Enhancement of Flow Properties Biodiesel Using Sorbitan Monooleate
Abstract
Depletion of fossil fuel and increased pollution caused by the burning of fossil fuel is a leading factor in to use of alternate energy especially palm oil biodiesel as a mixture of diesel oil fuel (B-XX). It was reported that the use of the B-20 caused a blockage in the vehicle’s fuel filter. The blockage is caused by the presence of deposits formed from the agglomeration of monoglycerides. Three different biodiesels with monoglyceride content were used 0.40% - 0.60% by mass. The addition of monoglyceride standards (monopalmitin, monostearin, and monoolein) to biodiesel increases the volume of monoglyceride precipitates formed. The presence of these deposits decreases the flow properties of B-20. Research has been carried out to improve the flow properties of biodiesel by adding Sorbitan Monooleate (CMOST) surfactant, especially cloud points (CP) and cold filter plugging point (CFPP) parameters. The addition of 0.10%w - 1%w CMOST can reduce the CP by 4.80oC and CFPP by 2oC. This proves that the addition of SMO will improve the flow properties of B-XX as an alternative energy.
Keywords
Full Text:
PDFReferences
Abe, M., Komatsu, H., Yamagiwa, K., & Tajima,
H. (2017). Effect of nonionic surfactants on the
low temperature winterization separation of fatty
acid methyl ester mixtures. Fuel, 190, 351–358.
Aisyah, L., Wibowo, C. S., Bethari, S. A., Ufidian,
D., & Anggarani, R. (2018). Monoglyceride contents
in biodiesel from various plants oil and the
effect to low temperature properties. IOP Conference
Series: Materials Science and Engineering,
(1), 12023.
Alleman, T. L., Christensen, E. D., & Moser, B.
R. (2019). Improving biodiesel monoglyceride
determination by ASTM method D6584-17. Fuel,
, 65–70.
Alleman, T. L., McCormick, R. L., Christensen,
E. D., Fioroni, G., Moriarty, K., & Yanowitz,
J. (2016). Biodiesel handling and use guide. National
Renewable Energy Lab.(NREL), Golden,
CO (United States).
Amran, N. A., Bello, U., & Hazwan Ruslan, M.
S. (2022). The role of antioxidants in improving
biodiesel’s oxidative stability, poor cold flow
properties, and the effects of the duo on engine
performance: A review. Heliyon, 8(7), e09846.
https://doi.org/https://doi.org/10.1016/j.heliyon.
e09846
Cavalheiro, L. F., Misutsu, M. Y., Rial, R. C.,
Viana, L. H., & Oliveira, L. C. S. (2020).
Characterization of residues and evaluation of the
physico chemical properties of soybean biodiesel
and biodiesel: Diesel blends in different storage
conditions. Renewable Energy, 151, 454–462.
https://doi.org/https://doi.org/10.1016/j.renene.
11.039
Chupka, G. M., Fouts, L., Lennon, J. A., Alleman,
T. L., Daniels, D. A., & McCormick, R.
L. (2014). Saturated monoglyceride effects on
low-temperature performance of biodiesel blends.
Fuel Processing Technology, 118, 302–309.
Chupka, G. M., Fouts, L., & McCormick, R.
L. (2012). Effect of low-level impurities on
low-temperature performance properties of biodiesel.
Energy & Environmental Science, 5(9),
–8742.
Firoz, S. (2017). A review: advantages and disadvantages
of biodiesel. International Research Journal
of Engineering and Technology, 4(11), 530–533.
Fuad, M., Rachmawati, D. E., Herlina, L., Setiawan,
D. I., & Anugrah, R. I. (2022). Pengembangan
Metode Identifikasi Karakteristik Minyak
Berat Hasil Ekstraksi Oil Sand Iliran High Dengan
Formula Perhitungan Berdasarkan Komposisi
Elementer. Lembaran Publikasi Minyak Dan Gas
Bumi, 56(2), 99–109.
Lian, X., Xue, Y., Xu, G., Zhao, Z., Sheng, H., &
Lin, H. (2017). Effect of methyl acetoacetate as
a potential cold flow improver for biodiesel. Energy
Sources, Part A: Recovery, Utilization, and
Environmental Effects, 39(1), 97–102.
Madusanka, D. A. T., & Manage, P. M. (2018).
Potential utilization of Microcystis Sp. for biodiesel
production; Green Solution for Future
Energy Crisis.
Makarevičienė, V., Kazancev, K., & Kazanceva,
I. (2015). Possibilities for improving the cold
flow properties of biodiesel fuel by blending with
butanol. Renewable Energy, 75, 805–807.
