MAPPING THE POTENTIAL CO2 SOURCE-SINKS FOR CARBON CAPTURE STORAGE FROM INDUSTRY IN INDONESIA

Authors

  • Muhammad Firdaus Al Hakim Universitas Pembangunan Nasional "Veteran" Yogyakarta
  • Brian Tony Universitas Pembangunan Nasional "Veteran" Yogyakarta https://orcid.org/0000-0003-0563-4750
  • Steven Chandra Institut Teknologi Bandung
  • Fanata Y. Nugraha Petroleum Engineering Department, Universitas Pembangunan Nasional “Veteran“ Yogyakarta
  • Damar Nandiwardhana Universitas Pembangunan Nasional "Veteran" Yogyakarta

DOI:

https://doi.org/10.29017/scog.v48i1.1626

Keywords:

GIS, CCS, CCUS, Source-sink match, Carbon Storage

Abstract

The increasing trend of carbon reduction program in Indonesia has been intensified to achieve Net-Zero Emission in 2060. One of the option to achieve this commitment is by implement Carbon Capture and Storage (CCS) program in Indonesia as this technology offers reducing carbon dioxide (CO2) by taking the CO2 directly from the emitter and safely inject it to the depleted reservoir. This study aims to map the potential of CCS Storage from oil and gas depleted reservoir as the candidates of sink and its connectivity with the available CO2 Source from Cement, Petrochemical, and Fertilizer industry. The depleted oil and gas reservoir storage capacity is calculated from the available data of oil and gas in place with its ultimate recovery. The pipeline right of ways is also mapped to evaluate the connectivity of the CO2 emitter and CO2 storage. There are four major region which could potentially developed for further CCS impelementation program. The South Sumatera Region holds 3 MtCO2 annual emission from the industry and connected to surrounding storage via pipeline with total capacity of 584 MtCO2. Both West Java and East Java hold advantages for CCS as the West Java available storage 612 MtCO2 while East Java 345 MtCO2 while the annual emission from industry in West Java and East Java are 13 MtCO2 and 9 MtCO2 respectively. In Kalimantan, there are potency of 15 MtCO2 annual emission with 1,945 MtCO2 storage capacity.

References

Al Adasani, A., & Bai, B. (2011). Analysis of EOR projects and updated screening criteria. Journal of Petroleum Science and Engineering, 79(1–2), 10–24. https://doi.org/10.1016/j.petrol.2011.07.005

Asian Development Bank. (2013). Prospects for carbon capture and storage in Southeast Asia.

Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Christensen, N. P., Holloway, S., Mathiassen, O.-M., & Forum, C. S. L. (2007). Phase II Final Report from the Task Force for Review and Identification of Standards for CO2 Storage Capacity Estimation. Estimation of CO2 Storage Capacity in Geological Media - Phase 2 -, August 2005, 43. http://www.cslforum.org/publications/documents/PhaseIIReportStorageCapacityMeasurementTaskForce.pdf

Bains, P., Psarras, P., & Wilcox, J. (2017). CO2 capture from the industry sector. Progress in Energy and Combustion Science, 63, 146–172. https://doi.org/10.1016/j.pecs.2017.07.001

Becattini, V., Gabrielli, P., Antonini, C., Campos, J., Acquilino, A., Sansavini, G., & Mazzotti, M. (2022). Carbon dioxide capture, transport and storage supply chains: Optimal economic and environmental performance of infrastructure rollout. International Journal of Greenhouse Gas Control, 117(October 2021), 103635. https://doi.org/10.1016/j.ijggc.2022.103635

Bolstad, P. (2019). GIS Fundamentals: A First Text on Geographic Information Systems, 6th edition.

Carbon Limits. (2024). Indonesia Carbon Capture and Storage Diagnostics: Study Reports (unpublished) (Issue May).

