Profil Perubahan Nilai Resistivitas Reservoar Pada Batu Pasir Karena Pengaruh Mineral Glaukonit

Sarju Winardi, Sugeng Sapto Surjono, Donatus Hendra Amijaya, Wiwit Suryanto

Sari


Keberadaan minyak dan gas bumi secara umum dicirikan oleh nilai resistivitas reservoar (Rt) yang tinggi. Fakta yang dipublikasikan beberapa peneliti menunjukkan adanya zona hidrokarbon yang nilai resistivitas reservoarnya rendah atau biasa disebut Low Res Low Contrast (LRLC). Penelitian mengenai profil perubahan Rt pada reservoar batupasir karena pengaruh mineral glaukonit masih terbatas. Mineral glaukonit dilaporkan dijumpai pada beberapa reservoar batupasir di Indonesia. Penelitian ini bertujuan untuk mengetahui pengaruh kehadiran mineral glaukonit terhadap perubahan nilai resistivitas reservoar (Rt). Penelitian dilakukan dengan membuat pseudo core batupasir yang dikondisikan mengandung mineral glaukonit dari 2-30% dan dihitung nilai Rt-nya pada kondisi saturasi air (Sw) yang berbeda. Sampel pseudo core diukur pada kondisi permukaan dengan tingkat porositas 40% dan diinjeksi air formasi bersalinitas 20.000 ppm. Hubungan antara volume mineral konduktif dan nilai Rt diplot pada suatu kurva untuk tiap tingkat saturasi air (Sw). Hasil pengukuran tegangan sampel yang mengandung glaukonit berkisar antara 5,9 volt sampai dengan 18,8 volt. Nilai resistivitasnya berkisar antara 6,05 ohm.m sampai dengan 19,28 ohm.m. Glaukonit terbukti menurunkan nilai Rt dan profil perubahan nilai Rt vs volume glaukonit adalah eksponensial. Pada sampel dengan kandungan glaukonit sebesar 10%, resistivitas reservoar terkoreksi diestimasi sebesar satu setengah kali Rt awal

Kata Kunci


LRLC, Rt, reservoar, batupasir, glaukonit

Teks Lengkap:

PDF

Referensi


Archie, G.E., 1950, Introduction to Petrophysics of Reservoir Rocks, The AAPG Bulletin, Vol 34, No. 5, p. 943-961. https://doi.org/10.1306/3D933F62.

Arediningsih, Y., 2000, Low Resistivity Low Contrast Pay Of Clastic Reservoirs With A Study Case Of Tertiary Basins In Malaysia, tesis master pada Universiti Teknologi Petronas, tidak dipublikasikan.

Asquith, G.B., 1985, Handbook of Log Evaluation Techniques for Carbonate Reservoirs, Methods in Exploration Serien No#5, AAPG, Oklahoma, 47 p. DOI:10.1306/MTH5446

Atkinson, C.D., Scott, J., and Young, R., 1993, Clastic Rocks and Reservoirs of Indonesia – A Core Workshop, Indonesian Petroleum Association, Jakarta, 229 p.

Bishop, A.C., Wooley, A.R., and Hamilton, W.R., 2005, Philip’s Guide To Minerals Rocks and Fossils, Philip’s, London, 336 p.

Boggs, S.Jr., 1992, Petrology of Sedimentary Rocks, Macmillan Publishing Company, New York, 707 p. https://doi.org/10.1017/CBO9780511626487

Boyd, A., Darling, H., Tobano, J., Davis, B., Lyon, B., Flaum, C., Klein, J., Sneider, R.J., Sibbit, A., and Singer, J., 1995, The Lowdown on Low Resistivity Pay, Oilfield Review, Autumn edition, Schlumberger, p. 4-18.

Claverie, M., Allen, D.F., Heaton, N. and Bordakov, G., 2010, A New Look at Low-Resistivity and Low-Contrast (LRLC) Pay in Clastic Reservoirs, SPE Annual Technical Conference and Exhibition, Florence, 1 p. https://doi.org/10.2118/134402-MS

Clavier, C., Heim, A. and Scala, C., 1976, Effect of Pyrite on Resistivity and Other Logging Measurements, SPWLA Seventeenth Annual Logging Symposium, SPE, 34 p.

Dewan, J.T., 1983, Essentials of Modern Open Hole Log Interpretation, Penwell Publishing Co., Oklahoma, 361 p.

Pratami, D.A., Winardi, S., Surjono, S.S., Atmoko, W., 2023, The Comparation of Water Saturation Approaches to Reveal a Low Resistivity Reservoir Potential Case in Gumai Formation, South Sumatra Basin, Scientific Contributions Oil & Gas (SCOG), Vol. 46. No. 2, August: 53 – 63. https://doi.org/10.29017/SCOG.46.2.1563

Gandhi, A., Kubik, P., Termina, J.J., Rocque, T. and Volkmar, M., 2011, Petrophysics Identifies Low Resistivity Reservoirs, September 2011 Editor’s Choice-Magazine, available at http://www.aogr.com/magazine/editorschoice, 12 Nov 2015, 12 p.

