Comparative Performance Analysis of Natural Fruit Peel Extract and Na2edta as Environmentally Friendly Scale Inhibitors in Tubular Systems

Authors

  • Novrianti Faculty of Engineering, Islamic University of Riau
  • Taufiq Hidayat Faculty of Engineering, Islamic University of Riau
  • Neneng Purnamawati Faculty of Engineering, Islamic University of Riau
  • M. Ridha Fikri Faculty of Mining and Petroleum, Bandung Institute of Technology

Keywords:

Scale, inhibitors, rambutan peel, mangosteen peel, Na2EDTA

Abstract

Scale found in production tubing is still a severe operational problem in the oil and gas industry. This shows the need for scale control using synthetic chemicals such as disodium ethylenediaminetetraacetate (Na2EDTA), hydrogen chloride (HCL), or hydrogen fluoride (HF). However, concerns about the environmental impact and sustainability of long-term use of synthetic materials promote the search for alternatives based on natural materials such as tannin. Therefore, this study aims to determine and compare the effectiveness of tannins from rambutan binjai (Nephelium lappaceum), rambutan nona (Nephelium mutabile), and mangosteen (Garcinia mangostana) peel extract as natural scale inhibitors against Na2EDTA performance. To achieve the objective, UV-Vis spectrophotometric analysis  carried is out and shows tannin containing 20.91% (rambutan binjai peel), 21.14% (rambutan nona peel, and 21.58% (mangosteen peel). Laboratory tests are conducted with variations in tannin volume (5 mL, 10 mL, and 15 mL) as well as soaking times of 20 and 60 minutes in 20ml distilled water. The results showed that the increase in tannin volume addition and soaking duration is positively correlated with the decrease in scale mass. The highest performance is shown by mangosteen peel extract, which reduce scale by 0.132 grams (6.6%) at 15 mL in 60 minutes. For comparison, Na2EDTA under the same conditions reduces 0.176 grams (8.8%). These results show the potential of tannin-rich fruit peel extract as an environmentally friendly and sustainable scale inhibitor alternative for oil and gas production systems.

References

A., B. C., M., L. R., A., D. J., M., C. J., A., W. D., G., G. G., C., L. Y., C., B. P., E., C., K.H., T. A., Sergio, P., Liliana, V., Franco, T., Mario, M., Javier, R., Dario, D., Martin, M., Supriya, K., Pallavi, K., … J., M. R. H. (2016). We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech, 11(tourism), 13.

Achmad, Z., Hadi, F., & Kholisoh, S. D. (2022). Mass Transfer Coefficient of Extraction of Anthocyanin from Mangosteen Peel (Garcinia mangostana L.) with Ethanol-HCl as Solvent. Eksergi, 19(3), 142. https://doi.org/10.31315/e.v19i3.8008

Akhdan, A. W., Supriyadi, S., & Dewayanti, D. S. S. (2022). Studi Penyebab Scale di Lapangan-lapangan Minyak Sumatra. Lembaran Publikasi Minyak Dan Gas Bumi, 44(3), 227–245. https://doi.org/10.29017/lpmgb.44.3.166

Almubarak, T., Ng, J. H., Ramanathan, R., & Nasr-El-Din, H. A. (2022). From initial treatment design to final disposal of chelating agents: A review of corrosion and degradation mechanisms. RSC Advances, 12(3), 1813–1833. https://doi.org/10.1039/d1ra07272b

Aparna, G. S., & Lekshmi, P. R. G. (2023). Effect of Acidification and Types of Solvent on Anthocyanin Yield, Total Phenols, Flavonoids, Antioxidant Activity and Colour Values of Extracts from Mangosteen Pericarp (Garcinia mangostana L.). Asian Journal of Dairy and Food Research, 42(2), 226–231. https://doi.org/10.18805/ajdfr.DR-2034

Babula, P., Matkowski, A., Filipensk, P., Gburek, J., David, S., & Mart, P. (2021). Iron Complexes of Flavonoids-Antioxidant Capacity and Beyond. International Journal of Molecular Sciences, 22, 646.

