Enhancement of Flow Properties Biodiesel Using Sorbitan Monooleate

Herlin Arina, Mohammad Nasikin

Abstract


Depletion of fossil fuel and increased pollution caused by the burning of fossil fuel is a leading factor in to use of alternate energy especially palm oil biodiesel as a mixture of diesel oil fuel (B-XX). It was reported that the use of the B-20 caused a blockage in the vehicle’s fuel filter. The blockage is caused by the presence of deposits formed from the agglomeration of monoglycerides. Three different biodiesels with monoglyceride content were used 0.40% - 0.60% by mass. The addition of monoglyceride standards (monopalmitin, monostearin, and monoolein) to biodiesel increases the volume of monoglyceride precipitates formed. The presence of these deposits decreases the flow properties of B-20. Research has been carried out to improve the flow properties of biodiesel by adding Sorbitan Monooleate (CMOST) surfactant, especially cloud points (CP) and cold filter plugging point (CFPP) parameters. The addition of 0.10%w - 1%w CMOST can reduce the CP by 4.80oC and CFPP by 2oC. This proves that the addition of SMO will improve the flow properties of B-XX as an alternative energy.


Keywords


Biodiesel, Flow Properties, Monoglycerides, CMOST

Full Text:

PDF

References


Abe, M., Komatsu, H., Yamagiwa, K., & Tajima,

H. (2017). Effect of nonionic surfactants on the

low temperature winterization separation of fatty

acid methyl ester mixtures. Fuel, 190, 351–358.

Aisyah, L., Wibowo, C. S., Bethari, S. A., Ufidian,

D., & Anggarani, R. (2018). Monoglyceride contents

in biodiesel from various plants oil and the

effect to low temperature properties. IOP Conference

Series: Materials Science and Engineering,

(1), 12023.

Alleman, T. L., Christensen, E. D., & Moser, B.

R. (2019). Improving biodiesel monoglyceride

determination by ASTM method D6584-17. Fuel,

, 65–70.

Alleman, T. L., McCormick, R. L., Christensen,

E. D., Fioroni, G., Moriarty, K., & Yanowitz,

J. (2016). Biodiesel handling and use guide. National

Renewable Energy Lab.(NREL), Golden,

CO (United States).

Amran, N. A., Bello, U., & Hazwan Ruslan, M.

S. (2022). The role of antioxidants in improving

biodiesel’s oxidative stability, poor cold flow

properties, and the effects of the duo on engine

performance: A review. Heliyon, 8(7), e09846.

https://doi.org/https://doi.org/10.1016/j.heliyon.

e09846

Cavalheiro, L. F., Misutsu, M. Y., Rial, R. C.,

Viana, L. H., & Oliveira, L. C. S. (2020).

Characterization of residues and evaluation of the

physico chemical properties of soybean biodiesel

and biodiesel: Diesel blends in different storage

conditions. Renewable Energy, 151, 454–462.

https://doi.org/https://doi.org/10.1016/j.renene.

11.039

Chupka, G. M., Fouts, L., Lennon, J. A., Alleman,

T. L., Daniels, D. A., & McCormick, R.

L. (2014). Saturated monoglyceride effects on

low-temperature performance of biodiesel blends.

Fuel Processing Technology, 118, 302–309.

Chupka, G. M., Fouts, L., & McCormick, R.

L. (2012). Effect of low-level impurities on

low-temperature performance properties of biodiesel.

Energy & Environmental Science, 5(9),

–8742.

Firoz, S. (2017). A review: advantages and disadvantages

of biodiesel. International Research Journal

of Engineering and Technology, 4(11), 530–533.

Fuad, M., Rachmawati, D. E., Herlina, L., Setiawan,

D. I., & Anugrah, R. I. (2022). Pengembangan

Metode Identifikasi Karakteristik Minyak

Berat Hasil Ekstraksi Oil Sand Iliran High Dengan

Formula Perhitungan Berdasarkan Komposisi

Elementer. Lembaran Publikasi Minyak Dan Gas

Bumi, 56(2), 99–109.

Lian, X., Xue, Y., Xu, G., Zhao, Z., Sheng, H., &

Lin, H. (2017). Effect of methyl acetoacetate as

a potential cold flow improver for biodiesel. Energy

Sources, Part A: Recovery, Utilization, and

Environmental Effects, 39(1), 97–102.

Madusanka, D. A. T., & Manage, P. M. (2018).

Potential utilization of Microcystis Sp. for biodiesel

production; Green Solution for Future

Energy Crisis.

Makarevičienė, V., Kazancev, K., & Kazanceva,

I. (2015). Possibilities for improving the cold

flow properties of biodiesel fuel by blending with

butanol. Renewable Energy, 75, 805–807.

