The Effect of Co2-Brine-Rock Interaction Towards Sand Onset Modeling in Dolomite-Rich Sandstone: A Case Study in Air Benakat Formation, South Sumatera, Indonesia

Authors

  • Prasandi Abdul Aziz Department of Petroleum Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung
  • Bagus Endar Bachtiar Nurhandoko Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
  • Taufan Marhaendrajana Department of Petroleum Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung
  • Utjok W.R. Siagian Department of Petroleum Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung
  • Tutuka Ariadji Department of Petroleum Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung

DOI:

https://doi.org/10.29017/SCOG.47.3.1682

Keywords:

CO2-brine-rock interactions, CCUS, dolomite-rich sandstone, sand problem

Abstract

Carbon Capture Utilization Storage (CCUS) into geological storage (e.g., Enhanced Oil or Gas Recovery) provides a solution to reduce CO2 emissions yet remains a potential operational problem, such as sand problem phenomena in producer well. This study performs several experimental works (i.e., time-lapse dry mass measurements, , X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and elastic wave measurements) by using CO2-brine-rock batch experimental setup to observe mineral dissolution, pore structures alteration as well as rock physics alteration due to CO2-brine-rock interactions.This study used an outcrop sample of dolomite-rich sandstone from Air Benakat formation, South Sumatera, Indonesia. Our experimental works observed dolomite dissolution, secondary porosity development as well as rock strength reduction indirectly due to CO2-brine-rock interactions. The results of elastic wave velocity measurements (i.e. P & S waves) were then used to modify a considerable sand onset prediction model. Thus, the modified model demonstrates that considering CO2-brine-rock interactions could help to design better sand management strategy in producer well.

References

[1] AL-Ameri, W. A., Abdulraheem, A., & Mahmoud, M. (2016). Long-Term Effects of CO2 Sequestration on Rock Mechanical Properties. Journal of Energy Resources Technology, 138(1), Article 1. https://doi.org/10.1115/1.4032011

[2] API RP40. (1998). API RP-40 Recommended Practice for Core Analysis.

[3] Aziz, P. A., Marhaendrajana, T., & Siagian, U. W. R. (2023). Sanding phenomena vulnerability observations due to CO2 injection at the Air Benakat reservoir in South Sumatera. Journal of Physics.

[4] Aziz, P. A., Rachmat, M., Chandra, S., Daton, W. N., & Tony, B. (2023). Techno-Economic Solution For Extending Ccus Application In Natural Gas Fields: A Case Study Of B Gas Field In Indonesia. Scientific Contributions Oil and Gas, 46(1), 19–28. https://doi.org/10.29017/SCOG.46.1.1321

[5] Bagus Endar, B Nurhandoko, Arief Prasetyo, Wawan Hermawan, Mahatman Listyobudi, Susilowati, Bajry, F., Martha, R. K., & Supriyanto, E. B. (2022). Permeability change of carbonate rock due to CO2 injection for simulating the feasibility of CO2 Carbon Capture and Storage (CCS): A case study of Indonesian carbonate. https://doi.org/10.13140/RG.2.2.16088.57605

[6] Barber, A. J., Crow, M. J., & Milsom, J. S. (2005). Sumatra: Geology, Resources and Tectonic Evolution (Vol. 31).

[7] Birch, F. (1943). Elasticity of igneous rocks at high temperatures and pressures. Geological Society of America Bulletin, 54(2), 263–286. https://doi.org/10.1130/GSAB-54-263

[8] Birch, F. (1960). The velocity of compressional waves in rocks to 10 kilobars: 1. Journal of Geophysical Research, 65(4), 1083–1102. https://doi.org/10.1029/JZ065i004p01083

[9] Bishop, M. G. (2001). South Sumatra Basin Province, Indonesia: The Lahat/Talang Akar-Cenozoic Total Petroleum System (Open-File Report) [Open-File Report]. US Geological Survey (USGS).

