PHYSICOCHEMICAL PROPERTIES OF B-0 CN 51 DIESEL FUEL WITH ULTRAFINE BUBBLES

Authors

  • Husen Asbanu Graduate Program in Agricultural Engineering, School of Graduate Studies, IPB University, Bogor, Indonesia
  • Sam Herodian Department of Mechanical and Biosystem Engineering, IPB University, Bogor, Indonesia
  • Tineke Mandang Department of Mechanical and Biosystem Engineering, IPB University, Bogor, Indonesia
  • Anto Tri Sugiarto Research Center for Smart Mechatronics, BRIN, Bandung, Indonesia
  • Riesta Anggarani Department of Product Application Technology, Oil and Gas Technology Development (LEMIGAS), Jakarta, Indonesia

DOI:

https://doi.org/10.29017/scog.v48i1.1686

Keywords:

ultrafine bubble, diesel fuel B-0 CN 51, cetane number, distillation

Abstract

Ultrafine bubbles are nano-sized, much smaller than regular bubbles, and efficient in gas exchange processes, making them reactive in physical and chemical processes. The application of ultrafine bubbles includes medicine, agriculture, cleaning, and diesel engine fuels. The objective of this research is to analyze the impact of ultrafine bubble additives injected into B-0 CN 51 diesel fuel to enhance fuel performance. The research method involves injecting oxygen additives at flow rates of 1, 3, and 5 liter/minute into 1.5 liters of fuel for treatment durations ranging from 10 to 60 minutes. Observation parameters include distillation, cetane number, density, flash point, and cloud point. The results of oxygen injection at 1 liter/minute for 10 minutes found the highest values for viscosity at 2.65 mm²/s, density at 813,7 kg/m³, distillation at 341,2°C, cloud point at 7°C, and flash point at 67.4°C. Conversely, oxygen injection at 5 liters/minute for 60 minutes resulted in the lowest values for viscosity at 2.53 mm²/s, density at 801.3 kg/m³, distillation at 320.7°C, cloud point at 5.4°C, and flash point at 56.2°C. Meanwhile, the cetane number increased, with the highest value of 63 observed at an oxygen injection rate of 5 liter per minute for 60 minutes, and the lowest value of 56.5 observed at an injection rate of 1 liter/minute for 10-minute This research shows that the impact of ultrafine bubbles adds value to B-0 CN 51 fuel, creating a new product considering the promising cetana number.

References

Abdelaal, M. M., Rabee, B. A., & Hegab, A. H. (2013). Effect of adding oxygen to the intake air on a dual-fuel engine performance, emissions, and knock tendency. Energy, 61, 612–620.

Abdelkhalik, A., Elsayed, H., Hassan, M., Nour, M., Shehata, A. B., & Helmy, M. (2018). Using thermal analysis techniques for identifying the flash point temperatures of some lubricant and base oils. Egyptian Journal of Petroleum, 27(1), 131–136.

Abdurrojaq, N., Devitasari, R. D., Aisyah, L., Faturrahman, N. A., Bahtiar, S., Sujarwati, W., Wibowo, C. S., & Anggarani, R. (2021). Perbandingan Uji Densitas Menggunakan Metode ASTM D1298 dengan ASTM D4052 pada Biodiesel Berbasis Kelapa Sawit. Lembaran Publikasi Minyak Dan Gas Bumi, 55(1), 49–57.

Aisyah, L., Wibowo, C. S., & Bethari, S. A. (2016). Comparison of Biodiesel B-20 and B-30 on Diesel Engine Performances and Emissions. Scientific Contributions Oil and Gas, 39(3).

Anggarani, R., Wibowo, C. S., & Yuliarita, E. (2015). THE INFLUENCE OF BIODIESEL BLENDS (UP TO B-20) FOR PARTS OF DIESEL ENGINE FUEL SYSTEM BY IMMERSION TEST. Scientific Contributions Oil and Gas, 38(1), 39–45.

Arina, H., & Nasikin, M. (2022). Enhancement of Flow Properties Biodiesel Using Sorbitan Monooleate. Scientific Contributions Oil and Gas, 45(3), 143–152.

Babazadeh Shayan, S., Seyedpour, S. M., & Ommi, F. (2012). Effect of oxygenates blending with gasoline to improve fuel properties. Chinese Journal of Mechanical Engineering, 25, 792–797.

Burger, J. L., Lovestead, T. M., Gough, R. V, & Bruno, T. J. (2014). Characterization of the effects of cetane number improvers on diesel fuel volatility by use of the advanced distillation curve method. Energy & Fuels, 28(4), 2437–2445.

Cookson, D. J., Lloyd, C. P., & Smith, B. E. (1988). Investigation of the chemical basis of diesel fuel properties. Energy & Fuels, 2(6), 854–860.

Donahue, R. J., & Foster, D. E. (2000). Effects of oxygen enhancement on the emissions from a DI diesel via manipulation of fuels and combustion chamber gas composition. SAE Transactions, 334–350.

Dwivedi, G., & Sharma, M. P. (2014). Impact of cold flow properties of biodiesel on engine performance. Renewable and Sustainable Energy Reviews, 31, 650–656.

Farobie, O., & Hartulistiyoso, E. (2022). Palm oil biodiesel as a renewable energy resource in Indonesia: current status and challenges. Bioenergy Research, 1–19.

