ASPEN HYSYS SIMULATION FOR LPG PRODUCTION OPTIMIZATION IN DEETHANIZER COLUMN: CASE STUDY IN DELAYED COKING UNIT

Authors

  • Agatha Sekar Windyaningrum Program Studi Teknik Pengolahan Minyak dan Gas, Politeknik Energi dan Mineral Akamigas Cepu
  • Arif Nurrahman Program Studi Teknik Pengolahan Minyak dan Gas, Politeknik Energi dan Mineral Akamigas Cepu
  • Pusparatu Pusparatu Program Studi Teknik Pengolahan Minyak dan Gas, Politeknik Energi dan Mineral Akamigas Cepu
  • Asa Aditya Persada Program Studi Teknik Pengolahan Minyak dan Gas, Politeknik Energi dan Mineral Akamigas Cepu
  • Raihan Fakhri Program Studi Teknik Pengolahan Minyak dan Gas, Politeknik Energi dan Mineral Akamigas Cepu

DOI:

https://doi.org/10.29017/scog.v48i1.1738

Keywords:

deethanizer, evaluation, optimization, yield, profit

Abstract

The global petroleum refining industry faces increasing pressure to optimize resource utilization while ensuring environmental sustainability. This challenge is further intensified by the rising demand for lighter, cleaner fuels and heavier crude oil feedstocks. The Delayed Coking Unit (DCU) plays an important role in refining processes by converting vacuum residue into valuable products such as Liquefied Petroleum Gas (LPG), diesel, naphtha, and green coke. The LPG market, currently valued at $113.7 billion, is projected to grow to $165.1 billion by 2033. Within this process, the deethanizer column utilizes pressurized distillation to separate ethane (C2) from LPG. According to evaluation results, the column's feed flow was recorded at 83.7 tons per day, with a feed temperature of 102.61°C and a top column pressure of 18.84 kg/cm². The feed composition data was obtained through laboratory analysis. According to the calculation, the theoretical tray number was 17, the reflux ratio was 0.9936, and the total tray efficiency was 56.57%. The optimization of deethanizer column operating conditions was carried out by increasing the bottom product yield, which aimed to determine the optimum point with the greatest LPG yield. Based on a trial-and-error using Aspen Hysys V14 software, the optimum conditions were identified when the column was operated at 110℃ reboiler temperature and reflux ratio 2, which could increase LPG yield to 73.21 tons/day with 98.1% w/w purity. Economically, the profit increased from $18,444,932.92/year to $22,640,582.13/year

References

Agustina, N. (2020). Validation Method for Determination of Niclosamide Monohydrate in Veterinary Medicine Using Uv-Vis Spectrophotometry. Jurnal Ilmiah Farmako Bahari, 11(2), 153–160. www.journal.uniga.ac.id

Amalia, Y., Erdiyanti, F. S., & Dewajani, H. (2023). Analisa Jumlah Stage Teoritis Pada Kolom Distilasi Pabrik Plasticizer. DISTILAT: Jurnal Teknologi Separasi, 5(1), 13–18. https://doi.org/10.33795/distilat.v5i1.9

Artika, D. I., Sudarminto, H. P., & Wahyudi, F. (2023). Perhitungan Reflux Pada Kolom Iii Stasiun Distilasi Di Pt X Lumajang. DISTILAT: Jurnal Teknologi Separasi, 8(3), 532–539. https://doi.org/10.33795/distilat.v8i3.477

Biasi, L. C. K., Batista, F. R. M., Zemp, R. J., & Meirelles, A. J. A. (2020). Influence of the Liquid or Vapor Split Ratios in Meta- or Parastillation Columns. Industrial & Engineering Chemistry Research, 59(34), 15317–15331. https://doi.org/10.1021/acs.iecr.0c01966

Debiase, R., & Elliott, J. D. (1982). Delayed coking: latest trends. Hydrocarbon Process. https://api.semanticscholar.org/CorpusID:93617740

Gao, L., Zhao, Y., Yang, J., Zhang, H., & Wang, Y. (2024). Structure and calcination characteristics of green coke in different parts of the delayed coking tower. Journal of Analytical and Applied Pyrolysis, 177, 106378. https://doi.org/https://doi.org/10.1016/j.jaap.2024.106378

Gutierrez, J. P., Alberto Benítez, L., Martínez, J., Ruiz, L. A., & Erdmann, E. (2014). Thermodynamic Properties for the Simulation of Crude Oil Primary Refining. Journal of Engineering Research and Applications Www.Ijera.Com, 4(4), 190–194. www.ijera.com