[10] Black, J. R., Carroll, S. A., & Haese, R. R. (2015). Rates of mineral dissolution under CO2 storage conditions. Chemical Geology, 399, 134–144. https://doi.org/10.1016/j.chemgeo.2014.09.020

[11] Bradford, I. D. R., Fuller, J., Thompson, P. J., & Walsgrove, T. R. (1998). Benefits of Assessing the Solids Production Risk in a North Sea Reservoir using Elastoplastic Modelling. All Days, SPE-47360-MS. https://doi.org/10.2118/47360-MS

[12] Breckels, I. M., & Van Eekelen, H. A. M. (1982). Relationship Between Horizontal Stress and Depth in Sedimentary Basins. Journal of Petroleum Technology, 34(09), 2191–2199. https://doi.org/10.2118/10336-PA

[13] Buhmann, D., & Dreybrodt, W. (1985). The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas. Chemical Geology, 48(1–4), 189–211. https://doi.org/10.1016/0009-2541(85)90046-4

[14] Byerlee, J. (1978). Friction of rocks. Pure and Applied Geophysics, 116(4–5), 615–626. https://doi.org/10.1007/BF00876528

[15] Casey, W. H., & Sposito, G. (1992). On the temperature dependence of mineral dissolution rates. Geochimica et Cosmochimica Acta, 56(10), 3825–3830. https://doi.org/10.1016/0016-7037(92)90173-G

[16] Chang, C., Zoback, M. D., & Khaksar, A. (2006). Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 51(3–4), 223–237. https://doi.org/10.1016/j.petrol.2006.01.003

[17] Christensen, N. I. (1974). Compressional wave velocities in possible mantle rocks to pressures of 30 kilobars. Journal of Geophysical Research, 79(2), 407–412. https://doi.org/10.1029/JB079i002p00407

[18] Christensen, N. I., & Smewing, J. D. (1981). Geology and seismic structure of the northern section of the Oman ophiolite. Journal of Geophysical Research: Solid Earth, 86(B4), 2545–2555. https://doi.org/10.1029/JB086iB04p02545

[19] Creasy, N., Huang, L., Gasperikova, E., Harbert, W., Bratton, T., & Zhou, Q. (2024). CO2 rock physics modeling for reliable monitoring of geologic carbon storage. Communications Earth & Environment, 5(1), 333. https://doi.org/10.1038/s43247-024-01493-6

[20] Crundwell, F. K. (2017). On the Mechanism of the Dissolution of Quartz and Silica in Aqueous Solutions. ACS Omega, 2(3), 1116–1127. https://doi.org/10.1021/acsomega.7b00019

[21] Dreybrodt, W., & Kaufmann, G. (2007). Physics and Chemistry of Dissolution on Subaerialy Exposed Soluble Rocks by Flowing Water Films. Acta Carsologica, 36(3). https://doi.org/10.3986/ac.v36i3.169

[22] Eaton, B. A. (1969). Fracture Gradient Prediction and Its Application in Oilfield Operations. Journal of Petroleum Technology, 21(10), 1353–1360. https://doi.org/10.2118/2163-PA

[23] Enick, R. M., & Klara, S. M. (1990). CO 2 SOLUBILITY IN WATER AND BRINE UNDER RESERVOIR CONDITIONS. Chemical Engineering Communications, 90(1), 23–33. https://doi.org/10.1080/00986449008940574

[24] Fjaer, E. (Ed.). (2008). Petroleum related rock mechanics (2nd ed). Elsevier.

[25] Golubev, & Rabinovich. (1976). Resultaty primeneia appartury akusticeskogo karotasa dlja predeleina proconstych svoistv gornych porod na mestorosdeniaach tverdych isjopaemych. In Prikl. Geofiz. Moskva (Vol. 73, pp. 109–116).

[26] Greenwood, N. N., & Earnshaw, A. (1997). Chemistry of the Elements. Elsevier. https://doi.org/10.1016/C2009-0-30414-6

[27] Gutierrez, M., Katsuki, D., & Almrabat, A. (2020). Seismic velocity change in sandstone during CO 2 injection. E3S Web of Conferences, 205, 02001. https://doi.org/10.1051/e3sconf/202020502001

[28] Holbrook, P. W., Maggiori, D. A., & Hensley, R. (1995). Real-Time Pore Pressure and Fracture-Pressure Determination in All Sedimentary Lithologies. SPE Formation Evaluation, 10(04), 215–222. https://doi.org/10.2118/26791-PA

[29] Horsrud, P. (2001). Estimating Mechanical Properties of Shale From Empirical Correlations. SPE Drilling & Completion, 16(02), 68–73. https://doi.org/10.2118/56017-PA

[30] Hubbert, M. K., & Willis, D. G. (1957). Mechanics Of Hydraulic Fracturing. Transactions of the AIME, 210(01), 153–168. https://doi.org/10.2118/686-G

