APLIKASI ADITIF-NANO PEMODIFIKASI GESEKAN (FRICTION MODIFIER) DALAM MENURUNKAN KONSUMSI BAHAN BAKAR SEPEDA MOTOR (The Application of Nano-Friction Modifier Additive in Reducing Fuel Consumption of Motorcycles)

M. Hanifuddin, Setyo Widodo, Catur Y. Respatiningsih, Milda Fibria, Rona Malam K

Sari


Minyak lumas berfungsi antara lain untuk mengurangi gesekan dan keausan yang terjadi pada sistem mekanikal suatu peralatan. Aditif yang sering digunakan untuk mengurangi gesekan adalah aditif pemodifikasi gesekan. Level gesekan yang rendah akan menaikkan efisiensi mesin yang ditunjukkan dengan menurunnya konsumsi bahan bakar, kenaikan output daya, dan penurunan emisi gas buangnya. Penelitian ini bertujuan untuk mengetahui kinerja aditif-nano pemodifi kasi gesekan jenis MoS2pada minyak lumas mesin sepeda motor otomatis terkait kinerja mesin yang disebabkan menurunnya gesekan. Metodologi penelitian ini adalah menggabungkan aditif nano jenis pemodifikasi gesekan MoS2ke dalam minyak lumas dasar jenis mineral dan sintetik dengan ditambah dengan aditif lainnya sehingga dihasilkan minyak lumas mesin yang siap diuji jalankan. Uji jalan ditempuh sejauh 3000 km dengan pegambilan data kinerja sepeda motor yang meliputi output power, konsumsi bahan bakar serta uji emisi yang dilakukan pada jarak tempuh 0 km; 1000 km; 2000 km; dan 3000 km; menggunakan dua jenis sepeda motor uji, yaitu jenis Y dan jenis H. Sepeda motor jenis Y menggunakan minyak lumas SAE 10W-40/API SL, sedangkan sepeda motor jenis H menggunakan SAE 10W30/API SL. Sebanyak empat buah sepeda motor digunakan dalam uji jalan, yaitu sepeda motor YR dan HR yang dilumasi dengan minyak lumas tanpa aditif nano sebagai referensi, sedangkan sepeda motor YN dan HN yang dilumasi dengan minyak lumas yang telah diformulasikan dengan aditif-nano pemodifikasi gesekan. Hasil penelitian menunjukkan bahwa aditif nano berfungsi dengan baik setelah jarak tempuh 1000 km. Semakin jauh jarak tempuh, semakin terlihat pengaruh penambahan aditif nano terhadap power output dan tingkat konsumsi bahan bakar. Peningkatan output daya dan torsi mesin uji maksimal dicapai pada jarak tempuh 3000 km yaitu sebesar 17,53 % dan 17,49 % untuk Motor Y, sedangkan untuk Motor H sebesar 15,04 % dan torsi 9,69%. Penghematan konsumsi bahan bakar maksimal dicapai pada jarak tempuh 1000 km, untuk Motor Y sebesar 68,9% dan Motor H sebesar 60,5 %. Oleh karena itu, dapat disimpulkan bahwa aditif nano MoS2menujukkan kinerja yang baik pada pelumas mesin sepeda motor.

Lube oils play important roles in the mechanical systems of machineries, some of them are to reduce friction and wear. Friction modifier additive are often introduced in a lube oil formulation to reduce friction. Low level of aimed at finding out the performance of nano-friction modifier additive, MoS2, which was applied in a motorcycles engine oils, in terms of reducing friction. The methodology of this research was incorporating MoS2nano-friction modifier additive into either mineral or synthetic base oils and other additives to form motorcycles engine oils which are set for a road-rest. This road-test was set for 3000 km, with testing intervals at 0 km; 1000 km; 2000 km; and 3000 km, which were performed using two types of motorcycles, Y and H. Type Y motorcycles were lubricated with SAE 10W-40/API SL engine oils, while Type H motorcycles were lubricated with SAE 10W30/API SL engine oils. In totals, there are four testing motorcycles, two of them were lubricated with conventional engine oil without nano-friction modifier, YR and HR which were the reference vehicles, while the other two were lubricated with engine oil containing nano-friction modifier, YN and HN. The research findings showed that nano-friction modifier requires optimum induction time in order to perform properly at 1000 km. The further the motorcycles mileage, the more intense it influence to the motorcycles performances. Maximum power and torque output were achieved at 3000 km, which are 17.53% and 17.49%, consecutively for motorcycle YN and YR, whereas for motorcycle HN gave the maximum power and torque output of 15.04% and 9.69%, in comparison with HR. The maximum fuel consumption saving were reached at 1000 km for both types of motorcycles, which are 68.9% in motorcycle Y and 60.5% in motorcycle H. In conclusion, MoS2nano-modifier additive exhibits a very good performance when it is applied in motorcycles engine oils.


