IN SILICO POTENTIAL ANALYSIS OF X6D MODEL OF PEPTIDE SURFACTANT FOR ENHANCED OIL RECOVERY
Abstract
Keywords
Full Text:
PDFReferences
Dong, H., Paramonov, S. E. & Hartgerink, J. D. (2008). Self-assembly of alpha-helical coiled coil nanofibers. J. Am. Chem. Soc. 130, 136915.
Hamley, I. W. Peptide nanotubes. (2014).Angew. Chem. Int. Ed. Engl. 53, 686681.
Vauthey, S., Santoso, S., Gong, H., Watson, N. & Zhang, S. (2002). Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. U. S. A. 99, 535560.
Dexter, A. F. & Middelberg,w A. P. J. (2008). Peptides As Functional Surfactants. Ind. Eng. Chem. Res. 47, 63916398.
Simpson, D. R., Natraj, N. R., McInerney, M. J. & Duncan, K. E. (2011). Biosurfactant-producing Bacillus are present in produced brines from Oklahoma oil reservoirs with a wide range of salinities. Appl. Microbiol. Biotechnol. 91, 108393.
Adjonu, R., Doran, G., Torley, P. & Agboola, S. (2014). Whey protein peptides as components of nanoemulsions: A review of emulsifying and biological functionalities. J. Food Eng. 122, 1527.
Youssef, N., Simpson, D. R., McInerney, M. J. & Duncan, K. E. (2013). In-situ lipopeptide biosurfactant production by Bacillus strains correlates with improved oil recovery in two oil wells approaching their economic limit of production. Int. Biodeterior. Biodegradation 81, 127132.
Prez, L., Pinazo, A., Pons, R. & Infante, M. (2014). Gemini surfactants from natural amino acids. Adv. Colloid Interface Sci. 205, 13455.
Xu, J. et al. (2013). Effect of surfactant headgroups on the oil/water interface: An interfacial tension measurement and simulation study. J. Mol. Struct. 1052, 5056.
Herdes, C., Santiso, E. E., James, C., Eastoe, J. & Mller, E. A. (2015). Modelling the interfacial
behaviour of dilute light-switching surfactant solutions. J. Colloid Interface Sci. 445, 1623.
Humphrey, W., Dalke, A. & Schulten, K. (1996). VMD: Visual molecular dynamics. J. Mol. Graph. 14, 3338.
Kyte, J. & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105132.
Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P. & de Vries, A. H. (2007). The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B 111, 78127824.
Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 4356.
Lindahl, E., Hess, B. & van der Spoel, D. (2001). GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 7, 306317.
Van Der Spoel, D. et al. (2005). GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 170118.
Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. (2008). GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 4, 435447.
DOI: https://doi.org/10.29017/SCOG.39.2.107
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.