural Studies of the Youngest Pyroclastic Deposits at Mt. Seminung (South Sumatra, Indonesia): A Window for Understanding the Explosive Behavior of a Post-Caldera Volcano." Rudarsko-geološko-naftni zbornik, 38(5), 61-77. https://doi.org/10.17794/rgn.2023.5.6.
Rahimdel, M. J. (2023). Selection of the Most Proper Underground Mining Method for Kodakan Gold Mine in Iran. Rudarsko-geološko-naftni zbornik, 38(4), 135-145.
Ramdhan, A. M. (2017). The Importance of Geological and Hydrogeological knowledge In Justifying Pore Pressure Prediction : The Case Study Of The Peciko Field, Lower Kutai Basin. Scientific Contributions Oil & Gas, 40(2), 53–68. https://doi.org/https://doi.org/10.29017/SCOG.40.2.40
Ramli, T., Gumilar, I. S., Yogi, A., Fadhilah, R. A., Fakhruddin, R., & Praptisih, P. (2023). Geochemistry of Potential Source Rock and Natural Gas Seepages in the Mangole-Taliabu Archipelago, North Maluku, Indonesia. Rudarsko-geološko-naftni zbornik, 38(4), 85-101.
Reksalegora, B., Putra, R., & Setiawan, D. (2022). Pore Pressure Prediction Using Velocity-Mean Effective Stress Relationships. Sedimentary Basin Studies.
Rezaei, M., & Fallahi, S. (2023). Block model optimization and resource estimation of the Angouran Mine by transferring the exploratory data from the local coordinate system to the UTM. Rudarsko-geološko-naftni zbornik, 38(3), 1-17.
Samsol, P., Pramadika, H., Abidin, M. Z., Ridaliani, O., & Nugrahanti, A. (2023). The Impact of Adding Waste Pineapple Peel on the EOR Process to Increase Crude Oil Production. Rudarsko-geološko-naftni zbornik, 38(5), 31-39.
Setiati, R., Akbar, F., Karisma, G. P., Ramadhani, A., Setiawan, S., Aditya, R., Fathaddin, M. T., Sukaryo, S. G., Bharoto, B., & Sumirat, I. (2023). Application of Neutron Computed Tomography in Enhanced Oil Recovery for Analysing Oil Distribution in Berea Sandstone using Bagasse Surfactant. Rudarsko-geološko-naftni zbornik, 38(5), 87-97.
Shafaria, M., Kirana, K., Fitriani, D., Agustine, E., Harja, A., & Endyana, C. (2023). Identification of Anthropogenic Materials in Lake Ciburuy Sediments Using Physico-Chemical Properties and Pollution Index. Rudarsko-geološko-naftni zbornik, 38(4), 117-134.
Sugianti, K., & Tohari, A. (2023). The Impact of Geological and Rainfall Characteristics on Slope Stability Analysis in Shallow Landslide Modelling using the TRIGRS Model. Rudarsko-geološko-naftni zbornik, 38(4), 147-166.
Syarifuddin, J.B., Soebandono, H., & Kusuma, M. (2019). Geological Structure and Tectonic Setting of the South Sumatra Basin. Rudarsko-geološko-naftni zbornik, 22(2), 101-112.https://hrcak.srce.hr/ojs/index.php/rgn/article/view/21054
Tretiakova, L., Cheberyachko, Y., Sharovatova, O., Nehrii, T., Nehrii, S., Kravchenko, B., & Zolotarova, O. (2024). The influence of head strap elasticity on the protective properties of filtering facepiece respirators. Rudarsko-geološko-naftni zbornik, 39(1), 131-140.
Tribuana, I. Y., Mulyadi, U., Ramdhan, A. M., & Rustam, A. H. (2016). Pore Pressure Estimation in Hard Unloading-Overpressure Zone Using Single Compaction Equation, Case Study: Lower Kutai Basin. Scientific Contributions Oil & Gas, 39(2), 3–5. https://doi.org/https://doi.org/10.29017/SCOG.39.2.105
Umar, D. F., Zulfahmi, Z., Suganal, S., Madiutomo, N., Wijaya, T., Huda, M., Setiawan, L., Daranin, E. A., & Gunawan, G. (2024). Two-stage palm kernel shell washing with water and acetic acid as preparation of co-firing system with coal. Rudarsko-geološko-naftni zbornik, 39(1).
Utama, H. W., Setyo Wicaksono, B. A., & Adhitya, B. (2025). Analysis of Pore Pressure and Overpressure Formation Mechanism Using Open Hole Log Data of Jambi Sub Basin, South Sumatera Basin. Lembaran Publikasi Minyak Dan Gas Bumi, 59(1), 47–66. https://doi.org/10.29017/LPMGB.59.1.1757
Wardana, A., Hidayat, S., & Pranowo, S. (2020). Pore Pressure Prediction Using Artificial Neural Networks. Petrophysics Journal.
Yan, X., Liu, Y., & Zhang, H. (2022). Mechanical Behavior of Methane Hydrate-Bearing Soil Under Temperature and Pore Pressure Changes. Geotechnical Journal.
Yassin, K., Mourad, S., Khalil, M., Abdel-Khalek, N., Elbendari, A., & Selim, K. (2024). Upgrading and Surface Coating of Egyptian White Sand with Polymers and Silanes. Rudarsko-geološko-naftni zbornik, 39(1), 115-130.
Yukni, P. I., Iqbal, P., Sumaryono, A., Omang, A., & Lestiana, H. (2023). Susceptibility Assessment of Earthquake-induced Landslides: the 2018 Palu, Sulawesi Mw 7.5 Earthquake, Indonesia. Rudarsko-geološko-naftni zbornik, 38(3), 43-54.
Zhang, L., Li, X., & Chen, Y. (2023). New empirical formula using machine learning method for pore pressure prediction. Rudarsko-geološko-naftni zbornik, 38(2), 215-225. Retrieved from https://hrcak.srce.hr/ojs/index.php/rgn/issue/view/38-2
Published
Issue
Section
License
Copyright (c) 2025 © Copyright by Authors. Published by LEMIGAS

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are free to Share — copy and redistribute the material in any medium or format for any purpose, even commercially Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms, under the following terms Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.









