Bioprospecting of Halophilic Bacteria Staphylococcus Haemolyticus Strain Stp-Griv-024 as Biosurfactant Producer and its Potential Application for Microbial Enhanced Oil Recovery

Izzul Islam, Cut Nanda Sari, Ali Budhi Kusuma, Ika Kurniasari, Lisnawati Lisnawati, Rini Surya Ningsih, Elisa Rosani

Abstract


The use of halophilic bacteria to produce effective and stable biosurfactants in the Microbial Enhanced Oil Recovery (MEOR) process is getting much attention from researchers. A diversity of halophilic bacteria that produce biosurfactants can be found in areas with intense oil exposure, such as the waters of Bima Bay, which is closed and are one of the main sea transportation routes in eastern Indonesia. This research aims to isolate potential local halophilic bacteria in producing biosurfactants to degrade hydrocarbons. The research methodology included bacterial isolation, gram staining, hemolysis test, total petroleum hydrocarbon (TPH) analysis, emulsification, and phylogenetic analysis of the 16S rRNA marker gene. STP-GRIV-024 was successfully isolated using Kish, Halophilic, Soil extract, and Oatmeal agar media, with the highest enumeration results found on Kish media supplemented with 3% (w/v) NaCl. Microscopic morphological characterization using Gram staining showed results as a Gram-positive group with round colony shapes, smooth circular edges, sloping and white. This isolate grew in the 7-15% (w/v) NaCl range and was classified as moderately halophilic. TPH analysis showed that concentration and incubation time influenced hydrocarbon degradation activity. On day 10, the concentrations of T1 (1%), T2 (3%), T3 (5%), and T4 (7%) showed a decrease in TPH of 1.96%, 0.51%, 0.25 %, and 0.15% respectively. 16S rRNA sequencing identified the isolate as closely related to Staphylococcus haemolyticus strain MTCC3383T, with a DNA sequence similarity of 99.9%. These findings provide an important foundation for further development in applying halophilic bacteria in MEOR practices to increase the efficiency of sustainable and environmentally friendly oil production

Keywords


biosurfactants, halophile bacteria, staphylococcus haemolyticus, microbial enhanced oil recovery, bioremediation

References


Ashish, & Debnath (Das), M. (2018). Application of biosurfactant produced by an adaptive strain of C.tropicalis MTCC230 in microbial enhanced oil recovery (MEOR) and removal of motor oil from contaminated sand and water. Journal of Petroleum Science and Engineering, 170, 40–48. https://doi.org/10.1016/j.petrol.2018.06.034

Awaludin, N., & Sari, C. N. (2017). Variation of Carbon Sources In Producting Rhamnolipid By Pseudomonas aeruginosa For Microbial Enhanced Oil Recovers Application (Variasi Sumber Karbon Pada Produksi Rhamnolipid Oleh Pseudomonas aeruginosa Dalam Aplikasi Microbial Enhanced Oil Recovery (MEOR)). Scientific Contributions Oil and Gas, 40(1), 33–40. https://doi.org/10.29017/SCOG.40.1.36

Budiharjo, R., Sarjono, P. R., & Asy’ari, M. (2017). Pengaruh Konsentrasi NaCl Terhadap Aktivitas Spesifik Protease Ekstraseluler dan Pertumbuhan Bakteri Halofilik Isolat Bittern Tambak Garam Madura. Jurnal Kimia Sains Dan Aplikasi, 20(3), 142–145. https://doi.org/10.14710/jksa.20.3.142-145

Chandra, P., Enespa, Singh, R., & Arora, P. K. (2020). Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories, 19(1), 169. https://doi.org/10.1186/s12934-020-01428-8

Clarridge, J. E. (2004). Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. Clinical Microbiology Reviews, 17(4), 840–862. https://doi.org/10.1128/CMR.17.4.840-862.2004

