Adaptive Neuro Fuzzy Inference System Mathematical Model for Detecting Gasoline Type Using Inter Digital Capacitance Sensor

Authors

  • Galang Persada Nurani Hakim Universitas Mercu Buana
  • Mohd. Radzi Abu Mansor Universiti Kebangsaan Malaysia
  • Diah Septiyana Universitas Muhammadiyah Tangerang

DOI:

https://doi.org/10.29017/scog.v48i4.1862

Keywords:

Sensor, IDC, Gasoline, Research Octane Number, ANFIS

Abstract

In the context of global warming, governments worldwide are striving to control emissions from combustion engines by promoting higher RON gasoline types. However, the higher cost of these fuels has led to a decrease in their usage. Detecting the type of gasoline in a vehicle is a complex and inefficient process. Therefore, this research presents a mathematical model for identifying gasoline type and its components using an Inter Digital Capacitor (IDC) sensor, a small and cost-effective sensor. The model aims to establish a relationship between gasoline type and the components, as well as identify gasoline components in the electrical characteristics. The model has achieved high accuracy, with a small error of 4.03 × 10^-5, demonstrating its effectiveness in building these relations. The conclusion of this study is that mathematical modeling with ANFIS can be used to explain the relationship between the components that make up gasoline and the capacitance value of the IDC sensor used to measure it.

Author Biographies

Mohd. Radzi Abu Mansor, Universiti Kebangsaan Malaysia

department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia

Diah Septiyana, Universitas Muhammadiyah Tangerang

Department of Industrial Engineering, Faculty of Engineering, Universitas Muhammadiyah Tangerang

References

Adrianto, A., Syihab, Z., Marhaendrajana, T., & Sutopo, S. (2025). Backpropagation neural networks for solving gas flow equations in porous media. International Journal of Artificial Intelligence (IJ-AI), 14(5), 3744–3756. https://doi.org/10.11591/ijai.v14.i5.pp3744-3756

Bellman, R. E., & Zadeh, L. A. (1970). Decision-Making In A Fuzzy Environment, NASA Contractor Report 1594.

Dewi, T., Bambang, M. R., Kusumanto, R., Risma, P., Oktarina, Y., & Sakuraba, Takahiro Fudholi, Ahmad Rusdianasari, R. (2024). Fuzzy logic-based control for robot-guided strawberry harvesting: visual servoing and image segmentation approach. Sinergi, 28(3). https://doi.org/10.22441/sinergi.2024.3.021

Nasution, A. S. (1987). Cooperative Determination Of Octane Requirement For Car Populations In Asean Countries. Scientific Contributions Oil and Gas, 10(3). https://doi.org/10.29017/scog.10.3.1149

Gonçalves, L., Mendonça, D., Torikai, D., & Ibrahim, R. C. (2007). Interdigitated Capacitive Sensor To Verify The Quality Of Ethanol Automotive Fuel. In 19th International Congress of Mechanical Engineering.

Habboush, S., Rojas, S., Rodríguez, N., & Rivadeneyra, A. (2024). The Role of Interdigitated Electrodes in Printed and Flexible Electronics. Sensors, 23(9), 2717. https://doi.org/https://doi.org/10.3390/s24092717

Jang, J.-S. R., Sun, C.-T., & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing A Computational Approach to Learning and Machine Intelligence. Prentice Hall.

Jang, J. S. R. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665–685. https://doi.org/10.1109/21.256541

Kerr, S., & Newell, R. G. (2003). Policy-induced technology adoption: Evidence from the U.S. lead phasedown. The Journal Of Industrial Economics, 51(3), 317–343. https://doi.org/10.4324/9781351161084-11

LHK, P. (2017). Peraturan Menteri Lingkungan Hidup Dan Kehutanan Republik Indonesia. Nomor P.20/MENLHK/SETJEN/Kum.1/3/2017 Tentang baku Mutu Emisi Gas Buang Kendaraan Bermotor Tipe Baru Kategori M, Kategori N, Dan Kategori O. Indonesia: Kementrian Lingkungan Hidup Dan Kehutanan, Republik Indonesia.

