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ABSTRACT

 AVO is not only well known as gas indicator over the last two decades but also more
importantly, AVO provides us with a means for extracting petrophysical parameters from
seismic data. Using AVO anomaly one can derive important petrophysical parameters such
as Poisson’s ratio and S-wave velocity. By knowing S-wave velocity nearly all other
petrophysical parameters can be calculated. An effective procedure for inverting AVO
anomaly is presented in this paper. It avoids inefficient trial and error steps during the
matching process between AVO anomaly and calculated AVO. This method uses Levenberg-
Marquardt optimization technique.

Key words: AVO anomaly, AVO inversion, petrophysical parameters, Levenberg-Marquardt
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I. INTRODUCTION

AVO (Amplitude versus Offset) has been widely
known in oil and gas industries over the last twenty
years. It is a phenomenon which is exploited to ex-
tract petrophysical properties from seismic data. Using
AVO anomaly one can predict the shear wave ve-
locity from ordinary seismic data. This extracted shear
wave velocity in turn can be used to derive other
petrophysical parameters such as Poisson’s ratio, in-
compressibility, Young modulus, mu-rho and lambda-
rho, etc.

In 1995, The Society of Exploration Geophysicsts
has published a comprehensive book entitled “Off-
set-dependent reflectivity-theory and practice of AVO
analysis” edited by Castagna and Backus. This book
has become resource information for the industries
in searching gas deposits in the subsurface. AVO then
is well-known as a good gas indicator which is more
powerful than the previous phenomena known as
“bright spot” introduced in the seventies.

The success and development of AVO implemen-
tation for oil and gas industries is firmly demonstrated
with the publication of a book written by Avseth,
Mukerji and Mavco (2006) entitled “Quantitative

Seismic Interpretation: Applying Rock Physics Tool
to Reduce Interpretation Risk“.  In this book it is dem-
onstrated that AVO analysis can provide significant
means for differentiating reservoir rock (lithology) as
well as its fluid content.

AVO anomaly will be shortly reviewed in the next
paragraph but the most important thing is its inver-
sion. Inversion here means by knowing AVO anomaly
one wants to estimate the petrophysical properties
which causes the anomaly. The aim of this paper is
to demonstrate a specific method for estimating the
petrophysical parameters from a given AVO anomaly
using the Marquardt optimization technique.

II. THEORETICAL BACKGROUND

The basic theoretical concept of AVO origins from
the work by Zoeppritz (1919) who formulated the
energy partition as function of angle of incidence when
a seismic wave impinges an interface. Zoeppritz for-
mulation is the exact solution of this problem, it formed
a 4 x 4 simultaneous equations. Computationally it is
complicated, that is why it took a very long time to go
before its implementation can be used by industries.
We do not intend to rewrite the exact Zoeppritz equa-
tion here, but instead we will display an example of a
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specific case represented by curves computed
from Zoeppritz‘s equation (see Figure 1) and
discuss its implications.

Figure 1 is the theoretical curve of the AVO
phenomena in which P wave incident into an
interface with low velocity layer above and
higher velocity layer below it. It can be seen
that most of the energy is transmitted into the
second layer. The reflected energy although
is only a small portion has a specific behavior,
departing from zero degree angle of incidence
we can see that the decrease of the P wave
energy (r

pp
) is compensated by the increase

of S wave energy (r
ps

). There is a discontinu-
ity in this curve which located around 38°
(angle of incidence). This discontinuity signi-
fies the existence of a critical angle.

The AVO phenomena can also be ob-
served in a seismic record (CDP gather) as
illustrated in Figure 2.

The use of Zoeppritz concept started gain-
ing popularity after his formulation can be sim-
plified by  several researchers such as
Koefoed (1955), Aki and Richards (1980),
Ostrander (1984), Shuey (1985). Using the
simplified Zoeppritz‘s equation the phenom-
ena of reflection and transmission coefficient
from a single interface as a function of angle
of incidence can be computed easily which
makes it favorable for multiple applications pur-
poses such as required in the inversion pro-
cess. It should be noted that Zoeppritz simpli-
fied equation is only valid for angle of inci-
dence up to critical angle, while the complete
Zoeppritz equation valid from 0° to 90° (angle
of incidence).

III. AVO INVERSION

In geophysics one usually observes an
anomaly because of “something”  that exists
in the subsurface layer. Inversion means:
based on the observed anomaly one wants to
know the “something” which causes the
anomaly.

