The Effect of CO2-Brine-Rock Interaction Towards Sand Onset Modeling in Dolomite-Rich Sandstone: A Case Study in Air Benakat Formation, South Sumatera, Indonesia

Prasandi Abdul Aziz, Bagus Endar Bachtiar Nurhandoko, Taufan Marhaendrajana, Utjok W.R. Siagian, Tutuka Ariadji

Abstract


Carbon Capture Utilization Storage (CCUS) into geological storage (e.g., Enhanced Oil or Gas Recovery) provides a solution to reduce CO­2 emissions. However, it still remains a potential operational problem, such as sand problem phenomena in producer wells.  This study observes the phenomenon of sand problems in production wells possibly triggered by CO2-brine-rock interactions on CO2 injection in rich dolomite sandstone reservoir. This research performs several experimental works (i.e., time-lapse dry mass measurements, X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and elastic wave measurements) by using CO2-brine-rock batch experimental setup as well as geochemical simulation to observe mineral dissolution, pore structures alteration as well as rock physics alteration due to CO2-brine-rock interactions. We used an outcrop sample of dolomite-rich sandstone from the Air Benakat Formation, South Sumatera, Indonesia. Our experimental and simulation works show that dolomite dissolution (dolomite reduction of ~4% after 14 soaking days), secondary porosity development (11% of visible porosity improvement), as well as rock strength reduction, occur indirectly (shown by elastic wave velocity, i.e.  and  reduction of ~3.8% and ~4.4%, respectively) due to CO2-brine-rock interactions. Subsequently, the results of elastic wave velocity measurements were then used to modify a considerable sand onset prediction (sand-free envelope) model. The modified model showed that the production well was more prone to sand problems due to CO2-brine-rock interactions. Thus, it is concluded that the sand onset prediction model with considering CO2-brine-rock interactions could help to design a better sand management strategy in producer wells.

Keywords


CO2-brine-rock interactions, CCUS, dolomite-rich sandstone, sand problem

Full Text:

PDF

References


AL-Ameri, W. A., Abdulraheem, A., & Mahmoud, M. (2016). Long-Term Effects of CO2 Sequestration on Rock Mechanical Properties. Journal of Energy Resources Technology, 138(1), Article 1. https://doi.org/10.1115/1.4032011

API RP40. (1998). API RP-40 Recommended Practice for Core Analysis.

Aziz, P. A., Marhaendrajana, T., & Siagian, U. W. R. (2023). Sanding phenomena vulnerability observations due to CO2 injection at the Air Benakat reservoir in South Sumatera. Journal of Physics.

Aziz, P. A., Rachmat, M., Chandra, S., Daton, W. N., & Tony, B. (2023). Techno-Economic Solution For Extending Ccus Application In Natural Gas Fields: A Case Study Of B Gas Field In Indonesia. Scientific Contributions Oil and Gas, 46(1), 19–28. https://doi.org/10.29017/SCOG.46.1.1321

Barber, A. J., Crow, M. J., & Milsom, J. S. (2005). Sumatra: Geology, Resources and Tectonic Evolution (Vol. 31).

Birch, F. (1943). Elasticity of igneous rocks at high temperatures and pressures. Geological Society of America Bulletin, 54(2), 263–286. https://doi.org/10.1130/GSAB-54-263

Birch, F. (1960). The velocity of compressional waves in rocks to 10 kilobars: 1. Journal of Geophysical Research, 65(4), 1083–1102. https://doi.org/10.1029/JZ065i004p01083

Bishop, M. G. (2001). South Sumatra Basin Province, Indonesia: The Lahat/Talang Akar-Cenozoic Total Petroleum System (Open-File Report) [Open-File Report]. US Geological Survey (USGS).

Black, J. R., Carroll, S. A., & Haese, R. R. (2015). Rates of mineral dissolution under CO2 storage conditions. Chemical Geology, 399, 134–144. https://doi.org/10.1016/j.chemgeo.2014.09.020

Bradford, I. D. R., Fuller, J., Thompson, P. J., & Walsgrove, T. R. (1998). Benefits of Assessing the Solids Production Risk in a North Sea Reservoir using Elastoplastic Modelling. All Days, SPE-47360-MS. https://doi.org/10.2118/47360-MS

Breckels, I. M., & Van Eekelen, H. A. M. (1982). Relationship Between Horizontal Stress and Depth in Sedimentary Basins. Journal of Petroleum Technology, 34(09), 2191–2199. https://doi.org/10.2118/10336-PA

Buhmann, D., & Dreybrodt, W. (1985). The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas. Chemical Geology, 48(1–4), 189–211. https://doi.org/10.1016/0009-2541(85)90046-4

Byerlee, J. (1978). Friction of rocks. Pure and Applied Geophysics, 116(4–5), 615–626. https://doi.org/10.1007/BF00876528

