The Effect of CO2-Brine-Rock Interaction Towards Sand Onset Modeling in Dolomite-Rich Sandstone: A Case Study in Air Benakat Formation, South Sumatera, Indonesia
Abstract
Keywords
Full Text:
PDFReferences
AL-Ameri, W. A., Abdulraheem, A., & Mahmoud, M. (2016). Long-Term Effects of CO2 Sequestration on Rock Mechanical Properties. Journal of Energy Resources Technology, 138(1), Article 1. https://doi.org/10.1115/1.4032011
API RP40. (1998). API RP-40 Recommended Practice for Core Analysis.
Aziz, P. A., Marhaendrajana, T., & Siagian, U. W. R. (2023). Sanding phenomena vulnerability observations due to CO2 injection at the Air Benakat reservoir in South Sumatera. Journal of Physics.
Aziz, P. A., Rachmat, M., Chandra, S., Daton, W. N., & Tony, B. (2023). Techno-Economic Solution For Extending Ccus Application In Natural Gas Fields: A Case Study Of B Gas Field In Indonesia. Scientific Contributions Oil and Gas, 46(1), 19–28. https://doi.org/10.29017/SCOG.46.1.1321
Barber, A. J., Crow, M. J., & Milsom, J. S. (2005). Sumatra: Geology, Resources and Tectonic Evolution (Vol. 31).
Birch, F. (1943). Elasticity of igneous rocks at high temperatures and pressures. Geological Society of America Bulletin, 54(2), 263–286. https://doi.org/10.1130/GSAB-54-263
Birch, F. (1960). The velocity of compressional waves in rocks to 10 kilobars: 1. Journal of Geophysical Research, 65(4), 1083–1102. https://doi.org/10.1029/JZ065i004p01083
Bishop, M. G. (2001). South Sumatra Basin Province, Indonesia: The Lahat/Talang Akar-Cenozoic Total Petroleum System (Open-File Report) [Open-File Report]. US Geological Survey (USGS).
Black, J. R., Carroll, S. A., & Haese, R. R. (2015). Rates of mineral dissolution under CO2 storage conditions. Chemical Geology, 399, 134–144. https://doi.org/10.1016/j.chemgeo.2014.09.020
Bradford, I. D. R., Fuller, J., Thompson, P. J., & Walsgrove, T. R. (1998). Benefits of Assessing the Solids Production Risk in a North Sea Reservoir using Elastoplastic Modelling. All Days, SPE-47360-MS. https://doi.org/10.2118/47360-MS
Breckels, I. M., & Van Eekelen, H. A. M. (1982). Relationship Between Horizontal Stress and Depth in Sedimentary Basins. Journal of Petroleum Technology, 34(09), 2191–2199. https://doi.org/10.2118/10336-PA
Buhmann, D., & Dreybrodt, W. (1985). The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas. Chemical Geology, 48(1–4), 189–211. https://doi.org/10.1016/0009-2541(85)90046-4
Byerlee, J. (1978). Friction of rocks. Pure and Applied Geophysics, 116(4–5), 615–626. https://doi.org/10.1007/BF00876528
Casey, W. H., & Sposito, G. (1992). On the temperature dependence of mineral dissolution rates. Geochimica et Cosmochimica Acta, 56(10), 3825–3830. https://doi.org/10.1016/0016-7037(92)90173-G
Chang, C., Zoback, M. D., & Khaksar, A. (2006). Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 51(3–4), 223–237. https://doi.org/10.1016/j.petrol.2006.01.003
Christensen, N. I. (1974). Compressional wave velocities in possible mantle rocks to pressures of 30 kilobars. Journal of Geophysical Research, 79(2), 407–412. https://doi.org/10.1029/JB079i002p00407
Christensen, N. I., & Smewing, J. D. (1981). Geology and seismic structure of the northern section of the Oman ophiolite. Journal of Geophysical Research: Solid Earth, 86(B4), 2545–2555. https://doi.org/10.1029/JB086iB04p02545
Creasy, N., Huang, L., Gasperikova, E., Harbert, W., Bratton, T., & Zhou, Q. (2024). CO2 rock physics modeling for reliable monitoring of geologic carbon storage. Communications Earth & Environment, 5(1), 333. https://doi.org/10.1038/s43247-024-01493-6
Crundwell, F. K. (2017). On the Mechanism of the Dissolution of Quartz and Silica in Aqueous Solutions. ACS Omega, 2(3), 1116–1127. https://doi.org/10.1021/acsomega.7b00019
Dreybrodt, W., & Kaufmann, G. (2007). Physics and Chemistry of Dissolution on Subaerialy Exposed Soluble Rocks by Flowing Water Films. Acta Carsologica, 36(3). https://doi.org/10.3986/ac.v36i3.169
Eaton, B. A. (1969). Fracture Gradient Prediction and Its Application in Oilfield Operations. Journal of Petroleum Technology, 21(10), 1353–1360. https://doi.org/10.2118/2163-PA
Enick, R. M., & Klara, S. M. (1990). CO 2 SOLUBILITY IN WATER AND BRINE UNDER RESERVOIR CONDITIONS. Chemical Engineering Communications, 90(1), 23–33. https://doi.org/10.1080/00986449008940574
Fjaer, E. (Ed.). (2008). Petroleum related rock mechanics (2nd ed). Elsevier.
