Performance Evaluation of Tween 60 Surfactant for EOR: Interfacial Tension Reduction and Microemulsion Formation

Authors

  • Pauhesti Pauhesti Universitas trisakti
  • Ridha Husla Universitas Trisakti
  • Sri Feni Maulindani Universitas Trisakti
  • Apriandi Rizkina Rangga Wastu Universitas Trisakti
  • Nadira Cahya Sutikna Universitas Trisakti
  • Lailatul Wastiyah Universitas Trisakti
  • Ade Kurniawan Saputra The Skolkovo Institute of Science and Technology

DOI:

https://doi.org/10.29017/scog.v48i3.1812

Keywords:

enhanced oil recovery, surfactant, Tween 60, phase behaviour, interfacial tension

Abstract

Enhanced Oil Recovery (EOR) techniques are essential for maximizing crude oil extraction from mature reservoirs. Surfactant injection, particularly using surfactants such as Tween 60, has shown great potential in reducing interfacial tension (IFT) and enhancing oil recovery. This study evaluates the performance of Tween 60 for EOR applications, focusing on its aqueous stability, phase behavior, IFT reduction, and core flooding efficiency at temperatures of 60°C and 80°C. The research addresses a gap in the literature by examining the long-term stability and phase behavior of Tween 60 at these temperatures. Aqueous stability tests over seven days indicate that Tween 60 remains clear and stable at 60°C but becomes cloudy and unstable at 80°C. Phase behavior tests reveal that a 0.5% concentration of Tween 60 produces the largest middle-phase microemulsion (5.75% volume), forming a bicontinuous Winsor III microemulsion that enhances oil-water interaction. IF T tests using a spinning drop tensiometer show a reduction in IFT to 0.00525 dyne/cm. Core flooding tests confirm that surfactant injection contributes an incremental oil recovery of 8.33% beyond what was achieved by waterflooding without surfactant, increasing the total recovery factor from 62.5% to 70.83%. However, limitations such as the short testing period (14 days) and the use of a single type of oil (39 ° API) underscore the need for further research.

References

Al Faraji, S. M. S. (2015). Dual Solubilization Behavior of Alkyl Ether Sulfonates (AES) in Formations Having High Salinity and Hardness: its Importance in Enhanced Oil Recovery. Sultan Qaboos University (Oman).https://doi. org/10.13140/RG.2.2.33351.55209.

Alli, Y. F., Damayandri, D., & Irawan, Y. (2017). The Effect of Anionic and Nonionic Co-Surfactant for Improving Solubility of Polyoxy-Based Surfactant for Chemical Flooding. Scientific Contributions Oil and Gas, 40(3),117123. https:// doi.org/10.29017/SCOG.40.3.49.

Alyousef, M. H., Kamal, M. S., Murtaza, M., Hussain,Gao, B., & Sharma, M. M. (2013). A new family of anionic surfactants for enhanced-oil-recovery applications. Spe Journal, 18(05), 829-840. https://doi.org/10.2118/159700-PA.

Pinnawala, G. W., West, S., Nizamidin, N., Alexis,D. A., & Dwarakanath, V. (2024, April). Chemical EOR Field Support Including Surfactant Blending Studies and Quality Control for Shale and Tight Assets. In SPE Improved Oil Recovery Conference? (p.D041S029R002).SPE. DOI:10.2118/218138-MS.

Hussain, S. M. S., Kamal, M. S., Gbadamosi, A., Patil, S., Mahboob, A., Khateeb, A., ... & Fahmi, M. (2024, February). Locally Produced Sustainable and Resilient Surfactants for Enhanced Oil Recovery. In International Petroleum Technology Conference (pp.IPTC-24518). IPTC. https://doi. org/10.2523/IPTC-24518-EA.

Chen, R. K. Z., & Wee, S. C. (2021). Performance Evaluation of Alpha-Olefin Sulfonate (AOS), Coco Glucoside and Decane in Creating Winsor Type-III Microemulsion. Platform: A Journal of Engineering, 5(3), 38-59. https://doi. org/10.61762/pajevol5iss3art14402.

Mandal, A. (2015a). Chemical flood enhanced oil recovery: a review. International Journal of Oil, Gas and Coal Technology, 9(3), 241. https://doi. org/10.1504/IJOGCT.2015.069001.