Casey, W. H., & Sposito, G. (1992). On the temperature dependence of mineral dissolution rates. Geochimica et Cosmochimica Acta, 56(10), 3825–3830. https://doi.org/10.1016/0016-7037(92)90173-G

Chang, C., Zoback, M. D., & Khaksar, A. (2006). Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 51(3–4), 223–237. https://doi.org/10.1016/j.petrol.2006.01.003

Christensen, N. I. (1974). Compressional wave velocities in possible mantle rocks to pressures of 30 kilobars. Journal of Geophysical Research, 79(2), 407–412. https://doi.org/10.1029/JB079i002p00407

Christensen, N. I., & Smewing, J. D. (1981). Geology and seismic structure of the northern section of the Oman ophiolite. Journal of Geophysical Research: Solid Earth, 86(B4), 2545–2555. https://doi.org/10.1029/JB086iB04p02545

Creasy, N., Huang, L., Gasperikova, E., Harbert, W., Bratton, T., & Zhou, Q. (2024). CO2 rock physics modeling for reliable monitoring of geologic carbon storage. Communications Earth & Environment, 5(1), 333. https://doi.org/10.1038/s43247-024-01493-6

Crundwell, F. K. (2017). On the Mechanism of the Dissolution of Quartz and Silica in Aqueous Solutions. ACS Omega, 2(3), 1116–1127. https://doi.org/10.1021/acsomega.7b00019

Dreybrodt, W., & Kaufmann, G. (2007). Physics and Chemistry of Dissolution on Subaerialy Exposed Soluble Rocks by Flowing Water Films. Acta Carsologica, 36(3). https://doi.org/10.3986/ac.v36i3.169

Eaton, B. A. (1969). Fracture Gradient Prediction and Its Application in Oilfield Operations. Journal of Petroleum Technology, 21(10), 1353–1360. https://doi.org/10.2118/2163-PA

Enick, R. M., & Klara, S. M. (1990). CO 2 SOLUBILITY IN WATER AND BRINE UNDER RESERVOIR CONDITIONS. Chemical Engineering Communications, 90(1), 23–33. https://doi.org/10.1080/00986449008940574

Fjaer, E. (Ed.). (2008). Petroleum related rock mechanics (2nd ed). Elsevier.

Golubev, & Rabinovich. (1976). Resultaty primeneia appartury akusticeskogo karotasa dlja predeleina proconstych svoistv gornych porod na mestorosdeniaach tverdych isjopaemych. In Prikl. Geofiz. Moskva (Vol. 73, pp. 109–116).

Greenwood, N. N., & Earnshaw, A. (1997). Chemistry of the Elements. Elsevier. https://doi.org/10.1016/C2009-0-30414-6

Gutierrez, M., Katsuki, D., & Almrabat, A. (2020). Seismic velocity change in sandstone during CO 2 injection. E3S Web of Conferences, 205, 02001. https://doi.org/10.1051/e3sconf/202020502001

Holbrook, P. W., Maggiori, D. A., & Hensley, R. (1995). Real-Time Pore Pressure and Fracture-Pressure Determination in All Sedimentary Lithologies. SPE Formation Evaluation, 10(04), 215–222. https://doi.org/10.2118/26791-PA

Horsrud, P. (2001). Estimating Mechanical Properties of Shale From Empirical Correlations. SPE Drilling & Completion, 16(02), 68–73. https://doi.org/10.2118/56017-PA

Hubbert, M. K., & Willis, D. G. (1957). Mechanics Of Hydraulic Fracturing. Transactions of the AIME, 210(01), 153–168. https://doi.org/10.2118/686-G

IPCC. (2005). Carbon Dioxide Capture and Storage. Cambridge University Press. https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/

Jaeger, & Cook, N. G. W. (1979). Fundamentals of Rock Mechanics. Geological Magazine, 117(4), 401–401. https://doi.org/10.1017/S001675680003274X

Kern, H., Ivankina, T. I., Nikitin, A. N., Lokajíček, T., & Pros, Z. (2008). The effect of oriented microcracks and crystallographic and shape preferred orientation on bulk elastic anisotropy of a foliated biotite gneiss from Outokumpu. Tectonophysics, 457(3–4), 143–149. https://doi.org/10.1016/j.tecto.2008.06.015

Khaksar, A., Asadi, S., Younessi, A., Gui, F., & Zheng, Y. (2018). THICK WALL CYLINDER STRENGTH AND CRITICAL STRAIN LIMIT FROM CORE TESTS AND WELL LOGS, IMPLICATIONS FOR SAND CONTROL DECISIONS.