Baraka-Lokmane, S., & Sorbie, K. S. (2010). Effect of pH and scale inhibitor concentration on phosphonate-carbonate interaction. Journal of Petroleum Science and Engineering, 70(1–2), 10–27. https://doi.org/10.1016/j.petrol.2009.05.002

Chaussemier, M., Pourmohtasham, E., Gelus, D., Pécoul, N., Perrot, H., Lédion, J., Cheap-Charpentier, H., & Horner, O. (2015). State of art of natural inhibitors of calcium carbonate scaling. A review article. Desalination, 356, 47–55. https://doi.org/10.1016/j.desal.2014.10.014

Collins, S. P., Storrow, A., Liu, D., Jenkins, C. A., Miller, K. F., Kampe, C., & Butler, J. (2021). Tests Of Poly Acrylic Acid (PAA) Inhibitor On Barium Sulfate Scale Inhibition Efficiency.

Darwita. (2010). Laboratory study of calcium sulfate lemigas scientific contributions laboratory study of calcium sulfate solubility calculation by using Skillman, McDonald, and Stiff method. Lemigas Scientific Contributions, 33(1), 62–83.

Fraga-corral, M., Otero, P., Cassani, L., Echave, J., Garcia-oliveira, P., Carpena, M., Chamorro, F., Lourenço-lopes, C., Prieto, M. A., & Simal-gandara, J. (2021). Traditional Applications of Tannin Rich Extracts Supported by. Foods, 10(2), 1–33.

Gamal, H., Elkatatny, S., Shehri, D. Al, & Bahgat, M. (2020). A novel low-temperature non-corrosive sulfate/sulfide scale dissolver. Sustainability (Switzerland), 12(6), 1–14. https://doi.org/10.3390/su12062455

Ganguly, S., Tungesvik, S., & Kelland, M. A. (2023). Phosphonated Iminodisuccinates-A Calcite Scale Inhibitor with Excellent Biodegradability. ACS Omega, 8(1), 1182–1190. https://doi.org/10.1021/acsomega.2c06605

Hafid, A. F., Puliansari, N., Lestari, N. S., Tumewu, L., Rahman, A., & Widyawaruyanti, A. (2016). Jurnal Farmasi Dan Ilmu Kefarmasian Indonesia Vol. 3 No. 1 Juli 2016 6. 3(1), 6–11.

He, Z., Zhang, L., Wang, L., Zhang, Q., & Luan, L. (2023). Anti-Scale Performance and Mechanism of Valonia Tannin Extract for Calcium Carbonate in Circulating Cooling Water System. Sustainability (Switzerland), 15(11). https://doi.org/10.3390/su15118811

Husna, U. Z., Elraies, K. A., Shuhili, J. A. B. M., & Elryes, A. A. (2022). A review: the utilization potency of biopolymer as an eco-friendly scale inhibitors. Journal of Petroleum Exploration and Production Technology, 12(4), 1075–1094. https://doi.org/10.1007/s13202-021-01370-4

Ismail, A. R., Mohd Norddin, M. N. A., Latefi, N. A. S., Oseh, J. O., Ismail, I., Gbadamosi, A. O., & Agi, A. J. (2020). Evaluation of a naturally derived tannin extracts biopolymer additive in drilling muds for high-temperature well applications. Journal of Petroleum Exploration and Production Technology, 10(2), 623–639. https://doi.org/10.1007/s13202-019-0717-7

Ituen, E. B., Ime-sunday, J. I., & Essien, E. A. (2017). Inhibition of Oilfield Scales using Plant Materials : A Peep into Green Future. 2(5), 284–292.

Jafar Mazumder, M. A. (2020). A review of green scale inhibitors: Process, types, mechanism and properties. Coatings, 10(10), 1–29. https://doi.org/10.3390/coatings10100928

Kan, A. T., & Tomson, M. B. (2012). Scale prediction for oil and gas production. SPE Journal, 17(2), 362–378. https://doi.org/10.2118/132237-PA

Khamis, E., Fawzy, M., & Soliman, K. A. (2024). Innovative application of green surfactants as eco-friendly scale inhibitors in industrial water systems. 1–17.