Mamtani, K., Shahbaz, K., & Farid, M. M. (2021).

Glycerolysis of free fatty acids: A review. Renewable

and Sustainable Energy Reviews, 137,

Maquirriain, M. A., Querini, C. A., & Pisarello,

M. L. (2021). Glycerine esterification with free

fatty acids: Homogeneous catalysis. Chemical

Engineering Research and Design, 171, 86–99.

Monirul, I. M., Masjuki, H. H., Kalam, M. A.,

Zulkifli, N. W. M., Rashedul, H. K., Rashed, M.

M., Imdadul, H. K., & Mosarof, M. H. (2015).

A comprehensive review on biodiesel cold flow

properties and oxidation stability along with their

improvement processes. RSC Advances, 5(105),

–86655.

Monteiro, M. R., Ambrozin, A. R. P., Lião, L. M.,

& Ferreira, A. G. (2008). Critical review on

analytical methods for biodiesel characterization.

Talanta, 77(2), 593–605.

Nasional, B. S. (2015). SNI 7182: 2015: Biodiesel.

Badan Standar Nasional.

Paryanto, I., Prakoso, T., Suyono, E. A., & Gozan,

M. (2019). Determination of the upper limit of

monoglyceride content in biodiesel for B30

implementation based on the measurement of the

precipitate in a Biodiesel–Petrodiesel fuel blend

(BXX). Fuel, 258, 116104. https://doi.org/https://

doi.org/10.1016/j.fuel.2019.116104

Pramudito, Y., Maymuchar, M., Wibowo, C. S.,

Anggarani, R., Warahadi, D., Fathurrahman,

N. A., & Aisyah, L. (2022). Kinerja Mesin Spark

Ignition (SI) Berbahan Bakar Campuran Bensin-

Metanol (M-20) Dan Bensin-Etanol (E-20) Pada

Variasi Nilai Oktan. Lembaran Publikasi Minyak

Dan Gas Bumi, 56(2), 83–91.

Rahpeyma, S. S., & Raheb, J. (2019). Microalgae

biodiesel as a valuable alternative to fossil fuels.

BioEnergy Research, 12(4), 958–965.

Septiano, J., Yasutra, A., & Rahmawati, S. D.

(2022). Build of Machine Learning Proxy Model

for Prediction of Wax Deposition Rate in Two

Phase Flow Water-Oil. Scientific Contributions

Oil and Gas, 45(1), 34–48. https://doi.

org/10.29017/scog.45.1.922

Sia, C. B., Kansedo, J., Tan, Y. H., & Lee, K. T.

(2020). Evaluation on biodiesel cold flow properties,

oxidative stability and enhancement strategies:

A review. Biocatalysis and Agricultural

Biotechnology, 24, 101514. https://doi.org/https://

doi.org/10.1016/j.bcab.2020.101514

Sierra-Cantor, J. F., & Guerrero-Fajardo, C. A.

(2017). Methods for improving the cold flow

properties of biodiesel with high saturated fatty

acids content: A review. Renewable and Sustainable

Energy Reviews, 72, 774–790.

Souza, G. K., Scheufele, F. B., Pasa, T. L. B., Arroyo,

P. A., & Pereira, N. C. (2016). Synthesis of

ethyl esters from crude macauba oil (Acrocomia

aculeata) for biodiesel production. Fuel, 165,

–366.

Vitiello, R., Li, C., Russo, V., Tesser, R., Turco,

R., & Di Serio, M. (2017). Catalysis for esterification

reactions: a key step in the biodiesel

production from waste oils. Rendiconti Lincei,

(1), 117–123.

Wang, J., Cao, L., & Han, S. (2014). Effect of

polymeric cold flow improvers on flow properties

of biodiesel from waste cooking oil. Fuel,

, 876–881.

Wawrzyniak, R., Wasiak, W., & Frackowiak, M.

(2005). Determination of methyl esters in diesel

oils by gas chromatography-validation of the

method. Chemical Papers-Slovak Academy of

Sciences, 59(6B), 449.

Xue, Y., Zhao, W., Ma, P., Zhao, Z., Xu, G., Yang,

C., Chen, H., Lin, H., & Han, S. (2016). Ternary

blends of biodiesel with petro-diesel and diesel

from direct coal liquefaction for improving the

cold flow properties of waste cooking oil biodiesel.

Fuel, 177, 46–52.

Yahaya Khan, M., Abdul Karim, Z. A., Hagos, F.

Y., Aziz, A. R. A., & Tan, I. M. (2014). Current

trends in water-in-diesel emulsion as a fuel. The

Scientific World Journal, 2014.




DOI: https://doi.org/10.29017/SCOG.45.3.1262

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.