Ferris, A. M., & Rothamer, D. A. (2016). Methodology for the experimental measurement of vapor–liquid equilibrium distillation curves using a modified ASTM D86 setup. Fuel, 182, 467–479.

Gürü, M., Karakaya, U., Altıparmak, D., & Alıcılar, A. (2002). Improvement of diesel fuel properties by using additives. Energy Conversion and Management, 43(8), 1021–1025.

Hoang, A. T., Le, M. X., Nižetić, S., Huang, Z., Ağbulut, Ü., Veza, I., Said, Z., Le, A. T., Tran, V. D., & Nguyen, X. P. (2022). Understanding behaviors of compression ignition engine running on metal nanoparticle additives-included fuels: a control comparison between biodiesel and diesel fuel. Fuel, 326, 124981.

Kannan, G. R., Karvembu, R., & Anand, R. (2011). Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel. Applied Energy, 88(11), 3694–3703.

Küçükosman, R., Yontar, A. A., & Ocakoglu, K. (2022). Nanoparticle additive fuels: Atomization, combustion and fuel characteristics. Journal of Analytical and Applied Pyrolysis, 165, 105575.

Li, R., Wang, Z., Ni, P., Zhao, Y., Li, M., & Li, L. (2014). Effects of cetane number improvers on the performance of diesel engine fuelled with methanol/biodiesel blend. Fuel, 128, 180–187.

Lin, C.-Y., & Huang, J.-C. (2003). An oxygenating additive for improving the performance and emission characteristics of marine diesel engines. Ocean Engineering, 30(13), 1699–1715.

Lovestead, T. M., & Bruno, T. J. (2011). Comparison of diesel fuel oxygenate additives to the composition-explicit distillation curve method. Part 3: T-butyl glycerols. Energy & Fuels, 25(6), 2518–2525.

Lü, X., Yang, J., Zhang, W., & Huang, Z. (2005). Improving the combustion and emissions of direct injection compression ignition engines using oxygenated fuel additives combined with a cetane number improver. Energy & Fuels, 19(5), 1879–1888.

Lv, J., Wang, S., & Meng, B. (2022). The effects of nano-additives added to diesel-biodiesel fuel blends on combustion and emission characteristics of diesel engine: a review. Energies, 15(3), 1032.

Manin, J., Skeen, S., Pickett, L., Kurtz, E., & Anderson, J. E. (2014). Effects of oxygenated fuels on combustion and soot formation/oxidation processes. SAE International Journal of Fuels and Lubricants, 7(3), 704–717.

Mofijur, M., Masjuki, H. H., Kalam, M. A., Atabani, A. E., Shahabuddin, M., Palash, S. M., & Hazrat, M. A. (2013). Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review. Renewable and Sustainable Energy Reviews, 28, 441–455.

Nakatake, Y., Kisu, S., Shigyo, K., Eguchi, T., & Watanabe, T. (2013). Effect of nano air-bubbles mixed into gas oil on common-rail diesel engine. Energy, 59, 233–239.

Raga, Y., Widajati, E., Ilyas, S., & Purwanto, Y. A. (2024). Enhancing viability and vigor of deteriorated true shallot seeds (Allium cepa var. ascalonicum) through ultra-fine bubble and plasma-activated water priming. Journal of Seed Science, 46, e202446029.

Ramcke, T., Lampmann, A., & Pfitzner, M. (2018). Simulations of injection of liquid oxygen/gaseous methane under flashing conditions. Journal of Propulsion and Power, 34(2), 395–407.

Rashedul, H. K., Masjuki, H. H., Kalam, M. A., Ashraful, A. M., Rahman, S. M. A., & Shahir, S. A. (2014). The effect of additives on properties, performance and emission of biodiesel fuelled compression ignition engine. Energy Conversion and Management, 88, 348–364.

Salahuddin, B. B. (2014). Preparation and Characterization of Triton-water-diesel Nanoemulsion with and Without Cerium Oxide. Universiti Putra Malaysia.

Sharif, P. M., Aziz Hairuddin, A., As’ arry, A., Rezali, K. A. M., Noor, M. M., Norhafana, M., & Shareef, S. M. (2019). Nano gas bubbles dissolve in gasoline fuel and its influence on engine combustion performance. IOP Conference Series: Materials Science and Engineering, 469, 12062.

Soudagar, M. E. M., Nik-Ghazali, N.-N., Kalam, M. A., Badruddin, I. A., Banapurmath, N. R., & Akram, N. (2018). The effect of nano-additives in diesel-biodiesel fuel blends: A comprehensive review on stability, engine performance and emission characteristics. Energy Conversion and Management, 178, 146–177.

Turcotte, D. E., Chiu, G., Fidorra, U., & Bowles, R. L. (2000). Automatic Freeze Point Determination in Ethylene Glycol Based Engine Coolants. SAE Technical Paper.

Van Gerpen, J. (1996). Cetane number testing of biodiesel. Proceedings, Third Liquid Fuel Conference: Liquid Fuel and Industrial Products from Renewable Resources, 197–206.

Wang, Y., Qi, C., Ning, Y., Lv, X., Yu, X., Yan, X., & Yu, J. (2022). Experimental determination of the lower flammability limit and limiting oxygen concentration of propanal/air mixtures under elevated temperatures and pressures. Fuel, 326, 124882.

Downloads

Published

10-02-2025

Issue

Section

Articles