Golubev, & Rabinovich. (1976). Resultaty primeneia appartury akusticeskogo karotasa dlja predeleina proconstych svoistv gornych porod na mestorosdeniaach tverdych isjopaemych. In Prikl. Geofiz. Moskva (Vol. 73, pp. 109–116).
Greenwood, N. N., & Earnshaw, A. (1997). Chemistry of the Elements. Elsevier. https://doi.org/10.1016/C2009-0-30414-6
Gutierrez, M., Katsuki, D., & Almrabat, A. (2020). Seismic velocity change in sandstone during CO 2 injection. E3S Web of Conferences, 205, 02001. https://doi.org/10.1051/e3sconf/202020502001
Holbrook, P. W., Maggiori, D. A., & Hensley, R. (1995). Real-Time Pore Pressure and Fracture-Pressure Determination in All Sedimentary Lithologies. SPE Formation Evaluation, 10(04), 215–222. https://doi.org/10.2118/26791-PA
Horsrud, P. (2001). Estimating Mechanical Properties of Shale From Empirical Correlations. SPE Drilling & Completion, 16(02), 68–73. https://doi.org/10.2118/56017-PA
Hubbert, M. K., & Willis, D. G. (1957). Mechanics Of Hydraulic Fracturing. Transactions of the AIME, 210(01), 153–168. https://doi.org/10.2118/686-G
IPCC. (2005). Carbon Dioxide Capture and Storage. Cambridge University Press. https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/
Jaeger, & Cook, N. G. W. (1979). Fundamentals of Rock Mechanics. Geological Magazine, 117(4), 401–401. https://doi.org/10.1017/S001675680003274X
Kern, H., Ivankina, T. I., Nikitin, A. N., Lokajíček, T., & Pros, Z. (2008). The effect of oriented microcracks and crystallographic and shape preferred orientation on bulk elastic anisotropy of a foliated biotite gneiss from Outokumpu. Tectonophysics, 457(3–4), 143–149. https://doi.org/10.1016/j.tecto.2008.06.015
Khaksar, A., Asadi, S., Younessi, A., Gui, F., & Zheng, Y. (2018). THICK WALL CYLINDER STRENGTH AND CRITICAL STRAIN LIMIT FROM CORE TESTS AND WELL LOGS, IMPLICATIONS FOR SAND CONTROL DECISIONS.
Kitamura, K., Ishikawa, M., & Arima, M. (2003). Petrological model of the northern Izu–Bonin–Mariana arc crust: Constraints from high-pressure measurements of elastic wave velocities of the Tanzawa plutonic rocks, central Japan. Tectonophysics, 371(1–4), 213–221. https://doi.org/10.1016/S0040-1951(03)00229-4
Lal, M. (1999). Shale Stability: Drilling Fluid Interaction and Shale Strength. SPE Asia Pacific Oil and Gas Conference and Exhibition, SPE-54356-MS. https://doi.org/10.2118/54356-MS
Lamy-Chappuis, B., Angus, D., Fisher, Q. J., & Yardley, B. W. D. (2016). The effect of CO 2 -enriched brine injection on the mechanical properties of calcite-bearing sandstone. International Journal of Greenhouse Gas Control, 52, 84–95. https://doi.org/10.1016/j.ijggc.2016.06.018
Lerman, A., & Mackenzie, F. T. (2018). Carbonate minerals and the CO2-carbonic acid system. In Encyclopedia of Earth Sciences Series. Springer.