Kata Kunci


minyak lumas mesin, aditif pemodifi kasi gesekan, nano MoS2 , konsumsi bahan bakar

Teks Lengkap:

PDF

Referensi


Chen, Z., Liu, X., Liu, Y., Gunsel, S. and Luo, J., 2015. Ultrathin MoS2 nanosheets with superior extreme pressure property as boundary lubricants. Scientific reports, 5

Dai, W., Kheireddin, B., Gao, H. and Liang, H., 2016.Roles of nanoparticles in oil lubrication. Tribology International, 102, pp.88-98.

Ferguson, C.R. and Kirkpatrick, A.T., 2001. Internal combustion engines applied thermosciences, John Wiley and Sons.

Holmberg, K., Andersson, P. and Erdemir, A.,2012. Global energy consumption due to friction in passenger cars. Tribology International, 47, pp.221-234.

Jamale Sonali , N.Sandhyarani and V.Sajith, Tribological properties and stabilization study of surfactant modified MoS2 nanoparticle in 15W40 engine oil, International Journal of Fluid Mechanics & Machinery IJFMM Volume 1 : Issue 3 [ISSN 2374-1481] Publication Date : 30 September,2014.

Jost, H.P., 2005. COMMENTARY-Tribology Micro & Macro Economics: A Road to Economic Savings-When will the world truly understand the role tribology plays in reducing costs, improving safety and protecting life? The. Tribology and LubricationTechnology, 61(10), pp.18-23.

Kalin, M., Kogovek, J. and Remkar, M., 2012.Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives. Wear, 280, pp.36-45.

Kogovek, J., Remkar, M., Mrzel, A. and Kalin, M., 2013. Influence of surface roughness and running-in on the lubrication of steel surfaces with oil containing MoS2 nanotubes in all lubrication regimes. tribology international, 61, pp.40-47.

Mortier, R.M. and Orszulik, S.T. eds., 2010. Chemistry and technology of lubricants (Vol. 107115). Berlin: Springer.Miller, R.W. (1993). Lubricants and Their Applications. Mc Graw-Hill Inc.

Stachowiak, G. and Batchelor, A.W., 2013. Engineering tribology. Butterworth-Heinemann.

Spikes, H., 2015. Friction modifi er additives. Tribology Letters, 60(1), p.5.

Santillo, G., Deorsola, F.A., Bensaid, S., Russo, N. and Fino, D., 2012. MoS 2 nanoparticle precipitation in turbulent micromixers. Chemical engineering journal, 207, pp.322-328.

Taylor, R.I. and Coy, R.C., 2000. Improved fuel efficiency by lubricant design: a review. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 214(1), pp.1-15.

Tung, S.C. and McMillan, M.L., 2004. Automotive tribology overview of current advances and challenges for the future. Tribology International, 37(7), pp.517-536.

Tomala, A., Vengudusamy, B., Ripoll, M.R., Suarez, A.N., Remkar, M. and Rosentsveig, R., 2015. Interaction between selected MoS2 nanoparticles and ZDDP tribofi lms. Tribology letters, 59(1), p.26.

Widodo, S., Hanifuddin, M. and Karina, R.M., 2016. Tribological Properties of Mineral Base Oils With Tungsten Disulphide (WS2) Nanoparticles in Boundary Lubrication Conditions. Scientific Contributions Oil and Gas, 39(2).

Xu, Y., Hu, E., Hu, K., Xu, Y. and Hu, X., 2015. Formation of an adsorption film of MoS2 nanoparticles and dioctyl sebacate on a steel surface for alleviating friction and wear. Tribology International, 92, pp.172-183.

Zhang, Z.J., Zhang, J. and Xue, Q.J., 1994. Synthesis and characterization of a molybdenum disulfide nanocluster. The Journal of Physical Chemistry, 98(49), pp.12973-12977.




DOI: https://doi.org/10.29017/LPMGB.51.3.354