Pectin Extraction of Jackfruit Peel as a Biopolymer Potential with Microwave Assisted Extraction Method
Abstract
Polyacrylamide and polysaccharides are commonly used polymers, but they have certain disadvantages. Hydrolyzed polyacrylamide (HPAM) is particularly susceptible to harsh reservoir conditions, including high shear forces, salinity, and temperature. Xanthan gum biopolymer has drawbacks, such as high cost and susceptibility to reservoir biodegradation. In contrast, pectin is a viable alternative owing to its excellent biodegradability, natural decomposition, transparency, good elongation properties, and strong gel-forming ability. In this study, we characterize and analyze the rheology of biopolymers derived from jackfruit skin. Jackfruit peel, a waste product, contains a high pectin content of 23.47%, which can be extracted through microwave assisted extraction (MAE). The MAE method combines microwave and solvent extraction, offering the advantage of a fast extraction time. The resulting biopolymer is expected to enhance water viscosity and meet characterization standards for petroleum applications. FTIR test results reveal the functional groups that constitute the pectin compounds. Biopolymer concentrations used were 1,000, 2,000, and 3,000 ppm. The viscosity values of pectin were 0.503, 0.565, and 0.592 cp, while the viscosity values of xanthan gum were 1.266, 3.096, and 13.13 cp. Pectin has a lower viscosity compared to xanthan gum, and the viscosity of both biopolymers decreases as salinity increases. The reduction in viscosity for pectin during thermal testing was 26%, 28%, and 30%, whereas for xanthan gum, it was 21%, 49%, and 42%. This decrease in viscosity is attributed to the high shear rate and high salinity, which disrupt gel formation.
Keywords
Full Text:
PDFReferences
Abdurrahman, M. D., Pang, A. L., Arsad, A., Junin, R., Syariefudin, M. I., Regina, S., Husna, U. Z., & Ahmadipour, M. (2022). A Short Review of Biopolymers for Enhanced of Oil Recovery in Mature Fields. Petroleum Chemistry, 62(5), 482–498.
Abidin, A. Z., Puspasari, T., & Nugroho, W. A. (2012). Polymers for enhanced oil recovery technology. Procedia Chemistry, 4, 11–16.
Afdhol, M. K., Setiawan, C., Erfando, T., Adam, F., Saputra, I. D., & Perdana, R. H. (2023). Pectin Extraction From Orange Peel With Microwave-Assisted Extraction Method as an Alternative Material in Polymer Injection. IOP Conference Series: Earth and Environmental Science, 1187(1), 012013.
Agi, A., Junin, R., Abbas, A., Gbadamosi, A., & Azli, N. B. (2020). Effect of dynamic spreading and the disperse phase of crystalline starch nanoparticles in enhancing oil recovery at reservoir condition of a typical sarawak oil field. Applied Nanoscience, 10, 263–279.
Agi, A., Junin, R., Abdullah, M. O., Jaafar, M. Z., Arsad, A., Wan Sulaiman, W. R., Norddin, M. N. A. M., Abdurrahman, M., Abbas, A., Gbadamosi, A., & Azli, N. B. (2020). Application of polymeric nanofluid in enhancing oil recovery at reservoir condition. Journal of Petroleum Science and Engineering, 194(May), 107476. https://doi.org/10.1016/j.petrol.2020.107476
Akpan, E. U., Enyi, G. C., & Nasr, G. G. (2020). Enhancing the performance of xanthan gum in water-based mud systems using an environmentally friendly biopolymer. Journal of Petroleum Exploration and Production Technology, 10, 1933–1948.
Alsarraf, J., Al-Rashed, A. A. A. A., Alnaqi, A. A., & Goldanlou, A. S. (2021). Dominance of cohesion of EG-water molecules over Van der Waals force between SiO2-ZnO nanoparticles in the liquid interface. Powder Technology, 379, 537–546.
Antika, S. R., & Kurniawati, P. (2017). Isolasi dan karakterisasi pektin dari kulit nanas. Prosiding Seminar Nasional Kimia, 218–225.
Babar, H., Sajid, M. U., & Ali, H. M. (2019). Viscosity of hybrid nanofluids: a critical review. Thermal Science, 23(3 Part B), 1713–1754.
Brown, E., Forman, N. A., Orellana, C. S., Zhang, H., Maynor, B. W., Betts, D. E., DeSimone, J. M., & Jaeger, H. M. (2010). Generality of shear thickening in dense suspensions. Nature Materials, 9(3), 220–224.