[31] IPCC. (2005). Carbon Dioxide Capture and Storage. Cambridge University Press. https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/

[32] Jaeger, & Cook, N. G. W. (1979). Fundamentals of Rock Mechanics. Geological Magazine, 117(4), 401–401. https://doi.org/10.1017/S001675680003274X

[33] Kern, H., Ivankina, T. I., Nikitin, A. N., Lokajíček, T., & Pros, Z. (2008). The effect of oriented microcracks and crystallographic and shape preferred orientation on bulk elastic anisotropy of a foliated biotite gneiss from Outokumpu. Tectonophysics, 457(3–4), 143–149. https://doi.org/10.1016/j.tecto.2008.06.015

[34] Khaksar, A., Asadi, S., Younessi, A., Gui, F., & Zheng, Y. (2018). THICK WALL CYLINDER STRENGTH AND CRITICAL STRAIN LIMIT FROM CORE TESTS AND WELL LOGS, IMPLICATIONS FOR SAND CONTROL DECISIONS.

[35] Kitamura, K., Ishikawa, M., & Arima, M. (2003). Petrological model of the northern Izu–Bonin–Mariana arc crust: Constraints from high-pressure measurements of elastic wave velocities of the Tanzawa plutonic rocks, central Japan. Tectonophysics, 371(1–4), 213–221. https://doi.org/10.1016/S0040-1951(03)00229-4

[36] Kumar, R., Campbell, S. W., & Cunningham, J. A. (2020). Effect of Temperature on the Geological Sequestration of CO2 in a Layered Carbonate Formation. Journal of Energy Resources Technology, 142(7), 070907. https://doi.org/10.1115/1.4046137

[37] Lal, M. (1999). Shale Stability: Drilling Fluid Interaction and Shale Strength. SPE Asia Pacific Oil and Gas Conference and Exhibition, SPE-54356-MS. https://doi.org/10.2118/54356-MS

[38] Lamy-Chappuis, B., Angus, D., Fisher, Q. J., & Yardley, B. W. D. (2016). The effect of CO 2 -enriched brine injection on the mechanical properties of calcite-bearing sandstone. International Journal of Greenhouse Gas Control, 52, 84–95. https://doi.org/10.1016/j.ijggc.2016.06.018

[39] Lerman, A., & Mackenzie, F. T. (2018). Carbonate minerals and the CO2-carbonic acid system. In Encyclopedia of Earth Sciences Series. Springer.

[40] Luquot, L., Rodriguez, O., & Gouze, P. (2014). Experimental Characterization of Porosity Structure and Transport Property Changes in Limestone Undergoing Different Dissolution Regimes. Transport in Porous Media, 101(3), 507–532. https://doi.org/10.1007/s11242-013-0257-4

[41] Matter, J. M., Takahashi, T., & Goldberg, D. (2007). Experimental evaluation of in situ CO 2 ‐water‐rock reactions during CO 2 injection in basaltic rocks: Implications for geological CO 2 sequestration. Geochemistry, Geophysics, Geosystems, 8(2), 2006GC001427. https://doi.org/10.1029/2006GC001427

[42] Matthews, W. R., & Kelly, J. (1967). How to Predict Formation Pressure and Fracture Gradient. Oil and Gas Journal, 65, 92–1066.

[43] McPhee, C., Reed, J., & Zubizarreta, I. (2015). Core Sample Preparation. In Developments in Petroleum Science (Vol. 64, pp. 135–179). Elsevier. https://doi.org/10.1016/B978-0-444-63533-4.00004-4

[44] Militzer, & Stoll. (1973). Einige Beitrageder geophysics zur primadatenerfassung im Bergbau (Vol. 3). Neue Bergbautechnik.

