Perbandingan Penggunaan Nano Silika dan Nano Abu Batubara pada Uji Kestabilan Busa untuk Injeksi CO2
DOI:
https://doi.org/10.29017/LPMGB.57.2.1577Kata Kunci:
injeksi CO2, nano silika, nano abu batubara, polimer xanthan gum, stabilitas busaAbstrak
Penggunaan busa CO2 untuk metode injeksi cenderung tidak stabil dalam pembentukan stabilitas dari busa. Karena hal itu, dibutuhkan penguat untuk menambahkan stabilitas busa yang terbentuk. Pada penelitian ini, menggunakan nano abu batubara dan nano silika serta polimer berupa xanthan gum sebagai penguat busa. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh dengan penambahan nano dan polimer pada stabilitas busa, perbandingan penggunaan nano abu batubara dan silika dalam uji stabilitas busa serta penelitian ini juga bertujuan untuk mengetahui penguat apa yang dapat meningkatkan stabilitas busa secara signifikan. Metode yang digunakan pada penelitian ini menggunakan metode uji laboratorium yang dimulai dari proses milling sampel, karakterisasi sampel, hingga pengujian stabilitas busa. Pengujian stabilitas busa menggunakan metode yang menghitung waktu halftime. Hasil dari pengujian stabilitas busa ini didapatkan bahwa penambahan nano silika dan nano abu batubara memiliki peningkatan waktu halftime sebesar 10.23% dan 2.96% dibandingkan tidak menggunakan nanopartikel. Campuran dari nanopartikel dan polymer berupa xanthan gum dapat meningkatkan waktu halftime 12.65% untuk nano silika dan 6.33% untuk nano abu batubara. Sedangkan campuran nanopartikel, polimer, dan minyak mengalami penurunan 10.9% untuk nano silika dan 16.29% untuk nano abu batubara. Berdasarkan hasil analisis data percobaan yang sudah dilakukan, penambahan nano silika memiliki nilai stabilitas busa yang lebih tinggi dibandingkan nano abu batubara serta penambahan nano silika dan polimer merupakan penguat yang paling baik dalam menjaga stabilitas dari busa yang dihasilkanReferensi
Ajiz, A. H., Mawarani, L. J., Widiyastuti, & Setyawan, H. (2020). Peningkatan Stabilitas Busa Dengan Nanofluida Silika Untuk Meningkatkan Produksi Gas Alam. Berkala Sainstek , 7-8.
Budi, I. S., Rudiyono, A., & Pramana, A. (2019). Injeksi Foam Sebagai Tertiary Oil Recovery. Jurnal Petro 2019, 51-57.
Clark, J. A., & Santiso, E. E. (2018). Carbon Sequestration Through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective. Engineering, vol. 4, no. 3, 336-342.
Clayton, K. N., Salameh, W. J., Wereley, T. S., & Kinzer-Ursem, L. T. (2016). Physical Characterization of Nanoparticle Size and Surface Modification Using Particle Scattering Diffusometry. American Institute of Physics.
Eftekhari, A. A., Krastev , R., & Farajzadeh, R. (2015). Foam Stabilized by Fly-Ash Nanoparticles for Enhancing Oil Recovery. Society of Petroleum Engineers, 3-9.
Hitesh, Wattal, R., & Lata, S. (2021). Development and characterization of coal fly ash through low-energy ball milling. Materials Today: Proceedings.
Ibrahim, A. F., & Nasr-El-Din, H. A. (2019). CO2 Foam for Enhanced Oil Recovery Applications. Foams-Emerging Technologies, 3-13.
Lee, S., & Kam , S. I. (2013). Enhanced Oil Recovery by Using CO2 Foams: Fundamentals and Field Applications. Dalam J. J. Sheng, Enhanced Oil Recovery Field Case Studies (hal. 23). United State of America: Elsevier.
Lunkenheimer, K., & Malysa, K. (2003). Simple and Generally Applicable Method of Determination and Evaluation of Foam Properties. Journal of Surfactant and Detergents Vol.6 No.1, 71.
Modena, M. M., Ruhle, B., Burg, T. P., & Wuttke, S. (2019). Nnanoparticle Characterization: What to Measure. Advance Material, 2-5.
Nuraeni, W., Daruwati, I., W, E. M., & Sriyani, M. (2013). Verifikasi Kinerja Alat Particle Size Analyzer (PSA) Horiba LB-550 Untuk Penentuan Distribusi Ukuran Nanopartikel. Prosiding Seminar Nasional Sains dan Teknologi Nuklir, 268.
Putra, B. P., & Kiono, B. F. (2021). Mengenal Enhanced Oil Recovery (EOR) Sebagai Solusi Meningkatkan Produksi Minyak Indonesia. Jurnal Energi Baru & Terbarukan, 85-90.
Raja, P. B., Munusamy, K. R., Perumal, V., Nasir, M., & Ibrahim, M. (2022). Characterization of nanomaterial used in nanobioremediation. Micro and Nano Technologies.
Sabdoningrum, E. K., Hidanah , S., Chusniati, S., & Soeharsono. (2021). Characterization and Phytochemical Screening of Meniran (Phyllanthus niruri Linn) Extract's Nanoparticles Used Ball Mill Method. Pharmacogn J. Suppl:1568-1572 A maultifaceted Journal in The field of Natural Product and Pharmacognosy.
Saputra, D. D., Sugihardjo, & Tobing, M. E. (2018). Studi Kelayakan Untuk Implementasi Injeksi CO2 Skala Pilot di Lapangan Minyak A, Sumatera Selatan. LEMBARAN PUBLIKASI MINYAK dan GAS BUMI Vol.52, No.1, 16.
Sugihardjo, & Purnomo, H. (2009). Perubahan Sifat-Sifat Fluida Reservoir Pada Injeksi CO2. LEMBARAN PUBLIKASI LEMIGAS Vol. 43.No. 1, April 2009:11-16, 13-15.
Syahrial, E., & Purnomo, H. (2009). Peningkatan Produksi Minyak dengan Injeksi CO2 pada Lapangan Minyak Tua Sangatta Kalimantan Timur. LEMBARAN PUBLIKASI LEMIGAS VOL.43, NO.2, 167.
Usman. (2011). Potensi Pengembangan EOR untuk Peningkatan Produksi Minyak Indonesia. LEMBARAN PUBLIKASI MINYAK DAN GAS BUMI Vol. 45. No. 2, Agustus 2011: 91-102, 94.
Vishal, B., & Ghosh, P. (2018). The Effect of Silica Nanoparticles On The Stability of Aqueous Foams. Journal of Dispersion Science and Technology.
Worthen, A. J., Bagaria, H. G., Chen, Y., Bryant, S. L., Huh, C., & Johnston, K. P. (2013). Nanoparticle-stabilized carbon dioxide-in-water foams with fine texture. J. Colloid Interface Sci, Vol 391,no. 1, 142-151.
Yekeen, N., Idris, A. K., Manan, M. A., Samin, A. M., Risal, A. R., & Kun, T. X. (2016). Bulk and Bubble-Scale Experimental Studies of influence of Nanoparticles on Foam Stability. CJCHE 649.