Chauhan, D. S., Quraishi, M. A., Mazumder, M. A. J., Ali, S. A., Aljeaban, N. A., & Alharbi, B. G. (2020). Design and synthesis of a novel corrosion inhibitor embedded with quaternary ammonium, amide and amine motifs for protection of carbon steel in 1 M HCl. Journal of Molecular Liquids, 317, 113917.
Chiang, A. K. M., Ng, L. Y., Ng, C. Y., Lim, Y. P., Mahmoudi, E., Tan, L. S., & Mah, S. K. (2023). Conversion of palm oil empty fruit bunches to highly stable and fluorescent graphene oxide quantum dots: An eco-friendly approach. Materials Chemistry and Physics, 309, 128433.
Crockett, B., van Howe, J., Montaut, N., Morandotti, R., & Azaña, J. (2022). High‐Resolution Time‐Correlated Single‐Photon Counting Using Electro‐Optic Sampling. Laser & Photonics Reviews, 16(10), 2100635.
Damayanti, Y., Lesmono, A. D., & Prihandono, T. (2018). Kajian Pengaruh Suhu Terhadap Viskositas Minyak Goreng Sebagai Rancangan Bahan. Jurnal Pembelajaran Fisika, 7(3), 307–314.
Elella, M. H. A., Goda, E. S., Gab-Allah, M. A., Hong, S. E., Pandit, B., Lee, S., Gamal, H., ur Rehman, A., & Yoon, K. R. (2021). Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review. Journal of Environmental Chemical Engineering, 9(1), 104702.
Fayaz, G., Plazzotta, S., Calligaris, S., Manzocco, L., & Nicoli, M. C. (2019). Impact of high pressure homogenization on physical properties, extraction yield and biopolymer structure of soybean okara. LWT, 113, 108324.
Gerry, S., Prasetiyo, B. D., & Erfando, T. (2022). Parameter Analysis of Polymer on Sandstone Reservoir in Indonesia: An Experimental Laboratory Study. Scientific Contributions Oil and Gas, 45(2), 95–101.
Harangus, K., & Kakucs, A. (2021). Mass-Measurement-based Automatization of the Engler-Viscometer. Acta Polytechnica Hungarica, 18(5).
Hashmet, M. R., Qaiser, Y., Mathew, E. S., Alameri, W., Dhabi, A., Alsumaiti, A. M., & Dhabi, A. A. (2017). SPE-188125-MS Injection of Polymer for Improved Sweep Efficiency in High Temperature High Salinity Carbonate Reservoirs : Linear X-Ray Aided Flood Front Monitoring.
Induru, J. (2021). Pectin-based nanomaterials in drug delivery applications. In Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications (pp. 87–117). Elsevier.
Jouenne, S. (2020). Polymer flooding in high temperature, high salinity conditions: Selection of polymer type and polymer chemistry, thermal stability. Journal of Petroleum Science and Engineering, 195, 107545.
Kumar, A., Mahto, V., & Choubey, A. K. (2020). Synthesis and characterization of cross-linked hydrogels using polyvinyl alcohol and polyvinyl pyrrolidone and their blend for water shut-off treatments. Journal of Molecular Liquids, 301, 112472.
Martău, G. A., Mihai, M., & Vodnar, D. C. (2019). The use of chitosan, alginate, and pectin in the biomedical and food sector—biocompatibility, bioadhesiveness, and biodegradability. Polymers, 11(11), 1837.
Muhammad, N., Gonfa, G., Rahim, A., Ahmad, P., Iqbal, F., Sharif, F., Khan, A. S., Khan, F. U., Khan, Z. U. L. H., & Rehman, F. (2017). Investigation of ionic liquids as a pretreatment solvent for extraction of collagen biopolymer from waste fish scales using COSMO-RS and experiment. Journal of Molecular Liquids, 232, 258–264.
Muhammed, N. S., Haq, M. B., Al-Shehri, D., Rahaman, M. M., Keshavarz, A., & Hossain, S. M. Z. (2020). Comparative study of green and synthetic polymers for enhanced oil recovery. Polymers, 12(10), 2429.
Nguyen, H. V. L., Andresen, M., & Stahl, W. (2021). Conformational sampling and large amplitude motion of methyl valerate. Physical Chemistry Chemical Physics, 23(4), 2930–2937.
Novais, Â., Freitas, A. R., Rodrigues, C., & Peixe, L. (2019). Fourier transform infrared spectroscopy: unlocking fundamentals and prospects for bacterial strain typing. European Journal of Clinical Microbiology & Infectious Diseases, 38, 427–448.