Harji, A., Henderson, R., & Rodwell, M. (2005). Consider modifying your refinery to handle heavy opportunity crude oils. In Hydrocarbon Processing (Vol. 84, Issue 9, p. 54). http://www.hydrocarbonprocessing.com/IssueArticle/2598855/Archive/Consider-modifying-your-refinery-to-handle-heavy-opportunity-crude-oils.html%5Cnhttps://ill.library.umkc.edu/illiad/illiad.dll?Action%3D10&Form%3D75&Value%3D320128

Haydary, J. (2018). Introduction to Computer-Aided Process Design and Simulation. In Chemical Process Design and Simulation (pp. 1–14). https://doi.org/https://doi.org/10.1002/9781119311478.ch1

Market Research. (2023). Liquefied Petroleum Gas [LPG] Market Report By Source (Non-Associated Gas, Associated Gas, Refinery), By Application (Residential, Commercialt, Industrial, Transportation, Others), By Distribution Channel (Direct Sales, Distributor Sales, Online Sales)By. https://marketresearch.biz/report/liquefied-petroleum-gas-lpg-market/

Mehairbi, M., Mahri, S., & Dadach, Z. E. (2020). Simulation of Stripper Flooding Due to the Increase of Feed Flowrate. World Journal of Engineering and Technology, 08, 443–455. https://doi.org/10.4236/wjet.2020.83033

Peccini, A., Jesus, L. F. S., Secchi, A. R., Bagajewicz, M. J., & Costa, A. L. H. (2023). Globally optimal distillation column design using set trimming and enumeration techniques. Computers and Chemical Engineering, 174(January). https://doi.org/10.1016/j.compchemeng.2023.108254

Rahima, A. A., & Dewi, E. N. (2020). Simulasi Pengaruh Reflux Ratio Pada Proses Pemurnian Etil Asetat Dengan Distilasi Ekstraktif Menggunakan Chemcad. Jurnal Chemurgy, 4(1), 6. https://doi.org/10.30872/cmg.v4i1.4071

Sawarkar, A. N., Pandit, A. B., Samant, S. D., & Joshi, J. B. (2007). Petroleum residue upgrading via delayed coking: A review. Canadian Journal of Chemical Engineering, 85(1), 1–24. https://doi.org/10.1002/cjce.5450850101

Schack, D., Jastram, A., Liesche, G., & Sundmacher, K. (2020). Energy-Efficient Distillation Processes by Additional Heat Transfer Derived From the FluxMax Approach. Frontiers in Energy Research, 8. https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2020.00134

Sembiring, S., Panjaitan, R. L., Susianto, S., & Altway, A. (2020). Pemanfaatan Gas Alam sebagai LPG (Liquified Petroleum Gas). Jurnal Teknik ITS, 8(2). https://doi.org/10.12962/j23373539.v8i2.47079

Sidabutar, I., Widyasanti, A., Nurjanah, S., Nurhadi, B., Rialita, T., & Lembong, E. (2020). KAJIAN RASIO REFLUKS PADA ISOLASI BEBERAPA SENYAWA MINYAK NILAM (Pogostemon cablin Benth) DENGAN METODE DISTILASI FRAKSINASI. Jurnal Ilmiah Rekayasa Pertanian Dan Biosistem, 8, 71–78. https://doi.org/10.29303/jrpb.v8i1.160

Susmiati, Y., Purwantana, B., Bintoro, N., & Rahayoe, S. (2021). Kinerja Internal Reboiler Tipe Vertical Tubular Baffle pada Proses Distilasi Etanol secara Batch. Jurnal Rekayasa Proses, 15(1), 59. https://doi.org/10.22146/jrekpros.65483

Yousuo, O. N., & Erefagha Rufus, T. (2020). Determination Of The Actual Number Of Stages In A Binary Distillation Column Using Excel. International Journal of Advanced Research and Publications, 4(1), 37–41. http://www.ijarp.org/published-research-papers/jan2020/Determination-Of-The-Actual-Number-Of-Stages-In-A-Binary-Distillation-Column-Using-Excel.pdf

Zakharov, M. K., Egorov, A. V., & Podmetenny, A. A. (2021). Liquid mixtures separation and heat consumption in the process of distillation. Tonkie Khimicheskie Tekhnologii, 16(1), 7–15. https://doi.org/10.32362/2410-6593-2021-16-1-7-15

Downloads

Published

19-03-2025

Issue

Section

Articles