Performance of Lignoslfonate Derived from Coffee Husk as a Natural Emulsifier in Enhanced Oil Recovery: A Phase Behaviour Study
DOI:
https://doi.org/10.29017/scog.v48i3.1822Keywords:
lignin, coffee husk, natural emulsifier, enhanced oil recovery, sulfonationAbstract
The oil industry faces challenges in enhancing oil recovery while reducing environmental impact. This study explores the utilization of lignin extracted from coffee husk, an agricultural waste, as a natural emulsifier in enhanced oil recovery (EOR). The research addresses key issues including identifying lignin's functional groups via fourier transform infrared (FTIR) spectroscopy before and after sulfonation, determining compatible lignosulfonate concentrations through aqueous stability tests, and optimizing salinity for effective emulsification. Lignin was extracted via soda pulping and modified through sulfonation with sodium bisulfite (NaHSO₃) to produce lignosulfonate. FTIR analysis confirmed successful sulfonation, evidenced by new peaks at 636 cm⁻¹ (S–O) and 1101 cm⁻¹ (SO₃⁻). Aqueous stability tests at 60°C showed that a 0.8% (w/v) lignosulfonate concentration remained stable in brine with 20,000 ppm salinity. Salinity scans identified optimal conditions at 25,000 ppm, where the system achieved a balanced solubilization ratio of 0.95, indicating low interfacial tension. These results demonstrate that sulfonated coffee husk lignin has significant potential as a sustainable emulsifier for EOR applications, with a concentration of 0.8% and a salinity of 25,000 ppm being optimal for emulsion stability. This study supports circular economy principles by valorizing agricultural waste and offers a promising alternative to synthetic chemicals in the oil industry.
References
Fikri, M. R. A. (2025). Methyl Ester Sulfonate: An Anionic Biosurfactant For Enhanced Oil Recovery In Harsh Condition. Methyl Ester Sulfonate: An Anionic Biosurfactant For Enhanced Oil Recovery In Harsh Condition. https://doi.org/10.29017/scog.v48i1.1673
Aziz, M. M., Rachmadi, H., Wintoko, J., Yuliansyah, A. T., Hasokowati, W., Purwono, S., Rochmadi, & Murachman, B. (2017). On The Use of Sodium Lignosulphonate for Enhanced Oil Recovery. IOP Conference Series: Earth and Environmental Science, 1–7. https://doi.org/10.1088/1755-1315/65/1/012030
Bajpai, P. (2018). Pulp Bleaching. In P. Bajpai (Ed.), Biermann’s Handbook of Pulp and Paper (3rd ed., pp. 465–491). Elsevier.
Braaten, S. M., Christensen, B. E., & Fredheim, G. E. (2003). Comparison of molecular weight and molecular weight distributions of softwood and hardwood lignosulfonates. Journal of wood chemistry and technology, 23(2), 197-215. https://doi.org/10.1081/WCT-120021925
Busu, T. N. Z. T. M., Saman, N., Mohtar, S. S., Md Noor, A. M., Hassan, O., Ali, N., & Mat, H. (2019). An evaluation of lignocellulosic solutions from OPEFB pulping process as demulsifiers for crude oil emulsion demulsification. Petroleum Science and Technology, 37(14), 1675-1682. https://doi.org/10.1080/10916466.2019.1602639
Cheremisinoff, N. P., Rosenfeld, P. E., & Rosenfeld, P. E. (2009). Handbook of pollution prevention and Cleaner production. Elsevier/Andrew.
Coates, J. (2000). Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry, 12, 10815-10837. https://doi.org/10.1002/9780470027318.a5606
Czaikoski, A., Gomes, A., Kaufmann, K. C., Liszbinski, R. B., de Jesus, M. B., & da Cunha, R. L. (2020). Lignin derivatives stabilizing oil-in-water emulsions: Technological aspects, interfacial rheology and cytotoxicity. Industrial crops and products, 154, 112762. https://doi.org/10.1016/j.indcrop.2020.112762
Dilling, P. (1985). U.S. Patent No. 4,521,336. Washington, DC: U.S. Patent and Trademark Office.