Kitamura, K., Ishikawa, M., & Arima, M. (2003). Petrological model of the northern Izu–Bonin–Mariana arc crust: Constraints from high-pressure measurements of elastic wave velocities of the Tanzawa plutonic rocks, central Japan. Tectonophysics, 371(1–4), 213–221. https://doi.org/10.1016/S0040-1951(03)00229-4

Lal, M. (1999). Shale Stability: Drilling Fluid Interaction and Shale Strength. SPE Asia Pacific Oil and Gas Conference and Exhibition, SPE-54356-MS. https://doi.org/10.2118/54356-MS

Lamy-Chappuis, B., Angus, D., Fisher, Q. J., & Yardley, B. W. D. (2016). The effect of CO 2 -enriched brine injection on the mechanical properties of calcite-bearing sandstone. International Journal of Greenhouse Gas Control, 52, 84–95. https://doi.org/10.1016/j.ijggc.2016.06.018

Lerman, A., & Mackenzie, F. T. (2018). Carbonate minerals and the CO2-carbonic acid system. In Encyclopedia of Earth Sciences Series. Springer.

Luquot, L., Rodriguez, O., & Gouze, P. (2014). Experimental Characterization of Porosity Structure and Transport Property Changes in Limestone Undergoing Different Dissolution Regimes. Transport in Porous Media, 101(3), 507–532. https://doi.org/10.1007/s11242-013-0257-4

Matter, J. M., Takahashi, T., & Goldberg, D. (2007). Experimental evaluation of in situ CO 2 ‐water‐rock reactions during CO 2 injection in basaltic rocks: Implications for geological CO 2 sequestration. Geochemistry, Geophysics, Geosystems, 8(2), 2006GC001427. https://doi.org/10.1029/2006GC001427

Matthews, W. R., & Kelly, J. (1967). How to Predict Formation Pressure and Fracture Gradient. Oil and Gas Journal, 65, 92–1066.

McPhee, C., Reed, J., & Zubizarreta, I. (2015). Core Sample Preparation. In Developments in Petroleum Science (Vol. 64, pp. 135–179). Elsevier. https://doi.org/10.1016/B978-0-444-63533-4.00004-4

Militzer, & Stoll. (1973). Einige Beitrageder geophysics zur primadatenerfassung im Bergbau (Vol. 3). Neue Bergbautechnik.

Mitchell, M. J., Jensen, O. E., Cliffe, K. A., & Maroto-Valer, M. M. (2010). A model of carbon dioxide dissolution and mineral carbonation kinetics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2117), 1265–1290. https://doi.org/10.1098/rspa.2009.0349

Moos, D., Zoback, M. D., & Bailey, L. (1999). Feasibility Study of the Stability of Openhole Multilaterals, Cook Inlet, Alaska. All Days, SPE-52186-MS. https://doi.org/10.2118/52186-MS

Mueller, H. J., & Massonne, H.-J. (2001). Experimental high pressure investigation of partial melting in natural rocks and their influence on Vp and Vs. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(4–5), 325–332. https://doi.org/10.1016/S1464-1895(01)00062-X

Nakajima, T., & Xue, Z. (2021). Hysteretic Behavior in the Relationship Between Vp and CO2 Saturation Obtained From the Time-lapse Logging at the Nagaoka Site. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3818070

Nishimoto, S., Ishikawa, M., Arima, M., & Yoshida, T. (2005). Laboratory measurement of P-wave velocity in crustal and upper mantle xenoliths from Ichino-megata, NE Japan: Ultrabasic hydrous lower crust beneath the NE Honshu arc. Tectonophysics, 396(3–4), 245–259. https://doi.org/10.1016/j.tecto.2004.12.010

Nugraha, F. Y., Al Hakim, M. F., Tony, B., Nandiwardhana, D., & Chandra, S. (2024). Development of CO2 Hub-Clustering Management in The South Sumatra Basin. Scientific Contributions Oil and Gas, 47(1), 31–40. https://doi.org/10.29017/SCOG.47.1.1607

Nurhandoko, B. E. (2022). PERANGKAT PENGUKURAN GELOMBANG P DAN GELOMBANG S YANG MURNI, AKURAT DAN RENDAH DERAU (Patent IDP000046083).

Nurhandoko, B. E. B., & Listyobudi, M. (2018). Thick Walled Core Testing for Sanding Analysis of Chalky Carbonate Reservoir in Production Borehole. Annual Scientific Meeting Himpunan Ahli Geofisika Indonesia. Annual Scientific Meeting Himpunan Ahli Geofisika Indonesia, Semarang, Indonesia.

