Real Data-Driven Seismic Low Frequency Extrapolation: A Case Study from the Asri basin, Java Sea, Indonesia
DOI:
https://doi.org/10.29017/scog.v48i3.1748Keywords:
Low-Frequency Extrapolation, Self-Supervised Learning, Asri Basin, Full Waveform InversionAbstract
The Asri Basin, located in the Java Sea, Indonesia, is a significant hydrocarbon province with regions that remain underexplored. The available legacy seismic data, however, are limited in quality, particularly due to their narrow frequency bandwidth and the absence of low-frequency components. This limitation poses a significant challenge for advanced seismic imaging techniques such as Full Waveform Inversion (FWI), which rely low-frequency data to generate accurate and reliable subsurface models. This study aims to reconstruct the missing low-frequency (<10 Hz) components from the band-limited seismic data to enhance the applicability of FWI. A real-data-driven, self-supervised learning approach for low-frequency extrapolation is implemented to address this challenge. Using a modified U-Net architecture, the framework is trained directly on the available band-limited seismic data, eliminating the need for synthetic or labeled datasets. The self-supervised workflow employs a frequency-specific masking strategy that enables the model to learn and predict the missing low-frequency content from higher-frequency inputs. The results demonstrate that the proposed method effectively recovers low-frequency signals, achieving accurate reconstruction down to <5 Hz, reducing residual amplitudes compared to conventional methods, and preserving the mid-to-high frequency spectrum. This approach provides a promising solution for overcoming data limitations and mitigating cycle-skipping issues in FWI applications within the Asri Basin and comparable geological settings.
References
Araya-Polo, M., Jennings, J., Adler, A., & Dahlke, T. (2018). Deep-learning tomography. The Leading Edge, 37(1), 58-66. https://doi.org/10.1190/tle37010058.1.
Bunks, C., Saleck, F. M., Zaleski, S., & Chavent, G. (1995). Multiscale seismic waveform inversion. Geophysics, 60(5), 1457-1473. https://doi.org/10.1190/1.1443880
Cheng, S., Wang, Y., Zhang, Q., Harsuko, R., & Alkhalifah, T. (2024). A self‐supervised learning framework for seismic low‐frequency extrapolation. Journal of Geophysical Research: Machine Learning and Computation, 1(3), e2024JH000157. https://doi.org/10.1029/2024JH000157.
Claerbout, J. F., & Abma, R. (1992). Earth soundings analysis: Processing versus inversion (Vol. 6). London: Blackwell Scientific Publications.
Diria, S. A., Purba, H., & Tampubolon, R. A. (2017). Identifikasi Reservoir Dan Hidrokarbon Dengan Menggunakan Metode Synchrosqueezing Transform (Reservoir and Hydrocarbon Identification Using Synchrosqueezing Transform). Lembaran publikasi minyak dan gas bumi, 51(3), 179-191. https://doi.org/10.29017/LPMGB.51.3.29.
Fabien-Ouellet, G. (2020). Low-frequency generation and denoising with recursive convolutional neural networks. In SEG technical program expanded abstracts 2020 (pp. 870-874). Society of Exploration Geophysicists.
Fang, W., Fu, L., Zhang, M., & Li, Z. (2021). Seismic data interpolation based on U-net with texture loss. Geophysics, 86(1), V41-V54. https://doi.org/10.1190/geo2019-0615.1.
Haris, A., & Riyanto, A. (2017). Spectral decomposition technique based on STFT and CWT for identifying the hydrocarbon reservoir. Scientific Contributions Oil and Gas, 40(3), 125-131. https://doi.org/10.29017/SCOG.40.3.50.
Li, J., Wu, X., & Hu, Z. (2021). Deep learning for simultaneous seismic image super-resolution and denoising. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-11. https://doi.org/10.1109/TGRS.2021.3057857.
Moran, N., Schmidt, D., Zhong, Y., & Coady, P. (2020). Noisier2noise: Learning to denoise from unpaired noisy data. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 12064-12072). https://doi.org/10.1109/CVPR42600.2020.01208.
