Determination of Hydrotreated Vegetable Oil (Hvo) in Blended Diesel Fuel Using Calibration of Isooctane by Gc-Fid Measurement

Authors

  • Novilia Novilia Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
  • Sylvia Ayu Bethari Testing Center for Oil and Gas “LEMIGAS”
  • Handajaya Rusli Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
  • Muhammad Bachri Amran Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung

DOI:

https://doi.org/10.29017/scog.v48i3.1835

Keywords:

Hydrotreated Vegetable Oil (HVO), Diesel Fuel, Gas Chromatography

Abstract

Hydrotreated vegetable oil (HVO) is emerging as a promising renewable fuel that is sharing similar chemical characteristics with fossil diesel, making it suitable as a blending component. However, this similarity is presenting challenges in distinguishing and quantifying HVO in diesel blends. The present study is focusing on developing a simple, cost-effective, and reliable method using gas chromatography with flame ionization detection (GC-FID) for determining HVO content in diesel mixtures. Two candidate markers, hexadecane (C₁₆H₃₄) and heptadecane (C₁₇H₃₆), are being evaluated based on linearity, detection limits, and accuracy. Calibration curves are being constructed using HVO–isooctane mixtures from 0 to 50% v/v HVO. The heptadecane peak is demonstrating superior performance with excellent linearity (R² = 0.9994), a low detection limit (1.77% v/v), and quantification limit (5.36% v/v). In contrast, the hexadecane peak is showing similar linearity but lower sensitivity. Accuracy tests are being conducted on diesel samples spiked with 10% HVO, showing recovery rates above 95% for both markers. Overall, heptadecane is proving to be a consistent and reliable marker for quantifying HVO in diesel blends using GC-FID.

References

Aatola, H., Larmi, M., & Sarjovaara, T. (2008). Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NO x , Particulate Emission, and Fuel Consumption of a Heavy Duty Engine Seppo Mikkonen Neste Oil.

Aatola, H., Larmi, M., Sarjovaara, T., & Mikkonen, S. (2009). Hydrotreated vegetable Oil (HVO) as a renewable diesel fuel: Trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine. SAE International Journal of Engines, 1(1), 1251–1262. https://doi.org/10.4271/2008-01-2500

Alves, J. C. L., & Poppi, R. J. (2016a). Quantification of conventional and advanced biofuels contents in diesel fuel blends using near-infrared spectroscopy and multivariate calibration. Fuel, 165, 379–388. https://doi.org/10.1016/j.fuel.2015.10.079

Alves, J. C. L., & Poppi, R. J. (2016b). Quantification of conventional and advanced biofuels contents in diesel fuel blends using near-infrared spectroscopy and multivariate calibration. Fuel, 165, 379–388. https://doi.org/10.1016/j.fuel.2015.10.079

Ambaye, T. G., Vaccari, M., Bonilla-Petriciolet, A., Prasad, S., van Hullebusch, E. D., & Rtimi, S. (2021). Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. In Journal of Environmental Management (Vol. 290). Academic Press. https://doi.org/10.1016/j.jenvman.2021.112627

Ayu Bethari, S., Aisyah, L., Setyo Wibowo, C., & Kunci, K. (2016). COMPARISON OF BIODIESEL B-20 AND B-30 ON DIESEL ENGINE PERFORMANCES AND EMISSIONS PERBANDINGAN BIODIESEL B-20 DAN B-30 PADA KINERJA MESIN DIESEL DAN EMISINYA. SCIENTIFIC CONTRIBUTIONS OIL AND GAS, 39, 7–8. https://doi.org/10.29017/SCOG.39.3.101

Azadi, P., Malina, R., Barrett, S. R. H., & Kraft, M. (2017). The evolution of the biofuel science. In Renewable and Sustainable Energy Reviews (Vol. 76, pp. 1479–1484). Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.11.181

Baldauf, E., Sievers, A., & Willner, T. (2017). Heterogeneous catalysts for the production of hydrotreated cracked vegetable oil. Biofuels, 8(5), 555–564. https://doi.org/10.1080/17597269.2016.1236005

Bethari, S. A., Rusli, H., & Amran, M. B. (2025). Development of Analytical Method for Determination of Palm-Based Hydrotreated Vegetable Oil (Hvo) in Diesel Blends Using Gas Chromatography: Preliminary Study. Scientific Contributions Oil and Gas, 48(2), 173–182. https://doi.org/10.29017/scog.v48i2.1816