Cycil, L. M., DasSarma, S., Pecher, W., McDonald, R., AbdulSalam, M., & Hasan, F. (2020). Metagenomic Insights Into the Diversity of Halophilic Microorganisms Indigenous to the Karak Salt Mine, Pakistan. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01567

DasSarma, S., & DasSarma, P. (2017). Halophiles. In Encyclopedia of Life Sciences (pp. 1–13). Wiley. https://doi.org/10.1002/9780470015902.a0000394.pub4

Dewi, P. M. P., Besung, I. N. K., & Mahardika, I. G. N. K. (2015). Species Diversity and Genetic of Staphylococcus Bacteria In Tuna Fish by Using 16s rRNA Sequence Analysis. Indonesian Veterinary Journal, 16(3), 409–415.

Dharmayanti, N. L. P. I. (2011). Molecular Phylogenetic: Organism Taxonomy method Based on Evolution History. Wartazoa, 21(1), 1–10.

dos Santos, H. R. M., Argolo, C. S., Argôlo-Filho, R. C., & Loguercio, L. L. (2019). A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiology, 19(1), 74. https://doi.org/10.1186/s12866-019-1446-2

Dutta, B., & Bandopadhyay, R. (2022). Biotechnological potentials of halophilic microorganisms and their impact on mankind. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 75. https://doi.org/10.1186/s43088-022-00252-w

Eltwisy, H. O., Abdel-Fattah, M., Elsisi, A. M., Omar, M. M., Abdelmoteleb, A. A., & El-Mokhtar, M. A. (2020). Pathogenesis of Staphylococcus haemolyticus on primary human skin fibroblast cells. Virulence, 11(1), 1142–1157. https://doi.org/10.1080/21505594.2020.1809962

Eltwisy, H. O., Twisy, H. O., Hafez, M. H., Sayed, I. M., & El-Mokhtar, M. A. (2022). Clinical Infections, Antibiotic Resistance, and Pathogenesis of Staphylococcus haemolyticus. Microorganisms, 10(6), 1130. https://doi.org/10.3390/microorganisms10061130

Fischetti, V. A., Novick, R. P., Ferretti, J. J., Portnoy, D. A., Braunstein, Miriam., & Rood, J. I. (2019). Gram-Positive Pathogens (V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, M. Braunstein, & J. I. Rood, Eds.). ASM Press. https://doi.org/10.1128/9781683670131

Gagelidze, N. A., Amiranashvili, L. L., Varsimashvili, K. I., Tinikashvili, L. M., Tolordava, L. L., & Sadunishvili, T. A. (2016). Selection of effective biosurfactant producers among Bacillus strains isolated from soils of Georgia. Annals of Agrarian Science, 14(2), 72–75. https://doi.org/10.1016/j.aasci.2016.05.005

Ginting, S. S. B., Suryanto, D., & Desrita, D. (2018). Isolasi dan Karakterisasi Bakteri Potensial Probiotik Pada Saluran Pencernaan Ikan Bandeng (Chanos chanos). Acta Aquatica: Aquatic Sciences Journal, 5(1). https://doi.org/10.29103/aa.v5i1.390

Hazzouri, K. M., Sudalaimuthuasari, N., Saeed, E. E., Kundu, B., Al-Maskari, R. S., Nelson, D., AlShehhi, A. A., Aldhuhoori, M. A., Almutawa, D. S., Alshehhi, F. R., Balan, J., Mundra, S., Alam, M., Salehi-Ashtiani, K., Purugganan, M., & Amiri, K. M. A. (2022). Salt flat microbial diversity and dynamics across salinity gradient. Scientific Reports, 12(1), 11293. https://doi.org/10.1038/s41598-022-15347-8

Hillis, D. M., & Bull, J. J. (1993). An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis. Systematic Biology, 42(2), 182–192. https://doi.org/10.1093/sysbio/42.2.182

Idris, H. B. (2016). Actinobacterial diversity in Atacama Desert habitats as a road map to biodiscovery [Newcastle University]. http://theses.ncl.ac.uk/jspui/handle/10443/3464