Ralanarko, D., Wahyuadi, D., Nugroho, P., Rulandoko, W., Syafri, I., Almabrury, A., & Nur, A. A. (2020). Seismic Expression of Paleogene Talangakar Formation-Asri & Sunda Basins, Java Sea, Indonesia. Berita Sedimentologi, 46(1), 21-43. https://doi.org/10.51835/bsed.2020.46.1.58.
Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Cham: Springer international publishing.
Sigalingging, A. S., Winardhie, I. S., & Dinanto, E. (2021). Ekstrapolasi Frekuensi Rendah pada Full Waveform Inversion (FWI) dengan menggunakan Deep Learning. Part 1: Validasi data Sintetik. Jurnal Geofisika, 19(2), 74-79.
Sigalingging, A. S., Winardhi, S., Dinanto, E., Triyoso, W., Hendriyana, A., Sukmono, S., ... & Raguwanti, R. (2022, November). Application of Deep Learning for Low-Frequency Extrapolation to Marine Seismic Data in the Sadewa Field, Kutei Basin, Indonesia. In international conference on Mediterranean Geosciences Union (pp. 231-236). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-48715-6_51.
Sukanto, J., Nunuk, F., Aldrich, J. B., Rinehart, G. P., & Mitchell, J. (1998). Petroleum systems of the Asri basin, Java Sea, Indonesia.
Sun, H., & Demanet, L. (2018). Low frequency extrapolation with deep learning. In SEG technical program expanded abstracts 2018 (pp. 2011-2015). Society of Exploration Geophysicists.
Sun, H., & Demanet, L. (2020). Extrapolated full-waveform inversion with deep learning. Geophysics, 85(3), R275-R288. https://doi.org/10.1190/geo2019‐0195.1.
Sun, Q. F., Xu, J. Y., Zhang, H. X., Duan, Y. X., & Sun, Y. K. (2022). Random noise suppression and super-resolution reconstruction algorithm of seismic profile based on GAN. Journal of Petroleum Exploration and Production Technology, 12(8), 2107-2119. https://doi.org/10.1007/s13202-021-01447-0.
Tarantola, A. (1986). A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics, 51(10), 1893-1903. https://doi.org/10.1190/1.1442046.
Virieux, J., & Operto, S. (2009). An overview of full-waveform inversion in exploration geophysics. Geophysics, 74(6), WCC1-WCC26. https://doi.org/10.1190/1.3238367.
Triyoso, W., Sinaga, E. I., & Oktariena, M. (2024). Seismic Data Processing and Seismic Inversion in The Ray Parameter Domain: Common Reflection Point (CRP) Stack and Ray Impedance. Scientific Contributions Oil and Gas, 47(2), 129-139. https://doi.org/10.29017/SCOG.47.2.1621.
Winardhi, S., Sigalingging, A. S., Triyoso, W., Sukmono, S., Dinanto, E., Hendriyana, A., ... & Raguwanti, R. (2024). Deep Learning-based Low Frequency Extrapolation: Its implication in 2D Full Waveform Imaging for Marine Seismic Data in the Sadewa Field, Indonesia. First Break, 42(7), 65-72. https://doi.org/10.3997/1365-2397.fb2024059.
Witte, P. A., Louboutin, M., Kukreja, N., Luporini, F., Lange, M., Gorman, G. J., & Herrmann, F. J. (2019). A large-scale framework for symbolic implementations of seismic inversion algorithms in Julia. Geophysics, 84(3), F57-F71. https://doi.org/10.1190/geo2018-0174.1.
Yu, S., & Ma, J. (2021). Deep learning for geophysics: Current and future trends. Reviews of Geophysics, 59(3), e2021RG000742. https://doi. org/10.1029/2021RG000742
Zhang, Q., Mao, W., Zhou, H., Zhang, H., & Chen, Y. (2018). Hybrid-domain simultaneous-source full waveform inversion without crosstalk noise. Geophysical Journal International, 215(3), 1659-1681. https://doi.org/10.1093/gji/ggy366.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 © Copyright by Authors. Published by LEMIGAS

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are free to Share — copy and redistribute the material in any medium or format for any purpose, even commercially Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms, under the following terms Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.