GGumilar, B., Adriansyah, R., Thomas, A.R. and Darmawan, B., An Analysis Of Low-Contrast Pay In Tellsa Sands Packagesin Central Sumatra, Proceeding of 25th Annual Convention and Exhibition of IPA, Indonesian Petroleum Association, Jakarta, p. 175-187.

Hamada, G.M., and Al-Awad, M.N., 2002, Evaluation of Low Resistivity Beds Using Nuclear Magnetic Resonance Log, Engineering Science, vol. 14, no. 1, p. 47-61.

Nybakk, E. And Fabricius, I.L., 2001, Excess Conductivity of Glauconite, 6th Nordic Symposium on Petrophysics, Norway, 1 p.

Parasnis, D.S., 1986., Principles of Applied Geophysics, Chapman and Hall, New York, 402 p.

Partono, Y.J., 1992, Low Resistivity Sandstone Reservoirs in the Attaka Field, Proceeding of 21st Annual Convention and Exhibition of IPA, Indonesian Petroleum Association, Jakarta, p. 20-34.

Patnode, H.W. and Wyllie, M.R.J., 1950, The Presence of Conductive Solids in Reservoir Rocks As A Factor in Electric Log Interpretation, Petroleum Transactions, AIME, Vol 189, p. 47-52. https://doi.org/10.2118/950047-G

Scholle, P.A., 1979, A Color Illustrated Guide To Constituents, Textures, Cements, And Porosities Of Sandstone And Associated Rocks, AAPG, Tulsa, 201 p. https://doi.org/10.1306/M28402

Selley, R.C., 1988, Applied Sedimentology, Academic Press Limited, London, 446 p.

Suwardji, Buhari, A., Kukuh, K. And Prayitno, R., 1994. Low Resistivity Reservoir Study: Sangatta Field Kalimantan, Proceeding of 23rd Annual Convention and Exhibition of IPA, Indonesian Petroleum Association, Jakarta, p. 119-130.

Telfrod, W.M., Geldart, L.P. and Sheriff, R.E., 1990, 2nd ed, Applied Geophysics, Cambridge University Press, Cambridge, 744 p. https://doi.org/10.1017/CBO9781139167932

Waxman, M. H. and Smits, L. J. M., 1968, Electrical Conductivities in Oil-bearing Shaly-sands, SPE Journal, Vol. 8, p. 107–122. https://doi.org/10.2118/1863-A

Winardi, S., Surjono, S.S., Amijaya, D.H.,Suryanto, W., 2018, The Influence of Hematite in Sandstone Reservoir, Proceeding of 12nd Seatuc, Yogyakarta, Indonesia.

Winardi, S., Suryono S.S., Amijaya, D.H., Suryanto, W., 2019. Reservoir Resistivity Measurement of Pseudo Core Sample at Laboratory Scale Based on Ohm’s Law and Wenner Method. Proceeding of HAGI-IAGI-IAFMI-IATMI Joint Convention, Yogyakarta. 1-8.

Winardi, S., 2019, Pengaruh Mineral Konduktif Pada Reservoar Batupasir Terhadap Nilai Resistivitas dan Saturasi Air, Disertasi, Teknik Geologi UGM, Yogyakarta.

Winardi, S., Surjono, S.S., Amijaya, D.H.,Suryanto, W., 2021, Reservoir Resistivity Correction Factor in Low Resistivity Pyritic Sandstone Reservoir, IOP Conference Series: Earth and Environmental Science, Volume 851, International Conference on Geological Engineering and Geosciences 16 - 18 March 2021, Yogyakarta, Indonesia. (https://iopscience.iop.org/article/10.1088/1755-1315/851/1/012050) DOI 10.1088/1755-1315/851/1/012050

Yanto, E., Winardi, S., 2015, Analysis of Magnetite Mineral Influence on Clean Sandstone Reservoir Resistivity through Correction Methods in Low Resistivity Pay Zone, Proceeding of 39th IPA Convention & Exhibition, Jakarta.

Zaemi, F.F., Rohmana, C.R., and Atmoko, W. (2022) Uncovering The Potential of Low Resistivity Reservoirs Through Integrated Analysis : A Case Study from The Talang Akar Formation in The South Sumatra Basin, in Scientific Contributions Oil and Gas (SCOG) Vol.45, p. 169-181.

https://doi.org/10.29017/SCOG.45.3.1258




DOI: https://doi.org/10.29017/LPMGB.58.2.1628