Mamtani, K., Shahbaz, K., & Farid, M. M. (2021).
Glycerolysis of free fatty acids: A review. Renewable
and Sustainable Energy Reviews, 137,
Maquirriain, M. A., Querini, C. A., & Pisarello,
M. L. (2021). Glycerine esterification with free
fatty acids: Homogeneous catalysis. Chemical
Engineering Research and Design, 171, 86–99.
Monirul, I. M., Masjuki, H. H., Kalam, M. A.,
Zulkifli, N. W. M., Rashedul, H. K., Rashed, M.
M., Imdadul, H. K., & Mosarof, M. H. (2015).
A comprehensive review on biodiesel cold flow
properties and oxidation stability along with their
improvement processes. RSC Advances, 5(105),
–86655.
Monteiro, M. R., Ambrozin, A. R. P., Lião, L. M.,
& Ferreira, A. G. (2008). Critical review on
analytical methods for biodiesel characterization.
Talanta, 77(2), 593–605.
Nasional, B. S. (2015). SNI 7182: 2015: Biodiesel.
Badan Standar Nasional.
Paryanto, I., Prakoso, T., Suyono, E. A., & Gozan,
M. (2019). Determination of the upper limit of
monoglyceride content in biodiesel for B30
implementation based on the measurement of the
precipitate in a Biodiesel–Petrodiesel fuel blend
(BXX). Fuel, 258, 116104. https://doi.org/https://
doi.org/10.1016/j.fuel.2019.116104
Pramudito, Y., Maymuchar, M., Wibowo, C. S.,
Anggarani, R., Warahadi, D., Fathurrahman,
N. A., & Aisyah, L. (2022). Kinerja Mesin Spark
Ignition (SI) Berbahan Bakar Campuran Bensin-
Metanol (M-20) Dan Bensin-Etanol (E-20) Pada
Variasi Nilai Oktan. Lembaran Publikasi Minyak
Dan Gas Bumi, 56(2), 83–91.
Rahpeyma, S. S., & Raheb, J. (2019). Microalgae
biodiesel as a valuable alternative to fossil fuels.
BioEnergy Research, 12(4), 958–965.
Septiano, J., Yasutra, A., & Rahmawati, S. D.
(2022). Build of Machine Learning Proxy Model
for Prediction of Wax Deposition Rate in Two
Phase Flow Water-Oil. Scientific Contributions
Oil and Gas, 45(1), 34–48. https://doi.
org/10.29017/scog.45.1.922
Sia, C. B., Kansedo, J., Tan, Y. H., & Lee, K. T.
(2020). Evaluation on biodiesel cold flow properties,
oxidative stability and enhancement strategies:
A review. Biocatalysis and Agricultural
Biotechnology, 24, 101514. https://doi.org/https://
doi.org/10.1016/j.bcab.2020.101514
Sierra-Cantor, J. F., & Guerrero-Fajardo, C. A.
(2017). Methods for improving the cold flow
properties of biodiesel with high saturated fatty
acids content: A review. Renewable and Sustainable
Energy Reviews, 72, 774–790.
Souza, G. K., Scheufele, F. B., Pasa, T. L. B., Arroyo,
P. A., & Pereira, N. C. (2016). Synthesis of
ethyl esters from crude macauba oil (Acrocomia
aculeata) for biodiesel production. Fuel, 165,
–366.
Vitiello, R., Li, C., Russo, V., Tesser, R., Turco,
R., & Di Serio, M. (2017). Catalysis for esterification
reactions: a key step in the biodiesel
production from waste oils. Rendiconti Lincei,
(1), 117–123.
Wang, J., Cao, L., & Han, S. (2014). Effect of
polymeric cold flow improvers on flow properties
of biodiesel from waste cooking oil. Fuel,
, 876–881.
Wawrzyniak, R., Wasiak, W., & Frackowiak, M.
(2005). Determination of methyl esters in diesel
oils by gas chromatography-validation of the
method. Chemical Papers-Slovak Academy of
Sciences, 59(6B), 449.
Xue, Y., Zhao, W., Ma, P., Zhao, Z., Xu, G., Yang,
C., Chen, H., Lin, H., & Han, S. (2016). Ternary
blends of biodiesel with petro-diesel and diesel
from direct coal liquefaction for improving the
cold flow properties of waste cooking oil biodiesel.
Fuel, 177, 46–52.
Yahaya Khan, M., Abdul Karim, Z. A., Hagos, F.
Y., Aziz, A. R. A., & Tan, I. M. (2014). Current
trends in water-in-diesel emulsion as a fuel. The
Scientific World Journal, 2014.
DOI: https://doi.org/10.29017/SCOG.45.3.1262
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.