Irshad, A., Ahmad, I., & Kim, S. B. (2014). Culturable diversity of halophilic bacteria in foreshore soils. Brazilian Journal of Microbiology, 45(2), 563–572. https://doi.org/10.1590/S1517-83822014005000050

Jiang, Y., Li, Q., Chen, X., & Jiang, C. (2016). Isolation and Cultivation Methods of Actinobacteria. In Actinobacteria - Basics and Biotechnological Applications. InTech. https://doi.org/10.5772/61457

Kindzierski, V., Raschke, S., Knabe, N., Siedler, F., Scheffer, B., Pflüger-Grau, K., Pfeiffer, F., Oesterhelt, D., Marin-Sanguino, A., & Kunte, H.-J. (2017). Osmoregulation in the Halophilic Bacterium Halomonas elongata: A Case Study for Integrative Systems Biology. PLOS ONE, 12(1), e0168818. https://doi.org/10.1371/journal.pone.0168818.

Kebede, G. et al. (2021) ‘Factors Influencing the Bacterial Bioremediation of Hydrocarbon Contaminants in the Soil: Mechanisms and Impacts’, Journal of Chemistry, 2021, pp. 1–17. https://doi.org/10.1155/2021/9823362.

Kusuma, A. B., Nouioui, I., Klenk, H.-P., & Goodfellow, M. (2020). Streptomyces harenosi sp. nov., a home for a gifted strain isolated from Indonesian sand dune soil. International Journal of Systematic and Evolutionary Microbiology, 70(9), 4874–4882. https://doi.org/10.1099/ijsem.0.004346

Lamers, R. P., Muthukrishnan, G., Castoe, T. A., Tafur, S., Cole, A. M., & Parkinson, C. L. (2012). Phylogenetic relationships among Staphylococcus species and refinement of cluster groups based on multilocus data. BMC Evolutionary Biology, 12(1), 171. https://doi.org/10.1186/1471-2148-12-171

Lima, T. M. S., Procópio, L. C., Brandão, F. D., Carvalho, A. M. X., Tótola, M. R., & Borges, A. C. (2011). Biodegradability of bacterial surfactants. Biodegradation, 22(3), 585–592. https://doi.org/10.1007/s10532-010-9431-3

Liu, J., Chen, Y., Xu, R., & Jia, Y. (2013). Screening and Evaluation of Biosurfactant-Producing Strains Isolated from Oilfield Wastewater. Indian Journal of Microbiology, 53(2), 168–174. https://doi.org/10.1007/s12088-013-0379-y

Madhaiyan, M., Wirth, J. S., & Saravanan, V. S. (2020). Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. International Journal of Systematic and Evolutionary Microbiology, 70(11), 5926–5936. https://doi.org/10.1099/ijsem.0.004498

Naghoni, A., Emtiazi, G., Amoozegar, M. A., Cretoiu, M. S., Stal, L. J., Etemadifar, Z., Shahzadeh Fazeli, S. A., & Bolhuis, H. (2017). Microbial diversity in the hypersaline Lake Meyghan, Iran. Scientific Reports, 7(1), 11522. https://doi.org/10.1038/s41598-017-11585-3

Pain, M., Wolden, R., Jaén-Luchoro, D., Salvà-Serra, F., Iglesias, B. P., Karlsson, R., Klingenberg, C., & Cavanagh, J. P. (2020). Staphylococcus borealis sp. nov., isolated from human skin and blood. International Journal of Systematic and Evolutionary Microbiology, 70(12), 6067–6078. https://doi.org/10.1099/ijsem.0.004499

Pandolfo, E., Barra Caracciolo, A., & Rolando, L. (2023). Recent Advances in Bacterial Degradation of Hydrocarbons. Water, 15(2), 375. https://doi.org/10.3390/w15020375

Pangestika, Y., Budiharjo, A., & Kusumaningrum, H. P. (2015). Analisis Filogenetik Curcuma zedoaria (Temu putih) Berdasarkan Gen Internal Transcribed Spacer (ITS). Jurnal Biologi, 4(4), 8–13.