Chauvy, R., Lai, Y., & Chen, P. (2022). A Geographical Source-sink Matching for Carbon capture and Utilization deployment in Taiwan. International Journal of Greenhouse Gas Control, 119(1), 103722. https://doi.org/10.1016/j.ijggc.2022.103722

Fan, J. L., Xu, M., Wei, S., Shen, S., Diao, Y., & Zhang, X. (2021). Carbon reduction potential of China’s coal-fired power plants based on a CCUS source-sink matching model. Resources, Conservation and Recycling, 168(June 2020), 105320. https://doi.org/10.1016/j.resconrec.2020.105320

Goodman, A., Hakala, A., Bromhal, G., Deel, D., Rodosta, T., Frailey, S., Small, M., Allen, D., Romanov, V., Fazio, J., Huerta, N., McIntyre, D., Kutchko, B., & Guthrie, G. (2011). U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. International Journal of Greenhouse Gas Control, 5(4), 952–965. https://doi.org/10.1016/j.ijggc.2011.03.010

IEA. (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector. International Energy Agency, 224. https://www.iea.org/reports/net-zero-by-2050

Iskandar, U. P., & Syahrial, E. (2009). Carbon Capture And Storage (Ccs) - Enhanced Oil Recovery (Eor): Global Potential In Indonesia. Scientific Contributions Oil and Gas, 32(3), 228–238. https://doi.org/10.29017/scog.32.3.855

Iskandar, U. P., Usman, U., & Sofyan, S. (2013). Ranking of Indonesia sedimentary basin and storage capacity estimates for CO2 geological storage. Energy Procedia, 37, 5172–5180. https://doi.org/10.1016/j.egypro.2013.06.433

ITB, & JANUS. (2020). Study on Potentials of CO2 Management Deployment in Indonesia. Unpublished report.

Marbun, B. T. H., Prasetyo, D. E., Prabowo, H., Susilo, D., Firmansyah, F. R., Palilu, J. M., Silamba, I. C., Santoso, D., Kadir, W. G. A., Sule, R., Kardani, I., Saprudin, W., & Andhika, B. (2019). Well integrity evaluation prior to converting a conventional gas well to CO2 injector well – Gundih CCS pilot project in Indonesia (phase 1). International Journal of Greenhouse Gas Control, 88(October 2018), 447–459. https://doi.org/10.1016/j.ijggc.2019.06.006

Matejicek, L. (2017). Assessment of Energy Sources Using GIS. In Assessment of Energy Sources Using GIS. https://doi.org/10.1007/978-3-319-52694-2

Minister of Environment and Forestry. (2022). Enhanced NDC Republic of Indonesia 2022. https://www.ptonline.com/articles/how-to-get-better-mfi-results

Mulyasari, F., Harahap, A. K., Rio, A. O., Sule, R., & Kadir, W. G. A. (2021). Potentials of the public engagement strategy for public acceptance and social license to operate: Case study of Carbon Capture, Utilisation, and Storage Gundih Pilot Project in Indonesia. International Journal of Greenhouse Gas Control, 108, 103312. https://doi.org/10.1016/j.ijggc.2021.103312

NPC. (2019). Meeting the dual challenge: a roadmap to at-scale deployment of carbon capture, use, and storage. December 2019.

Nugraha, F. Y., Al Hakim, M. F., Tony, B., Nandiwardhana, D., & Chandra, S. (2024). Development of CO2 Hub-Clustering Management in The South Sumatra Basin. Scientific Contributions Oil and Gas, 47(1), 31–40. https://doi.org/10.29017/SCOG.47.1.1607

Raza, A., Gholami, R., Rezaee, R., Rasouli, V., & Rabiei, M. (2019). Significant aspects of carbon capture and storage – A review. Petroleum, 5(4), 335–340. https://doi.org/10.1016/j.petlm.2018.12.007

Rikalovic, A., Cosic, I., & Lazarevic, D. (2014). GIS based multi-criteria analysis for industrial site selection. Procedia Engineering, 69, 1054–1063. https://doi.org/10.1016/j.proeng.2014.03.090

Ritchie, H., Roser, M., & Rosado, P. (2020). CO₂ and Greenhouse Gas Emissions. Our World in Data.