Khormali, A., Gennadievich Petrakov, D., & Shcherbakov, G. Y. (2014). An In-depth Study of Calcium Carbonate Scale Formation and Inhibition. Iranian Journal of Oil & Gas Science and Technology, 3(4), 67–77.

Khormali, A., & Petrakov, D. G. (2016). Laboratory investigation of a new scale inhibitor for preventing calcium carbonate precipitation in oil reservoirs and production equipment. Petroleum Science, 13(2), 320–327. https://doi.org/10.1007/s12182-016-0085-6

Lado, K., Sube, L., Daniel, J., Lako, W., Stephen, C., Lumori, G., Yengkopiong, J. P., Augustino, J., Utong, M., Binyason, S. A., Samuel, Y., Ngerja, L., Kalisto Moilinga, M., Lado, T. F., & Kheiralla, A. H. (2020). Diversity and distribution of medicinal plants in the republic of South Sudan. World Journal of Advanced Research and Reviews, 2020(01), 2581–9615. https://doi.org/10.30574/wjarr

Liang, L. Z., & Yi, M. L. (2009). Antioxidant tannins from Syzygium cumini fruit. African Journal of Biotechnology, 8(10), 2301–2309.

Macedo, R. G. M. d. A., Marques, N. do N., Paulucci, L. C. S., Cunha, J. V. M., Villetti, M. A., Castro, B. B., & Balaban, R. de C. (2019). Water-soluble carboxymethylchitosan as green scale inhibitor in oil wells. Carbohydrate Polymers, 215(February), 137–142. https://doi.org/10.1016/j.carbpol.2019.03.082

Makmur, H. P. and T. (2004). CALCIUM SULFATE SCALE IN THE PETROLEUM INDUSTRY (p. 6). scientific contribution oil and gas. https://doi.org/https://doi.org/10.29017/SCOG.27.1.1048

Makmur, T. (2022). The Influence Of Ph And Concentration Of Phosphonate Inhibitor - Tests On Change Of Barium Sulfate Scale Morphology By Using Scanning Electron Microscope. Scientific Contributions Oil and Gas, 27(2), 3–9. https://doi.org/10.29017/scog.27.2.873

Moghadasi, J., Müller-Steinhagen, H., Jamialahmadi, M., & Sharif, A. (2007). Scale Deposits in Porous Media and Their Removal By Edta Injection. Heat Exchanger Fouling and Cleaning VII, 59–60.

Nazzal, S., & Hariri, A. (2010). Extraction and characterization of some bio active compounds of pomegranate peel. 2010.

Olennikov, D. N., Kashchenko, N. I., & Chirikova, N. K. (2014). A novel HPLC-Assisted method for investigation of the fe2+-chelating activity of flavonoids and plant extracts. Molecules, 19(11), 18296–18316. https://doi.org/10.3390/molecules191118296

Onoghwarite, E., & Endurance, O. (2019). Performance Evaluation of Biodegradable Oilfield Scale Inhibitors for Calcium Carbonate Scales. 3(9), 72–80.

Onojake, M. C., & Waka, T. A. (2021). Review of Oilfield Chemicals Used in Oil and Gas Industry. Asian Journal of Physical and Chemical Sciences, 9(2), 8–24. https://doi.org/10.9734/ajopacs/2021/v9i230132

Panzella, L., & Napolitano, A. (2022). Condensed Tannins, a Viable Solution to Meet the Need for Sustainable and Effective Multifunctionality in Food Packaging: Structure, Sources, and Properties. Journal of Agricultural and Food Chemistry, 70(3), 751–758. https://doi.org/10.1021/acs.jafc.1c07229

Plaza, M., Domínguez-Rodríguez, G., Sahelices, C., & Marina, M. L. (2021). A sustainable approach for extracting non-extractable phenolic compounds from mangosteen peel using ultrasound-assisted extraction and natural deep eutectic solvents. Applied Sciences (Switzerland), 11(12). https://doi.org/10.3390/app11125625