Putri, N. P., Sari, C. N., & Gozan, M. (2020). Biosurfactant Screening of <i>Halomonas meridiana</i> BK-AB4 for Microbial Enhanced Oil Recovery. Materials Science Forum, 988, 95–100. https://doi.org/10.4028/www.scientific.net/MSF.988.95

Reang, L., Bhatt, S., Tomar, R. S., Joshi, K., Padhiyar, S., Vyas, U. M., & Kheni, J. K. (2022). Plant growth promoting characteristics of halophilic and halotolerant bacteria isolated from coastal regions of Saurashtra Gujarat. Scientific Reports, 12(1), 4699. https://doi.org/10.1038/s41598-022-08151-x

Roeβler, M., & Müller, V. (2002). Chloride, a New Environmental Signal Molecule Involved in Gene Regulation in a Moderately Halophilic Bacterium, Halobacillus halophilus. Journal of Bacteriology, 184(22), 6207–6215. https://doi.org/10.1128/JB.184.22.6207-6215.2002

Rossi, C. C., Santos-Gandelman, J. F., Barros, E. M., Alvarez, V. M., Laport, M. S., & Giambiagi-deMarval, M. (2016). Staphylococcus haemolyticus as a potential producer of biosurfactants with antimicrobial, anti-adhesive and synergistic properties. Letters in Applied Microbiology, 63(3), 215–221. https://doi.org/10.1111/lam.12611

Sakshi, & Haritash, A. K. (2020). A comprehensive review of metabolic and genomic aspects of PAH-degradation. Archives of Microbiology, 202(8), 2033–2058. https://doi.org/10.1007/s00203-020-01929-5

Sari, C. N., Fatimah, I. N., Hertadi, R., & Gozan, M. (2019). Processing of ozonized biodiesel waste to produce biosurfactant using Pseudomonas aeruginosa for enhanced oil recovery. 020054. https://doi.org/10.1063/1.5095032

Sari, C. N., & Lubnah, L. (2017). Bioremediation of Petroleum Hydrocarbon In Contaminated Soils: Comparison of Compost and WWTP Sludge Residual Addition (Bioremediasi Tanah Tercemar Petroleum Hydrocarbon: Perbandingan Penambahan Kompos dan Lumpur IPAL). Scientific Contributions Oil and Gas, 40(1), 25–32. https://doi.org/10.29017/SCOG.40.1.35

Sari, C. N., Putri Sativa, T., Moersidik, S. S., & Homepage, J. (2016). Bioremediation In Petroleum Contaminated Soil Treatment Using Plant-Microorganisms Combination (Case Study: Reduction Level of TPH and BTEX in Bioremediation Process). Scientific Contributions Oil and Gas, 39(1), 41–51. https://doi.org/10.29017/SCOG.39.1.532

Satpute, S. K., Banpurkar, A. G., Dhakephalkar, P. K., Banat, I. M., & Chopade, B. A. (2010). Methods for investigating biosurfactants and bioemulsifiers: a review. Critical Reviews in Biotechnology, 30(2), 127–144. https://doi.org/10.3109/07388550903427280

Selvarajan, R., Sibanda, T., Tekere, M., Nyoni, H., & Meddows-Taylor, S. (2017). Diversity Analysis and Bioresource Characterization of Halophilic Bacteria Isolated from a South African Saltpan. Molecules, 22(4), 657. https://doi.org/10.3390/molecules22040657

Setiani, N. A., Octaviyani, W., Hamdani, S., & Mardiah, I. (2019). Studies on biosurfactant produced using Exiguobacterium profundum. Acta Biochimica Indonesiana, 2(2), 39–44. https://doi.org/10.32889/actabioina.v2i2.37