Ludeña-Choez, J., Choquehuanca-Zevallos, J. J., Carranza-Oropeza, M. V., Salas-Arias, E. C., & Pérez-Montaño, H. S. (2025). Comparative study of the capacitance sensitivity of interdigital capacitive sensors based on graphene for the measurement of Cd+2 concentration. Computers and Electronics in Agriculture, 230(December 2024). https://doi.org/10.1016/j.compag.2024.109810

Myers, M. E., Stollsteimer, J., & Wims, A. M. (1975). Determination of Gasoline Octane Numbers from Chemical Composition. Analytical Chemistry, 47(13). https://doi.org/10.1021/ac60363a015

Naggar, A. Y. E., Elkhateeb, A., Altalhi, T. A., El Nady, M. M., Alhadhrami, A., Ebiad, M. A., Elhardallou, S. B. (2017). Hydrocarbon compositions and physicochemical characteristics for the determination of gasoline quality: An implication from gas chromatographic fingerprints. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(15), 1694–1699. https://doi.org/10.1080/15567036.2017.1370515

Rahayu, E. R., Aminudin, A., & Iryanti, M. (2019). Design and characterization of capacitive sensor for soil water content measurement. Journal of Physics: Conference Series, 1280(2). https://doi.org/10.1088/1742-6596/1280/2/022060

Ren, Y., Luo, B., Feng, X., Feng, Z., Song, Y., & Yan, F. (2024). Capacitive and Non-Contact Liquid Level Detection Sensor Based on Interdigitated Electrodes with Flexible Substrate. Electronics (Switzerland), 13(11). https://doi.org/10.3390/electronics13112228

Romahadi, D., Feriyanto, D., Anggara, F., Wijaya, F. P., & Dong, W. (2024). Intelligent system design for identification of unbalance and misalignment using Fuzzy Logic methods. Sinergi, 28(2), 241–250.

Suhaldin, Syafiudin, & Haruna. (2022). The Effect of Fuel Octane Value on Emission Levels in Manual (Four-Stroke) Motorcycles. Journal of Vocational and Automotive Engineering, 1(1), 2022–2030.

Suwoyo, H., Hajar, M. H. I., Indriyanti, P., & Febriandirza, A. (2024). The use of Fuzzy Logic Controller and Artificial Bee Colony for optimizing adaptive SVSF in robot localization algorithm. Sinergi, 28(2), 231–240. https://doi.org/10.22441/sinergi.2024.2.003

Tang, G., Sun, J., Wu, F., Sun, Y., Zhu, X., Geng, Y., & Wang, Y. (2015). Organic composition of gasoline and its potential effects on air pollution in North China. Science China Chemistry, 58, 1416–1425. https://doi.org/10.1007/s11426-015-5464-0

Wardhana, S. G., Pakpahan, H. J., Simarmata, K., Pranowo, W., & Purba, H. (2021). Algoritma Komputasi Machine Learning untuk Aplikasi Prediksi Nilai Total Organic Carbon (TOC). Lembaran Publikasi Minyak Dan Gas Bumi, 55(2), 75–87. https://doi.org/10.29017/lpmgb.55.2.606

Widarsono, B., Saptono, F., Wong, P. M., & Munadi, S. (2002). Application of Artificial Neural Network for Assisting Seismic-Based Reservoir Characterization. Scientific Contributions Oil and Gas, 25(1), 2–11. https://doi.org/10.29017/scog.25.1.879

Zadeh, L. A. (1975). The Concept of a Linguistic Variable and its Application to Approximate Reasoning. Information Sciences, 8(3), 199–249.

Zhou, Z., Wang, R., Yang, Z., Shen, X. F., Xiong, Y., & Feng, Y. (2024). The semi-analytical model of electric field and capacitance in a multilayer-structured interdigital electrode capacitor. Applied Mathematical Modelling, 136, 115632. https://doi.org/10.1016/j.apm.2024.08.004

Published

16-12-2025

Issue

Section

Articles