Mandal, A. (2015). Chemical flood enhanced oil recovery: a review. International Journal of Oil, Gas and Coal Technology, 9(3), 241-264.

https://doi.org/10.1504/IJOGCT.2015.069001

Marques, E. F., & Silva, B. F. (2013). Surfactants, phase behavior. In Encyclopedia of Colloid and Interface Science (pp. 1290-1333). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978- 3-642-20665-8_170.

Massarweh, O., & Abushaikha, A. S. (2020). The use of surfactants in enhanced oil recovery: A review of recent advances. Energy Reports, 6, 3150–3178. https://doi.org/10.1016/j.egyr.2020.11.009

Shah, M. F. M., Redzuan, F. R., Efendi, A. D., & Wee, S. C. (2022). Phase Behavior Studies of Alpha Olefin Sulfonate (AOS), Lauryl Glucoside, and Decane In Creating Winsor Type-III Microemulsion. Platform: A Journal of Engineering, 6(2), 36-45.

https://doi.org/10.61762/pajevol6iss2art14764 Morales‐Garcia, A. L., Hayward, A. S., Malekpour,

A. K., Korzycka, K. A., Compson, R., Gori,

K., & Lant, N. J. (2020). The application of a nuclease enzyme to clean stubborn soils and odors in laundry. Journal of Surfactants and Detergents, 23(4), 797-807. https://doi. org/10.1002/jsde.12398.

Novriansyah, A., Bae, W., Park, C., Permadi, A. K., & Sri Riswati, S. (2020). Optimal design of alkaline–surfactant–polymer flooding under low salinity environment. Polymers, 12(3), 626. https://doi.org/10.3390/polym12030626.

Olabode, O., Dike, H., Olaniyan, D., Oni, B., & Faleye, M. (2024). Experimental Investigation of the Effect of Surfactant–Polymer Flooding on Enhanced Oil Recovery for Medium Crude Oil. Polymers, 16(12). https://doi.org/10.3390/ polym16121674.

Pauhesti, P. (2023a). Laboratory Study of Analysis of the Effect of ABS Surfactant Injection on Increasing Oil Recovery. International Journal of Current Science Research and Review, 06(12). https://doi.org/10.47191/ijcsrr/V6-i12-49.

Pauhesti, P., Saputra, A. K., Samsol, S., Satiawati, L., Yasmaniar, G., Maulani, M., ... & Kalasnikova,

A. (2023). Laboratory Study of Analysis of the Effect of ABS Surfactant Injection on Increasing Oil Recovery. International Journal of Current Science Research and Review, 6, 12. https://doi. org/10.47191/ijcsrr/V6-i12-49.

Riswati, S. S., Bae, W., Park, C., Permadi, A. K., & Novriansyah, A. (2020). Nonionic Surfactant to Enhance the Performances of Alkaline– Surfactant–Polymer Flooding with a Low Salinity Constraint. Applied Sciences, 10(11),3752. https://doi.org/10.3390/app10113752

Rousseau, D., Le Gallo, C., Wartenberg, N., & Courtaud, T. (2022, April).

Mobility Of Microemulsions: A New Method to Improve Understanding and Performances of Surfactant EOR. In SPE Improved Oil Recovery Conference? (p. D021S013R001). SPE. https:// doi.org/10.2118/209414-MS

Sugihardjo, S. (2008). Surfactant Properties Evaluation for Chemical Flooding. Scientific Contributions Oil and Gas, 31(3), 34-39. https:// doi.org/10.29017/SCOG.31.3.1014

Tian, S., Liu, L., & Ning, P. (2010). Phase behavior of tweens/toluene/water microemulsion systems for the solubilization absorption of toluene. Journal of solution chemistry, 39(4), 457-472. https://doi. org/10.1007/s10953-010-9519-8

Solikha, D. F. (2021). Pre Screening Surfaktan untuk Injeksi Chemical EOR di Lapangan X. Gema Wiralodra, 12(1), 95-109.

Yeh, D. H., & Pavlostathis, S. G. (2004). Phase Distribution of Hexachlorobenzene in a Suspended‐Growth Culture Amended with a Polysorbate Surfactant. Water environment research, 76(2), 137-148. https://doi. org/10.2175/106143004x141663

Published

31-10-2025

Issue

Section

Articles