[45] Mitchell, M. J., Jensen, O. E., Cliffe, K. A., & Maroto-Valer, M. M. (2010). A model of carbon dioxide dissolution and mineral carbonation kinetics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2117), 1265–1290. https://doi.org/10.1098/rspa.2009.0349

[46] Moos, D., Zoback, M. D., & Bailey, L. (1999). Feasibility Study of the Stability of Openhole Multilaterals, Cook Inlet, Alaska. All Days, SPE-52186-MS. https://doi.org/10.2118/52186-MS

[47] Mueller, H. J., & Massonne, H.-J. (2001). Experimental high pressure investigation of partial melting in natural rocks and their influence on Vp and Vs. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(4–5), 325–332. https://doi.org/10.1016/S1464-1895(01)00062-X

[48] Nakajima, T., & Xue, Z. (2021). Hysteretic Behavior in the Relationship Between Vp and CO2 Saturation Obtained From the Time-lapse Logging at the Nagaoka Site. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3818070

[49] Nishimoto, S., Ishikawa, M., Arima, M., & Yoshida, T. (2005). Laboratory measurement of P-wave velocity in crustal and upper mantle xenoliths from Ichino-megata, NE Japan: Ultrabasic hydrous lower crust beneath the NE Honshu arc. Tectonophysics, 396(3–4), 245–259. https://doi.org/10.1016/j.tecto.2004.12.010

[50] Nugraha, F. Y., Al Hakim, M. F., Tony, B., Nandiwardhana, D., & Chandra, S. (2024). Development of CO2 Hub-Clustering Management in The South Sumatra Basin. Scientific Contributions Oil and Gas, 47(1), 31–40. https://doi.org/10.29017/SCOG.47.1.1607

[51] Nurhandoko, B. E. (2022). PERANGKAT PENGUKURAN GELOMBANG P DAN GELOMBANG S YANG MURNI, AKURAT DAN RENDAH DERAU (Patent IDP000046083).

[52] Nurhandoko, B. E. B., & Listyobudi, M. (2018). Thick Walled Core Testing for Sanding Analysis of Chalky Carbonate Reservoir in Production Borehole. Annual Scientific Meeting Himpunan Ahli Geofisika Indonesia. Annual Scientific Meeting Himpunan Ahli Geofisika Indonesia, Semarang, Indonesia.

[53] Nurhandoko, B. E. B., Rizka Asmara Hadi, M., Triyoso, K., Martha, R. K., Widowati, S., Sukrisna, B., Syamsuddin, & Romli, N. I. (2021). Sanding Wells on The Island of Lombok due to Earthquake Vibrations. IOP Conference Series: Earth and Environmental Science, 873(1), 012091. https://doi.org/10.1088/1755-1315/873/1/012091

[54] Nurhandoko, B. E. B., Septama, E., Usman, T. K., Wardaya, P. D., Kurdi, S., Raguwanti, R., Supriyanto, E. B., Susilowati, Rossa, V. I., Pratama, R. R., & Triyoso, K. (2024). Geomechanics Parameter of Sumatran Shale Gas Potential Layer: Some Correlations Among the Dynamic Elastic Parameter from Elastic Wave Measurements and the Static Elastic Parameter from Triaxial Measurements. Proc. 49th HAGI Annual Scientific Meeting.

[55] Nurhandoko, B. E. B., Septama, E., Usman, T. K., Wardaya, P. D., Supriyanto, E. B., Triyoso, K., Susilowati, Pratiwi, R., Cindrawati, M., Rossa, V. I., & Pratama, R. R. (2024). Study of CO2 Injection into Sumatran Shale Layers to increase Hydrocarbon Gas Productivity of The Shale Gas Reservoir. Journal of Physics: Conference Series, 2734(1), 012023. https://doi.org/10.1088/1742-6596/2734/1/012023

[56] Nurhandoko, B. E. B., Wibowo, S. A., Chandra, R., Apriansyah, B., Handietri, Z., Pratiwi, R., Cindrawati, M., Manullang, T. A., Susilowati, Abdillah, F. R., Nefrizal, Nurani, A., Endaryanto, A., & Supriyanto, E. B. (2024). Time Lapse Measurement of Reservoir’s Parameters Change due to CO2 Injection in Parigi Carbonate West Java. Journal of Physics: Conference Series, 2734(1), 012024. https://doi.org/10.1088/1742-6596/2734/1/012024

[57] Palmer, I., Vaziri, H., Willson, S., Moschovidis, Z., Cameron, J., & Ispas, I. (2003). Predicting and Managing Sand Production: A New Strategy. All Days, SPE-84499-MS. https://doi.org/10.2118/84499-MS

[58] Rahman, K., Khaksar, A., & Kayes, T. (2010). An Integrated Geomechanical and Passive Sand-Control Approach to Minimizing Sanding Risk From Openhole and Cased-and-Perforated Wells. SPE Drilling & Completion, 25(02), 155–167. https://doi.org/10.2118/116633-PA

