Stability Analysis of Jet Fuel-Bioethanol Blends: an Experimental Approach

Chantika Putri Rahmawati, Shafa Kamasinta, Kemal Ginanjar, Lies Aisyah, Riesta Anggarani, Cahyo Setyo Wibowo, Nur Allif Fathurrahman

Abstract


Incorporating bioethanol into jet fuel blends has garnered increasing attention as a viable strategy to reduce dependence on fossil fuels and address environmental issues. This study investigates the influence of different amounts of bioethanol on the stability properties of jet fuel blends. Bioethanol addition to jet fuel causes a steady increase in its freezing point. The alteration has been attributed to the destabilizing effect caused by polar hydrogen bonds in bioethanol on the intermolecular forces. Oxidation stability analysis demonstrates a clear correlation between ethanol content and a swift decrease in pressure resistance. Although pure jet fuel is highly stable, mixes that include bioethanol show much lower stability. This decline highlights the reduced impact of bioethanol on fuel stability and oxidation processes. The simultaneous occurrence of gum formation emphasizes the need for careful formulation strategies to prevent stability problems and system complexities. Moreover, the complex influence of bioethanol on the temperature, stability, and oxidation properties of jet fuel blends highlights the importance of using accurate formulation methodologies to improve aviation fuels.


Keywords


aviation fuels, bioethanol, existent gum, jet fuel, oxidation stability.

Full Text:

PDF

References


Abdurrojaq, N., Zaelani, R., Haley, B.A., Fathurrahman, N.A., Anggarani, R., Wibowo, C. S. & Maymuchar, 2022, The Effect of Methanol- Gasoline (M20) and Ethanol-Gasoline (E20) Blends on Material Compatibility. Scientific Contributions Oil and Gas, 45(2), 87–94. https://doi.org/10.29017/ SCOG.45.2.966.

Aghahossein Shirazi, S., Abdollahipoor, B., Martinson, J., Windom, B., Foust, T. D., & Reardon, K. F., 2019, Effects of dual-alcohol gasoline blends on physiochemical properties and volatility behavior. Fuel, 252(April), 542–552. https://doi.org/10.1016/j. fuel.2019.04.105.

Aisyah, L., Setyo Wibowo, C., Ayu Bethari, S. & Kunci, K., 2016, Comparison Of Biodiesel B-20 And B-30 on Diesel Engine Performances and Emissions Perbandingan Biodiesel B-20 Dan B-30 pada Kinerja Mesin Diesel Dan Emisinya. Scientific Contributions Oil and Gas, 39, 7–8. http://www.journal.lemigas. esdm.go.id.

Amine, M., Awad, E. N., Ibrahim, V. & Barakat, Y., 2018, Effect of ethyl acetate addition on phase stability, octane number and volatility criteria of ethanol-gasoline blends. Egyptian Journal of Petroleum, 27(4), 567–572. https://doi.org/10.1016/j. ejpe.2017.08.007.

Andersen, V.F., Anderson, J.E., Wallington, T.J., Mueller, S.A., & Nielsen, O.J., 2010, Vapor pressures of alcohol-gasoline blends. Energy and Fuels, 24(6), 3647–3654. https://doi.org/10.1021/ef100254w.

Auzani, A.S., Clements, A.G., Hughes, K. J., Ingham, D.B. & Pourkashanian, M, 2021, Assessment of Ethanol Autoxidation as a Drop-in Kerosene and Surrogates Blend with a New Modelling Approach. Heliyon, 7(6), 1–11. https:// doi.org/10.1016/j.heliyon.2021.e07295.

Chuck, C.J., & Donnelly, J, 2014a, The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. Applied Energy, 118, 83–91. https://doi.org/10.1016/j.apenergy.2013.12.019.

Chuck, C.J. & Donnelly, J, 2014b, The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. Applied Energy, 118, 83–91. https://doi.org/10.1016/j.apenergy.2013.12.019.

Fajar, R., Setyo Wibowo, C. & Yubaidah, S., 2011, Oxidation Stability Improvement for Jatropha Lemigas Scientific Contributions Rizqon Fajar, Et Al. Oxidation Stability Improvement for Jatropha Biodiesel to Meet The International Standard For Automotive Applications.

Hassan, S.H., Attia, N.K., Diwani, G.I. El, Amin, S.K., Ettouney, R.S. & El-Rifai, M.A., 123 C.E., Catalytic hydrocracking of jatropha oil over natural clay for bio-jet fuel production. https://doi. org/10.1038/s41598-023-40500-2.

Jia, T., Zhang, X., Liu, Y., Gong, S., Deng, C., Pan, L. & Zou, J.J., 2021, A comprehensive review of the thermal oxidation stability of jet fuels. In Chemical Engineering Science (Vol. 229). Elsevier Ltd. https://doi.org/10.1016/j.ces.2020.116157.

Lapuerta, M., Rodríguez-Fernández, J., Patiño- Camino, R., Cova-Bonillo, A., Monedero, E. & Meziani, Y. M., 2020, Determination of optical and dielectric properties of blends of alcohol with diesel and biodiesel fuels from terahertz spectroscopy. Fuel, 274. https://doi.org/10.1016/j.fuel.2020.117877.

Lown, A.L., Peereboom, L., Mueller, S. A., Anderson, J. E., Miller, D.J., & Lira, C.T., 2014, Cold flow properties for blends of biofuels with diesel and jet fuels. Fuel, 117(PART A), 544–551. https://doi. org/10.1016/j.fuel.2013.09.067.

Shirazi, S.A., Abdollahipoor, B., Windom, B., Reardon, K.F. & Foust, T.D., 2020, Effects of blending C3-C4 alcohols on motor gasoline properties and performance of spark ignition engines: A review. Fuel Processing Technology.

(August 2019), 106194. https://doi.org/10.1016/j. fuproc.2019.106194.

Tran, S., Brown, A. & Olfert, J.S., 2020, Comparison of Particle Number Emissions from In-Flight Aircraft Fueled with Jet A1, JP-5 and an Alcohol-to-Jet Fuel Blend. https://doi.org/10.1021/ acs.energyfuels.0c00260.

Turner, J.W.G., Pearson, R.J., Dekker, E., Iosefa, B., Johansson, K. & ac Bergström, K., 2013, Extending the role of alcohols as transport fuels using iso-stoichiometric ternary blends of gasoline, ethanol and methanol. Applied Energy, 102, 72–86. https:// doi.org/10.1016/j.apenergy.2012.07.044.

Xie, S., Li, Z., Luo, S. & Zhang, W., 2024, Bioethanol to jet fuel: Current status, challenges, and perspectives. In Renewable and Sustainable Energy Reviews (Vol. 192). Elsevier Ltd. https://doi. org/10.1016/j.rser.2023.114240.

Yang, J., Xin, Z., He, Q. (Sophia), Corscadden, K. & Niu, H., 2019, An overview on performance characteristics of bio-jet fuels. In Fuel (Vol. 237, pp. 916–936). Elsevier Ltd. https://doi.org/10.1016/j. fuel.2018.10.079.




DOI: https://doi.org/10.29017/SCOG.47.3.1638

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.