Eni, H., Sutriah, K., & Muljani, S. (2017). Surfactant based on Palm Oil for EOR Application at Intermediate Oil Field. Lembaran Publikasi Minyak Dan Gas Bumi, 51(1), 13-21. https://doi.org/10.29017/LPMGB.51.1.10
Ferraro, R., Salvatore, M. M., Esposito, R., Murgia, S., Caserta, S., D'Errico, G., & Guido, S. (2024). Impact of surfactant polydispersity on the phase and flow behavior in water: the case of Sodium Lauryl Ether Sulfate. Journal of Molecular Liquids, 405, 124990. https://doi.org/10.1016/j.molliq.2024.124990
Gargulak, J. D., Lebo, S. E., & McNally, T. J. (2015). Lignin. In Kirk-Othmer Encyclopedia of Chemical Technology (pp. 1–26). Wiley.
Green, D. W., & Willhite, G. P. (2018). Enhanced Oil Recovery–2nd edition. Society of Petroleum Engineers.
Suttie, E. D. (2001). Wood and Cellulosic Chemistry: DN-S. Hon and N. Shiraishi, editors, revised and expanded. Marcel Dekker, Inc. New York, Basel. ISBN 0-8247-0024-4. 928 pp.
Ibnu, M., & Rosanti, N. (2022). Tren produksi dan perdagangan negara-negara produsen kopi terbesar di dunia dan implikasinya bagi Indonesia. Buletin Ilmiah Litbang Perdagangan, 16(2). https://doi.org/10.55981/bilp.2022.5
Massie, A. D., Permadi, A. K., Pratama, E. A., & Naufaliansyah, M. A. (2021). Designing Optimum Salinity and Injection Rates for Low Salinity Water Alternating Hydrocarbon Gas Injection at “B” Structure in “S” Field. Journal IATMI.
Maulida, F., Sutiadi, A., Fathaddin, M. T., Mardiana, D. A., Setiati, R., Rakhmanto, P. A., ... & Arkaan, M. D. (2024). The Characteristics of Sapindus Rarak Green Surfactant Injection to Enhance Oil Recovery. Scientific Contributions Oil and Gas, 47(3), 277-289. https://doi.org/10.29017/SCOG.47.3.1637
de Carvalho Oliveira, F., Srinivas, K., Helms, G. L., Isern, N. G., Cort, J. R., Gonçalves, A. R., & Ahring, B. K. (2018). Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresource technology, 257, 172-180. https://doi.org/10.1016/j.biortech.2018.01.041
Putra, B. P., & Kiono, B. F. T. (2021). Mengenal enhanced oil recovery (EOR) sebagai solusi meningkatkan produksi minyak Indonesia. Jurnal Energi Baru dan Terbarukan, 2(2), 84-100. https://doi.org/10.14710/jebt.2021.11152
Romadhona, A. R., Dewi, N. K. P. C., & Indrawan, K. A. Y. (2022). Pengolahan limbah kulit kopi Arabika Kintamani sebagai alternatif menunjang sustainable development goals. Prosiding Pekan Ilmiah Pelajar (PILAR), 2, 633-639.
Ruwoldt, J., Tanase-Opedal, M., & Syverud, K. (2022). Ultraviolet spectrophotometry of lignin revisited: exploring solvents with low harmfulness, lignin purity, hansen solubility parameter, and determination of phenolic hydroxyl groups. ACS omega, 7(50), 46371-46383. https://doi.org/10.1021/acsomega.2c04982
Goldschmid, O., Sarkanen, K. V., & Ludwig, C. H. (1971). Lignins. Occurrence, Formation, Structure and Reactions, Wiley-Interscience, New York, 241-298.
Sekeri, S. H., Ibrahim, M. N. M., Umar, K., Yaqoob, A. A., Azmi, M. N., Hussin, M. H., ... & Malik, M. F. I. A. (2020). Preparation and characterization of nanosized lignin from oil palm (Elaeis guineensis) biomass as a novel emulsifying agent. International journal of biological macromolecules, 164, 3114-3124. https://doi.org/10.1016/j.ijbiomac.2020.08.181
Setiati, R., Siregar, S., Marhaendrajana, T., & Wahyuningrum, D. (2020, July). Enhanced oil recovery using synthesized sodium lignosulfonate surfactant from bagasse as development petroleum science. In AIP Conference Proceedings (Vol. 2245, No. 1, p. 090015). AIP Publishing LLC. https://doi.org/10.1063/5.0007725
Sheng, J. J. (2010). Modern chemical enhanced oil recovery: theory and practice. Gulf Professional Publishing.
Published
Issue
Section
License
Copyright (c) 2025 © Copyright by Authors. Published by LEMIGAS

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are free to Share — copy and redistribute the material in any medium or format for any purpose, even commercially Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms, under the following terms Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.