[59] Rathnaweera, T. D., Ranjith, P. G., Perera, M. S. A., Ranathunga, A. S., Wanniarachchi, W. A. M., Yang, S. Q., Lashin, A., & Al Arifi, N. (2017). An experimental investigation of coupled chemico-mineralogical and mechanical changes in varyingly-cemented sandstones upon CO2 injection in deep saline aquifer environments. Energy, 133, 404–414. https://doi.org/10.1016/j.energy.2017.05.154

[60] Saito, S., Ishikawa, M., Arima, M., & Tatsumi, Y. (2015). Laboratory measurements of ‘porosity‐free’ intrinsic V p and V s in an olivine gabbro of the O man ophiolite: Implication for interpretation of the seismic structure of lower oceanic crust. Island Arc, 24(2), 131–144. https://doi.org/10.1111/iar.12092

[61] Saito, S., Ishikawa, M., Arima, M., & Tatsumi, Y. (2016). Laboratory measurements of Vp and Vs in a porosity-developed crustal rock: Experimental investigation into the effects of porosity at deep crustal pressures. Tectonophysics, 677–678, 218–226. https://doi.org/10.1016/j.tecto.2016.03.044

[62] Slobod, R. L., Chambers, A., & Prehn, W. L. (1951). Use of Centrifuge for Determining Connate Water, Residual Oil, and Capillary Pressure Curves of Small Core Samples. Journal of Petroleum Technology, 3(04), 127–134. https://doi.org/10.2118/951127-G

[63] Spycher, N., Pruess, K., & Ennis-King, J. (2003). CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar. Geochimica et Cosmochimica Acta, 67(16), Article 16. https://doi.org/10.1016/S0016-7037(03)00273-4

[64] Sugihardjo, S. (2022). CCUS-Aksi Mitigasi Gas Rumah Kaca dan Peningkatan Pengurasan Minyak CO2-EOR. Lembaran publikasi minyak dan gas bumi, 56(1), 21–35. https://doi.org/10.29017/LPMGB.56.1.916

[65] Vaziri, H., Xiao, Y., & Palmer, I. (2002). Assessment Of Several Sand Prediction Models With Particular Reference To HPHT Wells. All Days, SPE-78235-MS. https://doi.org/10.2118/78235-MS

[66] Willson, S. M., Moschovidis, Z. A., Cameron, J. R., & Palmer, I. D. (2002). New Model for Predicting the Rate of Sand Production. SPE/ISRM Rock Mechanics Conference. https://doi.org/10.2118/78168-MS

[67] Xu, T., Sonnenthal, E., Spycher, N., & Pruess, K. (2006). TOUGHREACT—A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration. Computers & Geosciences, 32(2), 145–165. https://doi.org/10.1016/j.cageo.2005.06.014

[68] Xu, T., Sonnenthal, E., Spycher, N., & Zheng, L. (2014). TOUGHREACT_V3-OMP_SampleProblems.

[69] Yu, Z., Yang, S., Liu, K., Zhuo, Q., & Yang, L. (2019). An Experimental and Numerical Study of CO2–Brine-Synthetic Sandstone Interactions under High-Pressure (P)–Temperature (T) Reservoir Conditions. Applied Sciences, 9(16), 3354. https://doi.org/10.3390/app9163354

[70] Zhang, G., Spycher, N., Xu, T., Sonnenthal, E., & Steefel, C. (2006). Reactive Geochemical Transport Modeling of Concentrated AqueousSolutions: Supplement to TOUGHREACT User’s Guide for the PitzerIon-Interaction Model (LBNL--62718, 919388; p. LBNL--62718, 919388). https://doi.org/10.2172/919388

[71] Zhu, S., Kang, J., Wang, Y., & Zhou, F. (2022). Effect of CO2 on coal P-wave velocity under triaxial stress. International Journal of Mining Science and Technology, 32(1), 17–26. https://doi.org/10.1016/j.ijmst.2021.09.006

[72] Zoback. (2007). Reservoir geomechanics. Cambridge University Press.

[73] Zoback, M. D., & Healy, J. H. (1984). Friction, faulting and in situ stress. Annales Geophysicae (1983), 2, 689–698.

Downloads

Published

06-02-2025

Issue

Section

Articles