Patience, N. A., Schieppati, D., & Boffito, D. C. (2021). Continuous and pulsed ultrasound pectin extraction from navel orange peels. Ultrasonics Sonochemistry, 73, 105480.
Perdana, R. H., Afdhol, M. K., Erfando, T., Setiawan, C., Saputra, I. D., & Adam, F. (2023). Biopolymer manufacturing from pectin extraction of jackfruit waste to increase oil production in EOR. IOP Conference Series: Earth and Environmental Science, 1187(1), 012003.
Petrack, A. M. (2020). Single-Pixel Camera Based Spatial Frequency Domain Imaging for Non-Contact Tissue Characterization.
Ponthier, E., Domínguez, H., & Torres, M. D. (2020). The microwave assisted extraction sway on the features of antioxidant compounds and gelling biopolymers from Mastocarpus stellatus. Algal Research, 51, 102081.
Purnama, D. P., Hidayat, A., Afdhol, M. K., & Hidayat, F. (2023). Extraction of Green Grass Jelly Leaves as An Alternative Biopolymer in Polymer Flooding. Journal of Applied Engineering and Technological Science (JAETS), 5(1), 387–400. https://doi.org/10.37385/jaets.v5i1.3019
Ramadhan, R., Abdurahman, M., & Srisuriyachai, F. (2020). Sensitivity Analysis Comparisson of Synthetic Polymer and Biopolymer using Reservoir Simulation. Scientific Contributions Oil and Gas, 43(3), 143–152.
Ryles, R. G. (1988). Chemical stability limits of water-soluble polymers used in oil recovery processes. SPE Reservoir Engineering, 3(01), 23–34.
Saputra, D. D. S. M., Prasetiyo, B. D., Eni, H., Taufantri, Y., Damara, G., & Rendragraha, Y. D. (2022). Investigation of Polymer Flood Performance in Light Oil Reservoir: Laboratory Case Study. Scientific Contributions Oil and Gas, 45(2), 81–86.
Sarangi, P. K., Srivastava, R. K., Singh, A. K., Sahoo, U. K., Prus, P., & Dziekański, P. (2023). The Utilization of Jackfruit (Artocarpus heterophyllus L.) Waste towards Sustainable Energy and Biochemicals: The Attainment of Zero-Waste Technologies. Sustainability, 15(16), 12520.
Walter, A. V, Jimenez, L. N., Dinic, J., Sharma, V., & Erk, K. A. (2019). Effect of salt valency and concentration on shear and extensional rheology of aqueous polyelectrolyte solutions for enhanced oil recovery. Rheologica Acta, 58, 145–157.
Windiarsih, C. (2015). Optimasi pektin dari kulit buah nangka (Artocarpus heterophyllus) dengan microwave assisted extraction (MAE)(kajian waktu ekstraksi dan konsentrasi pelarut). Jurnal Bioproses Komoditas Tropis, 3(1), 39–49.
Yan, L., Jiang, K., Lin, Y., Zhao, H., Zhang, R., & Zeng, F. (2022). Polarized Intensity Ratio Constraint Demosaicing for the Division of a Focal-Plane Polarimetric Image. Remote Sensing, 14(14), 3268.
Yan, S.-R., Kalbasi, R., Nguyen, Q., & Karimipour, A. (2020). Sensitivity of adhesive and cohesive intermolecular forces to the incorporation of MWCNTs into liquid paraffin: experimental study and modeling of surface tension. Journal of Molecular Liquids, 310, 113235.
Yang, T.-H. (2008). Recent applications of polyacrylamide as biomaterials. Recent Patents on Materials Science, 1(1), 29–40.
Yoo, H. M., Jeong, S.-Y., & Choi, S.-W. (2021). Analysis of the rheological property and crystallization behavior of polylactic acid (IngeoTM Biopolymer 4032D) at different process temperatures. E-Polymers, 21(1), 702–709.
Yourong, T., Zhang, H., Cao, D., Xia, L., Du, R., Shi, Z., Dong, R., & Wang, X. (2019). Study on cohesion and adhesion of high-viscosity modified asphalt. International Journal of Transportation Science and Technology, 8(4), 394–402.
Zare, Y., & Rhee, K. Y. (2019). Modeling of viscosity and complex modulus for poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites assuming yield stress and network breaking time. Composites Part B: Engineering, 156, 100–107.
Zatz, J. L., Berry, J. J., & Alderman, D. A. (2020). Viscosity-imparting agents in disperse systems. In Pharmaceutical Dosage Forms (pp. 287–314). CRC Press.
DOI: https://doi.org/10.29017/SCOG.47.2.1618
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.