ESTIMASI PERMEABILITAS DENGAN BEBERAPA METODE KARAKTERISASI RESERVOIR UNTUK FORMASI TALANGAKAR

Ade Yogi

Sari


Permeabilitas merupakan salat satu properti reservoir yang sangat penting. Data permeabilitas dapat diperoleh secara langsung dengan pengamatan core di laboratorium dan secara tidak langsung dengan berdasarkan estimasi yang akan dikaji pada kegiatan ini. Kajian dilakukan dengan membandingkan beberapa metode karakterisasi reservoir yaitu metode fuzzy logic, FZI (Flow Zone Indicator) dan PGS (Pore Geometry Structure) pada satu lapangan dengan terlebih dahulu melakukan estimasi permeabilitas pada uncored zone dan/atau uncored wells pada reservoir studi yang kemudian digunakan dalam pemodelan.

Kata Kunci


reservoir; permeabilitas; fuzzy logic; flow zone indicator dan pore geometry structure

Teks Lengkap:

PDF (English)

Referensi


Acampora, Giovanni; Loia, Vincenzo; Lee, Chang-Shing; Wang, Mei-Hui, 2013. On the Power of Fuzzy Markup Language.

Amaefule, J. O., et al., 1993: Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells, SPE 26436, Texas.

Archie. 1950: Introduction to petrophysics of reservoir rocks, Buletin of the American Association of Petroleum Geologists, Vol. 34, No. 5, p. 943-961.

Cuddy. 2000: Litho-Facies and permeability prediction from electrical logs using fuzzy logic, SPE 65411, Abu Dhabi.

Di Stefano, Bruno N., 2013. On the Need of a Standard Language for Designing Fuzzy Systems.

Gerla,, G. 2016. Comments on some theories of fuzzy computation. International Journal of general Systems. 45 (4): 372392.

Leverett, M.C., 1941: Capillary Pressure in Porous Solids, Trans., AIME, Vol. 142, p. 341-358.

Permadi, P., and Susilo, A., 2009: Permeability Prediction and Characteristics of Pore Structure and Geometry as Inferred from Core Data, SPE 125350-PP, Abu Dhabi.

Permadi, et al., 2011: Rock typing and permeability prediction for water-wet and oil-wet rocks, Proceedings of Society of Core Analyst, SCA2011-53, Texas.

Valiant, Leslie, 2013 Probably Approximately Correct: Natures Algorithms for Learning and Prospering in a Complex World New York: Basic Books.

Zadeh, L., 1965: Fuzzy Sets, Inf. Control. 8, 338.




DOI: https://doi.org/10.29017/LPMGB.52.1.91