Luquot, L., Rodriguez, O., & Gouze, P. (2014). Experimental Characterization of Porosity Structure and Transport Property Changes in Limestone Undergoing Different Dissolution Regimes. Transport in Porous Media, 101(3), 507–532. https://doi.org/10.1007/s11242-013-0257-4
Matter, J. M., Takahashi, T., & Goldberg, D. (2007). Experimental evaluation of in situ CO 2 ‐water‐rock reactions during CO 2 injection in basaltic rocks: Implications for geological CO 2 sequestration. Geochemistry, Geophysics, Geosystems, 8(2), 2006GC001427. https://doi.org/10.1029/2006GC001427
Matthews, W. R., & Kelly, J. (1967). How to Predict Formation Pressure and Fracture Gradient. Oil and Gas Journal, 65, 92–1066.
McPhee, C., Reed, J., & Zubizarreta, I. (2015). Core Sample Preparation. In Developments in Petroleum Science (Vol. 64, pp. 135–179). Elsevier. https://doi.org/10.1016/B978-0-444-63533-4.00004-4
Militzer, & Stoll. (1973). Einige Beitrageder geophysics zur primadatenerfassung im Bergbau (Vol. 3). Neue Bergbautechnik.
Mitchell, M. J., Jensen, O. E., Cliffe, K. A., & Maroto-Valer, M. M. (2010). A model of carbon dioxide dissolution and mineral carbonation kinetics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2117), 1265–1290. https://doi.org/10.1098/rspa.2009.0349
Moos, D., Zoback, M. D., & Bailey, L. (1999). Feasibility Study of the Stability of Openhole Multilaterals, Cook Inlet, Alaska. All Days, SPE-52186-MS. https://doi.org/10.2118/52186-MS
Mueller, H. J., & Massonne, H.-J. (2001). Experimental high pressure investigation of partial melting in natural rocks and their influence on Vp and Vs. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(4–5), 325–332. https://doi.org/10.1016/S1464-1895(01)00062-X
Nakajima, T., & Xue, Z. (2021). Hysteretic Behavior in the Relationship Between Vp and CO2 Saturation Obtained From the Time-lapse Logging at the Nagaoka Site. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3818070
Nishimoto, S., Ishikawa, M., Arima, M., & Yoshida, T. (2005). Laboratory measurement of P-wave velocity in crustal and upper mantle xenoliths from Ichino-megata, NE Japan: Ultrabasic hydrous lower crust beneath the NE Honshu arc. Tectonophysics, 396(3–4), 245–259. https://doi.org/10.1016/j.tecto.2004.12.010
Nugraha, F. Y., Al Hakim, M. F., Tony, B., Nandiwardhana, D., & Chandra, S. (2024). Development of CO2 Hub-Clustering Management in The South Sumatra Basin. Scientific Contributions Oil and Gas, 47(1), 31–40. https://doi.org/10.29017/SCOG.47.1.1607
Nurhandoko, B. E. (2022). PERANGKAT PENGUKURAN GELOMBANG P DAN GELOMBANG S YANG MURNI, AKURAT DAN RENDAH DERAU (Patent IDP000046083).
Nurhandoko, B. E. B., & Listyobudi, M. (2018). Thick Walled Core Testing for Sanding Analysis of Chalky Carbonate Reservoir in Production Borehole. Annual Scientific Meeting Himpunan Ahli Geofisika Indonesia. Annual Scientific Meeting Himpunan Ahli Geofisika Indonesia, Semarang, Indonesia.