Popuri, S. R., Hall, C., Wang, C. C., & Chang, C. Y. (2014). Development of green/biodegradable polymers for water scaling applications. International Biodeterioration and Biodegradation, 95(PA), 225–231. https://doi.org/10.1016/j.ibiod.2014.04.018

Ren, S., Xu, H., Li, M., Wang, Y., & Shen, F. (2018). The application of using EDTA to dissolve calcium sulphate deposits for plugged ESP wells in Rumaila oilfield. IOP Conference Series: Earth and Environmental Science, 170(2). https://doi.org/10.1088/1755-1315/170/2/022081

SaThierbach, K., Petrovic, S., Schilbach, S., Mayo, D. J., Perriches, T., Rundlet, E. J. E. J. E. J., Jeon, Y. E., Collins, L. N. L. N., Huber, F. M. F. M., Lin, D. D. H. D. H., Paduch, M., Koide, A., Lu, V. T., Fischer, J., Hurt, E., Koide, S., Kossiakoff, A. A., Hoelz, A., Hawryluk-gara, L. A., … Hoelz, A. (2015). Performance Analysis Of Natural Fruit Peel Extracts And EDTA2NA As Environmentally Friendly Scale Inhibitors In Tubular System. Proceedings of the National Academy of Sciences, 3(1), 1–15.

Scarano, A., Laddomada, B., Blando, F., De Santis, S., Verna, G., Chieppa, M., & Santino, A. (2023). The Chelating Ability of Plant Polyphenols Can Affect Iron Homeostasis and Gut Microbiota. Antioxidants, 12(3). https://doi.org/10.3390/antiox12030630

Sesia, R., Spriano, S., Sangermano, M., & Ferraris, S. (2023). Natural Polyphenols and the Corrosion Protection of Steel: Recent Advances and Future Perspectives for Green and Promising Strategies. Metals, 13(6). https://doi.org/10.3390/met13061070

Shams El Din, A. M., El-Dahshan, M. E., & Mohammed, R. A. (2002). Inhibition of the thermal decomposition of HCO3- A novel approach to the problem of alkaline scale formation in seawater desalination plants. Desalination, 142(2), 151–159. https://doi.org/10.1016/S0011-9164(01)00434-9

Sonya, R. A. (2020). Screening and Characteruzation of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Otonomi, 20, 396–406.

Sugihardjo. (2020). Evaluation of Chemical for Sand Consolidation in Laboratory Scale. Scientific Contributions Oil and Gas, 43(1), 15–27. https://doi.org/10.29017/SCOG.43.1.15-27

Sun, L., Zhang, H., & Zhuang, Y. (2012). Preparation of Free, Soluble Conjugate, and Insoluble-Bound Phenolic Compounds from Peels of Rambutan (Nephelium lappaceum) and Evaluation of Antioxidant Activities in vitro. Journal of Food Science, 77(2), 198–204. https://doi.org/10.1111/j.1750-3841.2011.02548.x

Thinkratok, A., Supkamonseni, N., & Srisawat, R. (2014). Inhibitory Potential of the Rambutan Rind Extract and Tannin against Alpha-Amylase and Alpha-Glucosidase Activities in vitro. 44–48. https://doi.org/10.15242/iicbe.c0114582

Wong, N. I. H., Mohamad, N., Hajar, N., & Tokiman, N. A. (2024). A Review: Extraction Methods of Phenolic Compounds from Rambutan Peel (Nephelium lappaceum L.). Advances in Agricultural and Food Research Journal, 5(2). https://doi.org/10.36877/aafrj.a0000403

Wulandari, M., Zahratussaadah, Z., Nofrizal, N., Raja, P. B., & Andreas, A. (2023). Black Tea Waste as Corrosion Inhibitor for Carbon Steel in 0.5 M HCl Medium. Indonesian Journal of Chemistry, 23(6), 1664–1675. https://doi.org/10.22146/ijc.84891

Zhen, L., Lange, H., & Crestini, C. (2021). An analytical toolbox for fast and straightforward structural characterisation of commercially available tannins. Molecules, 26(9), 1–15. https://doi.org/10.3390/molecules26092532

Published

21-08-2025

Issue

Section

Articles