Cozendey, D. A., Lopez Vale, D., De Oliveira, F. A., De Souza, C. G., De Oliveira Muniz, R., Padilha, M. C., De Andrade, D. F., & D’Avila, L. A. (2025). Predictive model for the determination of the hydrotreated vegetable oil (HVO) content in HVO/ fossil diesel blends using gas chromatography coupled to mass spectrometry and multivariate analysis. Analytical Methods, 17(6), 1226–1235. https://doi.org/10.1039/d4ay01588f

d’Ambrosio, S., Mancarella, A., & Marello, O. (2023). Characterization of Hydrotreated Vegetable Oil (HVO) in a Euro 6 Diesel Engine as a Drop-In Fuel and With a Dedicated Calibration. Journal of Physics: Conference Series, 2648(1). https://doi.org/10.1088/1742-6596/2648/1/012074

de Aguiar, D. V. A., Roque, J. V., de Lima, L. A. S., Junior, I. M., Gomes, H. O., de Sousa, E. N. R., Piccoli, G. P. L., & Vaz, B. G. (2024). Chemometric Analysis Combined with GC × GC-FID and ESI HR-MS to Evaluate Ultralow-Sulfur Diesel Stability. ACS Omega, 9(9), 10415–10425. https://doi.org/10.1021/acsomega.3c08336

Dobrzyńska, E., Szewczyńska, M., Pośniak, M., Szczotka, A., Puchałka, B., & Woodburn, J. (2020). Exhaust emissions from diesel engines fueled by different blends with the addition of nanomodifiers and hydrotreated vegetable oil HVO. Environmental Pollution, 259. https://doi.org/10.1016/j.envpol.2019.113772

Ftturrahman, N. A., Wibowo. Cahyo.S, Anggraini, R., Anugrah, Risvita. B., Ginanjar, K., Akmal, G., Zaelani, R., Abdurrojak, M., Hidayat, Wahyu. N., Katili, M., Devitasari, Rossy. D., Bahtiar, S., Mulyadi, H., Bethari, Sylvia. A., Aisyah, L., & Maymuchtar. (2020). Pengaruh Biodiesel Berbasis Minyak Kelapa Sawit terhadap cold flow properties Minyak Solar 48 dan Minyak Solar 51. Lembaran Publikasi Minyak Dan Gas Bumi (LPMG). https://doi.org/10.29017/LPMGB.54.2.500

Harvey, David. (2000). Modern analytical chemistry. McGraw-Hill.

Kuronen, M., Mikkonen, S., Aakko, P., & Murtonen, T. (2007). Hydrotreated Vegetable Oil as Fuel for Heavy Duty Diesel Engines.

Liu, Y., Sotelo-Boyás, R., Murata, K., Minowa, T., & Sakanishi, K. (2011). Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni-Mo and solid acids. Energy and Fuels, 25(10), 4675–4685. https://doi.org/10.1021/ef200889e

Sotelo-Boyas, R., Trejo-Zarraga, F., & Jesus Hernandez-Loyo, F. de. (2012). Hydroconversion of Triglycerides into Green Liquid Fuels. In Hydrogenation. InTech. https://doi.org/10.5772/48710

Vásquez, M. C., Silva, E. E., & Castillo, E. F. (2017). Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production. In Biomass and Bioenergy (Vol. 105, pp. 197–206). Elsevier Ltd. https://doi.org/10.1016/j.biombioe.2017.07.008

Vrtiška, D., & Šimáček, P. (2016). Prediction of HVO content in HVO/diesel blends using FTIR and chemometric methods. Fuel, 174, 225–234. https://doi.org/10.1016/j.fuel.2016.02.010

Wang, W., Liu, H., Li, F., Wang, H., Ma, X., Li, J., Zhou, L., & Xiao, Q. (2021). Effects of unsaturated fatty acid methyl esters on the oxidation stability of biodiesel determined by gas chromatography-mass spectrometry and information entropy methods. Renewable Energy, 175, 880–886. https://doi.org/10.1016/j.renene.2021.04.132

Wikberg, E., Heikkilä, S., Sirviö, K., Välisuo, P., Niemi, S., & Niemi, A. (2021). Calibration Method for the Determination of the FAME and HVO Contents in Fossil Diesel Blends Using NIR Spectroscopy. Fuels, 2(2), 179–193. https://doi.org/10.3390/fuels2020011

Zeman, P., Hönig, V., Kotek, M., Táborský, J., Obergruber, M., Mařík, J., Hartová, V., & Pechout, M. (2019). Hydrotreated vegetable oil as a fuel from waste materials. Catalysts, 9(4). https://doi.org/10.3390/catal9040337

Published

31-10-2025

Issue

Section

Articles