Effects of Palm-Oil-Based Methyl Ester Sulfonate (Mes) in Laboratory-Scale Enhanced Oil Recovery Process
DOI:
https://doi.org/10.29017/scog.v48i4.1825Keywords:
Enhanced oil recovery (EOR), Chemical injection, Surfactant, Methyl ester sulfonate (MES), Palm oilAbstract
Declining oil production is often caused by reduced natural driving forces within reservoirs. To address this limitation, enhanced oil recovery (EOR) technology introduces external energy or chemical agents to mobilize residual oil. This study evaluates the performance of palm-oil-based methyl ester sulfonate (MES)—an anionic and biodegradable surfactant synthesized from renewable feedstock—for improving recovery efficiency under laboratory-scale conditions. Core-flood experiments are performed using Berea sandstone cores, intermediate 33°API crude oil, low salinity of 10,000 ppm, synthetic brine at 60 °C. The testing sequence includes screening test of palm-oil-based MES, brine saturation, oil saturation, waterflooding, and subsequent surfactant flooding with 1.5% MES solution. During waterflooding, the recovery factor reaches 62.8 %, leaving 31.29 % residual oil saturation. Injection of 1.5 wt % MES increases the recovery factor to 68.8 % and reduced residual oil saturation to 26.25 %, indicating enhanced displacement and improved microscopic sweep efficiency. The results confirm that palm-oil-derived MES effectively mobilizes trapped oil and demonstrates strong potential as an environmentally friendly and locally available surfactant for chemical EOR applications in the reservoir.
References
Ansyori, M. R. (2018). Mengenal Enhanced Oil Recovery (EOR) Sebagai Solusi Meningkatkan Produksi Minyak. Swara Patra: Majalah Ilmiah PPSDM Migas, 8(2), 16-22.
Cahyaningtyas, N., Swadesi, B., Sanmurjana, M., Lubis, M. R. R., Kristanto, D., & Widiyaningsih, I. (2025). A Simulation Study on Polymer Mobility Design Strategies and Their Impact on Oil Recovery Efficiency and Displacement Mechanisms. Scientific Contributions Oil and Gas, 48(2), 111-128. https://doi.org/10.29017/scog.v48i2.1661
Eni, H. (2014). Substitution of petroleum base with MES base surfactant for EOR: laboratory screening. Scientific Contributions Oil and Gas, 37(1), 35-44. https://doi.org/10.29017/SCOG.37.1.622
Eni, H., Sutriah, K., & Muljani, S. (2017). Surfaktan Berbasis Minyak Sawit Untuk Aplikasi Eor Pada Lapangan Minyak Intermediet (Surfactant based on Palm Oil for EOR Application at Intermediate Oil Field). Lembaran publikasi minyak dan gas bumi, 51(1), 13-21. http://www.journal.lemigas.esdm.go.id
Ishak, S. A., Ghazali, R., Abd Maurad, Z., & Zolkarnain, N. (2017). Ecotoxicology study of various homologues of methyl ester sulfonates (MES) derived from palm oil. Journal of Surfactants and Detergents, 20(6), 1467-1473. https://doi.org/10.1007/S11743-017-2011-3
Schramm, L. L., & Schramm, L. L. (Eds.). (2000). Surfactants: fundamentals and applications in the petroleum industry. Cambridge university press.
Majidaie, S., Muhammad, M., Tan, I. M., & Demiral, B. (2011, September). Green surfactant for enhanced oil recovery. In 2011 National Postgraduate Conference (pp. 1-5). IEEE.
Abd Maurad, Z., Abdullah, L. C., Anuar, M. S., Abdul Karim Shah, N. N., & Idris, Z. (2020). Preparation, characterization, morphological and particle properties of crystallized palm-based methyl ester sulphonates (MES) powder. Molecules, 25(11), 2629. https://www.mdpi.com/1420-3049/25/11/2629
Merdhah, A. B., & Yassin, A. A. M. (2009). Solubility Of Common Oil Field Scales Of Injection Water And High–barium Concentration And High–salinity Formation Water. Jurnal Teknologi (Sciences & Engineering), 67â-77. https://doi.org/10.11113/jt.v50.176
Murni, S. W., Widayati, T. W., Sulistyawati, D., & Rakhul FZ, S. (2015). Pembuatan Surfaktan Metil Ester Sulfonat Dari Minyak Kelpa Untuk Eor (Enhanced Oil Recovery).
Fattahanisa, A., Fathaddin, M. T., Setiati, R., & Chusniyah, D. A. (2024). Effect of Temperature on Palm Oil Mes Surfactant on Oil Recovery Improvement. Understanding Global Digital Era Technologies and Transformations in Social, Environment, Peace & Business Development Perspectives in Society, 229.
Rahmawati, C. P., Kamasinta, S. P., Ginanjar, K. P., Aisyah, L. P., Anggarani, R. P., Wibowo, C. S., & Fathurrahman, N. A. (2024). Stability Analysis of Jet Fuel-Bioethanol Blends: an Experimental Approach. Scientific Contributions Oil and Gas, 47(3), 291-298. https://doi.org/10.29017/SCOG.47.3.1638
Rivai, M., Irawadi, T. T., Suryani, A., & Setyaningsih, D. (2011). Perbaikan Proses Produksi Surfaktan Metil Ester Sulfonat Dan Formulasinya Untuk Aplikasi Enhanced Oil Recovery (Eor) Process Improvement Of Methyl Ester Sulfonate Surfactant Production And Its Formulation For The Enhanced Oil Recovery (Eor) Application. J. Tek. Ind. Pert, 21(1), 41-49.
Setiati, R., Fathaddin, M. T., & Fatahanissa, A. (2022). The Importance of Microemulsion for the Surfactant Injection. Surfactants and Detergents: Updates and New Insights, 17. https://doi.org/10.5772/intechopen.101273
Sheng, J. J. (2010). Modern chemical enhanced oil recovery: theory and practice. Gulf Professional Publishing.
Somasundaran, P., & Zhang, L. (2006). Adsorption of surfactants on minerals for wettability control in improved oil recovery processes. Journal of petroleum science and engineering, 52(1-4), 198-212. https://doi.org/10.1016/j.petrol.2006.03.022
Suhascaryo, N., & Dhaffa, F. M. (2024). Laboratory Study on The Use of Local Additive of Clam Shell in Water Based Mud. Scientific Contributions Oil and Gas, 47(3), 205-213. https://doi.org/10.29017/SCOG.47.3.1635
Pasarai, U., & Haans, A. (2017). Mengoptimalkan Perolehan Minyak Pada Lahan Terbatas Menggunakan Sumur Berarah Dan Pendesakan Air (Optimizing Oil Recovery On Limited Land Area Using Directional Wells And Waterfl Ooding). Lembaran Publikasi Minyak Dan Gas Bumi (LPMGB), 51(1), 1-11. http://www.journal.lemigas.esdm.go.id
Zhao, X., Gong, L., Liao, G., Luan, H., Chen, Q., Liu, D., & Feng, Y. (2021). Micellar solubilization of petroleum fractions by heavy alkylbenzene sulfonate surfactant. Journal of Molecular Liquids, 329, 115519. https://doi.org/https://doi.org/10.1016/j.molliq.2021.115519
Published
Issue
Section
License
Copyright (c) 2025 © Copyright by Authors. Published by LEMIGAS

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are free to Share — copy and redistribute the material in any medium or format for any purpose, even commercially Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms, under the following terms Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.