Švec, P., Bel, A. De, Sedláček, I., Petráš, P., Gelbíčová, T., Černohlávková, J., Mašlanˇová, I., Cnockaert, M., Varbanovová, I., Echahidi, F., Vandamme, P., & Pantu˚ček, R. (2015). Staphylococcus petrasii subsp. pragensis subsp. nov., occurring in human clinical material. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_7), 2071–2077. https://doi.org/10.1099/ijs.0.000220

Tripathi, N., & Sapra, A. (2023). Gram Staining. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK562156/

Valenzuela-Heredia, D., Henríquez-Castillo, C., Donoso, R., Lavín, P., Pavlov, M. S., Franchi, O., & Campos, J. L. (2020). Complete Genome Sequence of Pseudomonas chilensis Strain ABC1, Isolated from Soil. Microbiology Resource Announcements, 9(39). https://doi.org/10.1128/MRA.00775-20

Voulgaridou, G.-P., Mantso, T., Anestopoulos, I., Klavaris, A., Katzastra, C., Kiousi, D.-E., Mantela, M., Galanis, A., Gardikis, K., Banat, I. M., Gutierrez, T., Sałek, K., Euston, S., Panayiotidis, M. I., & Pappa, A. (2021). Toxicity Profiling of Biosurfactants Produced by Novel Marine Bacterial Strains. International Journal of Molecular Sciences, 22(5), 2383. https://doi.org/10.3390/ijms22052383

Walter, V., Syldatk, C., & Hausmann, R. (2010). Screening Concepts for the Isolation of Biosurfactant Producing Microorganisms. In Biosurfactants (pp. 1–13). https://doi.org/10.1007/978-1-4419-5979-9_1

Wilson, K. (2001). Preparation of Genomic DNA from Bacteria. Current Protocols in Molecular Biology, 56(1). https://doi.org/10.1002/0471142727.mb0204s56

Wu, Q., Zhao, L., & Ma, A. (2018). Testing Method of Degrading Heavy Oil Pollution by Microorganisms. IOP Conference Series: Earth and Environmental Science, 111, 012023. https://doi.org/10.1088/1755-1315/111/1/012023

Xu, X., Liu, W., Tian, S., Wang, W., Qi, Q., Jiang, P., Gao, X., Li, F., Li, H., & Yu, H. (2018). Petroleum Hydrocarbon-Degrading Bacteria for the Remediation of Oil Pollution Under Aerobic Conditions: A Perspective Analysis. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02885

Yanti, D., Rahmawati, R., & Kurniatuhadi, R. (2022). Karakteristik Morfologis dan Fisiologis Bakteri Endofit dari Akar Napas Tumbuhan Avicennia marina (fork) vierh di Mempawah Mangrove Park. BIOLOGICA SAMUDRA, 3(2), 166–183. https://doi.org/10.33059/jbs.v3i2.4220

Yoo, Y., Lee, H., Lee, J., Khim, J. S., & Kim, J.-J. (2023). Insights into saline adaptation strategies through a novel halophilic bacterium isolated from solar saltern of Yellow sea. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1229444

Zaragoza, A., Aranda, F. J., Espuny, M. J., Teruel, J. A., Marqués, A., Manresa, Á., & Ortiz, A. (2010). Hemolytic Activity of a Bacterial Trehalose Lipid Biosurfactant Produced by Rhodococcus sp.: Evidence for a Colloid-Osmotic Mechanism. Langmuir, 26(11), 8567–8572. https://doi.org/10.1021/la904637k

Zulkifliani, Yumna, A. M., & Subagyo. (2018). Bioremediation of Crude Oil Contaminated Seawater with The Application of Biosurfactant and Biostimulation. Scientific Contributions Oil and Gas, 41(2), 109–115. https://doi.org/10.29017/SCOG.41.2.340




DOI: https://doi.org/10.29017/SCOG.47.2.1617

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.