Nurhandoko, B. E. B., Rizka Asmara Hadi, M., Triyoso, K., Martha, R. K., Widowati, S., Sukrisna, B., Syamsuddin, & Romli, N. I. (2021). Sanding Wells on The Island of Lombok due to Earthquake Vibrations. IOP Conference Series: Earth and Environmental Science, 873(1), 012091. https://doi.org/10.1088/1755-1315/873/1/012091

Palmer, I., Vaziri, H., Willson, S., Moschovidis, Z., Cameron, J., & Ispas, I. (2003). Predicting and Managing Sand Production: A New Strategy. All Days, SPE-84499-MS. https://doi.org/10.2118/84499-MS

Rahman, K., Khaksar, A., & Kayes, T. (2010). An Integrated Geomechanical and Passive Sand-Control Approach to Minimizing Sanding Risk From Openhole and Cased-and-Perforated Wells. SPE Drilling & Completion, 25(02), 155–167. https://doi.org/10.2118/116633-PA

Rathnaweera, T. D., Ranjith, P. G., Perera, M. S. A., Ranathunga, A. S., Wanniarachchi, W. A. M., Yang, S. Q., Lashin, A., & Al Arifi, N. (2017). An experimental investigation of coupled chemico-mineralogical and mechanical changes in varyingly-cemented sandstones upon CO2 injection in deep saline aquifer environments. Energy, 133, 404–414. https://doi.org/10.1016/j.energy.2017.05.154

Saito, S., Ishikawa, M., Arima, M., & Tatsumi, Y. (2015). Laboratory measurements of ‘porosity‐free’ intrinsic V p and V s in an olivine gabbro of the O man ophiolite: Implication for interpretation of the seismic structure of lower oceanic crust. Island Arc, 24(2), 131–144. https://doi.org/10.1111/iar.12092

Saito, S., Ishikawa, M., Arima, M., & Tatsumi, Y. (2016). Laboratory measurements of Vp and Vs in a porosity-developed crustal rock: Experimental investigation into the effects of porosity at deep crustal pressures. Tectonophysics, 677–678, 218–226. https://doi.org/10.1016/j.tecto.2016.03.044

Slobod, R. L., Chambers, A., & Prehn, W. L. (1951). Use of Centrifuge for Determining Connate Water, Residual Oil, and Capillary Pressure Curves of Small Core Samples. Journal of Petroleum Technology, 3(04), 127–134. https://doi.org/10.2118/951127-G

Spycher, N., Pruess, K., & Ennis-King, J. (2003). CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar. Geochimica et Cosmochimica Acta, 67(16), Article 16. https://doi.org/10.1016/S0016-7037(03)00273-4

Sugihardjo, S. (2022). CCUS-Aksi Mitigasi Gas Rumah Kaca dan Peningkatan Pengurasan Minyak CO2-EOR. Lembaran publikasi minyak dan gas bumi, 56(1), 21–35. https://doi.org/10.29017/LPMGB.56.1.916

Vaziri, H., Xiao, Y., & Palmer, I. (2002). Assessment Of Several Sand Prediction Models With Particular Reference To HPHT Wells. All Days, SPE-78235-MS. https://doi.org/10.2118/78235-MS

Willson, S. M., Moschovidis, Z. A., Cameron, J. R., & Palmer, I. D. (2002). New Model for Predicting the Rate of Sand Production. SPE/ISRM Rock Mechanics Conference. https://doi.org/10.2118/78168-MS

Xu, T., Sonnenthal, E., Spycher, N., & Pruess, K. (2006). TOUGHREACT—A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration. Computers & Geosciences, 32(2), 145–165. https://doi.org/10.1016/j.cageo.2005.06.014

Xu, T., Sonnenthal, E., Spycher, N., & Zheng, L. (2014). TOUGHREACT_V3-OMP_SampleProblems.

Yu, Z., Yang, S., Liu, K., Zhuo, Q., & Yang, L. (2019). An Experimental and Numerical Study of CO2–Brine-Synthetic Sandstone Interactions under High-Pressure (P)–Temperature (T) Reservoir Conditions. Applied Sciences, 9(16), 3354. https://doi.org/10.3390/app9163354

Zhang, G., Spycher, N., Xu, T., Sonnenthal, E., & Steefel, C. (2006). Reactive Geochemical Transport Modeling of Concentrated AqueousSolutions: Supplement to TOUGHREACT User’s Guide for the PitzerIon-Interaction Model (LBNL--62718, 919388; p. LBNL--62718, 919388). https://doi.org/10.2172/919388

Zhu, S., Kang, J., Wang, Y., & Zhou, F. (2022). Effect of CO2 on coal P-wave velocity under triaxial stress. International Journal of Mining Science and Technology, 32(1), 17–26. https://doi.org/10.1016/j.ijmst.2021.09.006

Zoback. (2007). Reservoir geomechanics. Cambridge University Press.

Zoback, M. D., & Healy, J. H. (1984). Friction, faulting and in situ stress. Annales Geophysicae (1983), 2, 689–698.




DOI: https://doi.org/10.29017/SCOG.47.3.1649

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.