Sapiie, B., Danio, H., Priyono, A., Asikin, A. R., Widarto, D. S., Widianto, E., & Tsuji, T. (2015). Geological characteristic and fault stability of the Gundih CCS pilot project at central Java, Indonesia. 1, 110–113. https://doi.org/10.1190/segj122015-029

Smith, N., Boone, P., Oguntimehin, A., Essen, G. Van, Guo, R., Reynolds, M. A., Friesen, L., Cano, M., & Brien, S. O. (2022). International Journal of Greenhouse Gas Control Quest CCS facility : Halite damage and injectivity remediation in CO 2 injection wells. International Journal of Greenhouse Gas Control, 119(May), 103718. https://doi.org/10.1016/j.ijggc.2022.103718

Sun, L., Jiang, Y., Guo, Q., Ji, L., Xie, Y., Qiao, Q., Huang, G., & Xiao, K. (2021). A GIS-based multi-criteria decision making method for the potential assessment and suitable sites selection of PV and CSP plants. Resources, Conservation and Recycling, 168(September 2020), 105306. https://doi.org/10.1016/j.resconrec.2020.105306

Turan, G., Zapantis, A., Kearns, D., Tamme, E., Staib, C., Zhang, T., Burrows, J., Gillespie, A., Havercroft, I., Rassool, D., Consoli, C., & Liu, H. (2021). Global status of CCS 2021. Global CCS Institute, 1–43. https://www.japanccs.com/wp/wp-content/uploads/2021/10/0-4-GCCSI_Jarad-Daniels.pdf

Usman, D. I. (2018). Prospect for Co2 Eor To Offset the Cost of Ccs At Coal Power Plants. Scientific Contributions Oil and Gas, 39(3), 107–118. https://doi.org/10.29017/scog.39.3.94

Usman, U., Saputra, D. D., & Firdaus, N. (2021). Source Sink Matching for Field Scale CCUS CO2-EOR Application in Indonesia. Scientific Contributions Oil and Gas, 44(2), 97–106. https://doi.org/10.29017/scog.44.2.586

Wei, Y. M., Kang, J. N., Liu, L. C., Li, Q., Wang, P. T., Hou, J. J., Liang, Q. M., Liao, H., Huang, S. F., & Yu, B. (2021). A proposed global layout of carbon capture and storage in line with a 2 °C climate target. Nature Climate Change, 11(2), 112–118. https://doi.org/10.1038/s41558-020-00960-0

World Bank. (2023). Indonesia Country Climate and Development Report. Indonesia Country Climate and Development Report. https://doi.org/10.1596/40658

Yildirim, V., Yomralioglu, T., Nisanci, R., Çolak, H. E., Bediroğlu, Ş., & Saralioglu, E. (2017). A spatial multicriteria decision-making method for natural gas transmission pipeline routing. Structure and Infrastructure Engineering, 13(5), 567–580. https://doi.org/10.1080/15732479.2016.1173071

Zhang, Z., Pan, S. Y., Li, H., Cai, J., Olabi, A. G., Anthony, E. J., & Manovic, V. (2020). Recent advances in carbon dioxide utilization. Renewable and Sustainable Energy Reviews, 125(March), 109799. https://doi.org/10.1016/j.rser.2020.109799

Zhu, Q., Wang, C., Fan, Z., Ma, J., & Chen, F. (2019). Optimal matching between CO2 sources in Jiangsu province and sinks in Subei-Southern South Yellow Sea basin, China. Greenhouse Gases: Science and Technology, 9(1), 95–105. https://doi.org/10.1002/ghg.1835

Downloads

Published

07-03-2025

Issue

Section

Articles