Nurhandoko, B. E. B., Rizka Asmara Hadi, M., Triyoso, K., Martha, R. K., Widowati, S., Sukrisna, B., Syamsuddin, & Romli, N. I. (2021). Sanding Wells on The Island of Lombok due to Earthquake Vibrations. IOP Conference Series: Earth and Environmental Science, 873(1), 012091. https://doi.org/10.1088/1755-1315/873/1/012091
Palmer, I., Vaziri, H., Willson, S., Moschovidis, Z., Cameron, J., & Ispas, I. (2003). Predicting and Managing Sand Production: A New Strategy. All Days, SPE-84499-MS. https://doi.org/10.2118/84499-MS
Rahman, K., Khaksar, A., & Kayes, T. (2010). An Integrated Geomechanical and Passive Sand-Control Approach to Minimizing Sanding Risk From Openhole and Cased-and-Perforated Wells. SPE Drilling & Completion, 25(02), 155–167. https://doi.org/10.2118/116633-PA
Rathnaweera, T. D., Ranjith, P. G., Perera, M. S. A., Ranathunga, A. S., Wanniarachchi, W. A. M., Yang, S. Q., Lashin, A., & Al Arifi, N. (2017). An experimental investigation of coupled chemico-mineralogical and mechanical changes in varyingly-cemented sandstones upon CO2 injection in deep saline aquifer environments. Energy, 133, 404–414. https://doi.org/10.1016/j.energy.2017.05.154
Saito, S., Ishikawa, M., Arima, M., & Tatsumi, Y. (2015). Laboratory measurements of ‘porosity‐free’ intrinsic V p and V s in an olivine gabbro of the O man ophiolite: Implication for interpretation of the seismic structure of lower oceanic crust. Island Arc, 24(2), 131–144. https://doi.org/10.1111/iar.12092
Saito, S., Ishikawa, M., Arima, M., & Tatsumi, Y. (2016). Laboratory measurements of Vp and Vs in a porosity-developed crustal rock: Experimental investigation into the effects of porosity at deep crustal pressures. Tectonophysics, 677–678, 218–226. https://doi.org/10.1016/j.tecto.2016.03.044
Slobod, R. L., Chambers, A., & Prehn, W. L. (1951). Use of Centrifuge for Determining Connate Water, Residual Oil, and Capillary Pressure Curves of Small Core Samples. Journal of Petroleum Technology, 3(04), 127–134. https://doi.org/10.2118/951127-G
Spycher, N., Pruess, K., & Ennis-King, J. (2003). CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar. Geochimica et Cosmochimica Acta, 67(16), Article 16. https://doi.org/10.1016/S0016-7037(03)00273-4
Sugihardjo, S. (2022). CCUS-Aksi Mitigasi Gas Rumah Kaca dan Peningkatan Pengurasan Minyak CO2-EOR. Lembaran publikasi minyak dan gas bumi, 56(1), 21–35. https://doi.org/10.29017/LPMGB.56.1.916
Vaziri, H., Xiao, Y., & Palmer, I. (2002). Assessment Of Several Sand Prediction Models With Particular Reference To HPHT Wells. All Days, SPE-78235-MS. https://doi.org/10.2118/78235-MS
Willson, S. M., Moschovidis, Z. A., Cameron, J. R., & Palmer, I. D. (2002). New Model for Predicting the Rate of Sand Production. SPE/ISRM Rock Mechanics Conference. https://doi.org/10.2118/78168-MS
Xu, T., Sonnenthal, E., Spycher, N., & Pruess, K. (2006). TOUGHREACT—A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration. Computers & Geosciences, 32(2), 145–165. https://doi.org/10.1016/j.cageo.2005.06.014
Xu, T., Sonnenthal, E., Spycher, N., & Zheng, L. (2014). TOUGHREACT_V3-OMP_SampleProblems.
Yu, Z., Yang, S., Liu, K., Zhuo, Q., & Yang, L. (2019). An Experimental and Numerical Study of CO2–Brine-Synthetic Sandstone Interactions under High-Pressure (P)–Temperature (T) Reservoir Conditions. Applied Sciences, 9(16), 3354. https://doi.org/10.3390/app9163354
Zhang, G., Spycher, N., Xu, T., Sonnenthal, E., & Steefel, C. (2006). Reactive Geochemical Transport Modeling of Concentrated AqueousSolutions: Supplement to TOUGHREACT User’s Guide for the PitzerIon-Interaction Model (LBNL--62718, 919388; p. LBNL--62718, 919388). https://doi.org/10.2172/919388
Zhu, S., Kang, J., Wang, Y., & Zhou, F. (2022). Effect of CO2 on coal P-wave velocity under triaxial stress. International Journal of Mining Science and Technology, 32(1), 17–26. https://doi.org/10.1016/j.ijmst.2021.09.006
Zoback. (2007). Reservoir geomechanics. Cambridge University Press.
Zoback, M. D., & Healy, J. H. (1984). Friction, faulting and in situ stress. Annales Geophysicae (1983), 2, 689–698.
DOI: https://doi.org/10.29017/SCOG.47.3.1649
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.