Basically the AVO inversion consists of
fitting the AVO anomaly using a computed
curve calculated from a predicted model.
When this matching does not fit, one modifies
the model’s parameters then calculates again

Figure 1
 Energy ratio as a function of angle of incidence

computed using exact Zoeppritz’s equation with a
specific model represented by Vp, Vs and rho.

 (Munadi, 1985)

Figure 2
AVO phenomena observed in a noise-free synthetic
CDP gather where shale overlay brine sand layer,

 where: Vp
1
 = 2105 m/s,  Vp

2
 = 2196 m/s, Vs

1
 = 1035 m/s,

Vs
2
 = 1215 m/s, rho

1 
= 2.10 gr/cc and rho

2
 = 2.15 gr/cc.
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the new computed curve. This procedure is repeated
hundreds times until the computed curve matches with
the observed anomaly. This kind of trial and error
process can be time consuming and not efficient. An
optimization procedure can be incorporated in this
process to accelerate the matching process in order
to speed up its convergence. In this paper we pro-
pose the Levenberg-Marquardt optimization technique
and use Shuey’s approximation (1985) to define re-
flection coefficient as a function of angle function:
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IV. THE LEVENBERG-MARQUARDT
OPTIMIZATION ALGORITHM

In mathematics and computing, the Levenberg–
Marquardt algorithm provides a numerical solution to
the problem of minimizing a function, generally non-
linear, over a space of parameters of the function.
These minimization problems arise especially in least
squares curve fitting and nonlinear programming.

The primary application of the Levenberg–
Marquardt algorithm is in the least squares curve fit-
ting problem: given a set of m empirical datum pairs
of independent and dependent variables, (x

i
, y

i
), opti-

mize the parameters ² of the model curve f(x,²) so
that the sum of the squares of the deviations





m
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becomes minimum.

Like other numerical minimization algo-
rithms, the Levenberg–Marquardt algorithm
is an iterative procedure. To start a minimi-
zation, the user has to provide an initial guess
for the parameter vector, β. In many cases,
an uninformed standard guess like βT =
(1,1,...,1) will work fine; in other cases, the
algorithm converges only if the initial guess
is already somewhat close to the final solu-
tion.

In each iteration step, the parameter
vector, β, is replaced by a new estimate, β +
δ. To determine δ, the func-

tions ),(  ixf  are approximated by

their linearization

Figure 3
The original function to be fitted
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It represents the gradient (row-vector in this case)
of f with respect to β. At its minimum, the sum of
squares, S(β), the gradient of S with respect to δ will
be zero. The above first-order approximation of

),(  ixf gives
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Or in vector notation,

2
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Taking the derivative with respect to d and set-
ting the result to zero gives:

 )()(  fyJJJ TT                         (7)

Jacobian matrix is stated earlier whose ith row
equals J

i
, and where f and y are vectors with ith com-

ponent ),( ixf  and y
i
, respectively. This is a set of

linear equations which can be solved for δ.
Levenberg’s contribution is to replace this equation
by a “damped version” of equation (7)
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 )()(  fyJIJJ TT            (8)

where I is the identity matrix, giving as the
increment, δ, to the estimated parameter
vector, β.

The (non-negative) damping factor, λ,
is adjusted each iteration. If reduction of S
is rapid, a smaller value can be used, bring-
ing the algorithm closer to the Gauss–New-
ton algorithm, whereas if iteration gives in-
sufficient reduction in the residual, λ can be
increased, giving a step closer to the gradi-
ent descent direction. Note that the gradient
of S with respect to β equals

TT fyJ )])([(2  . Therefore, for large
values of λ, the step will be taken approxi-
mately in the direction of the gradient. If ei-
ther the length of the calculated step, δ, or
the reduction of sum of squares from the
latest parameter vector, β  + δ, falls below
predefined limits, iteration stops and the last
parameter vector, β, is considered to be the
solution.

In this example we try to fit the function
y = a cos(bx) + b sin(ax) using the
Levenberg–Marquardt algorithm. The 3
graphs Fig 3, 4, 5 show progressively better
fitting for the parameters a = 100, b = 102
used in the initial curve. Only when the pa-
rameters in Fig 3 are chosen closest to the
original are the curves fitting exactly. This
equation is an example of very sensitive ini-
tial conditions for the Levenberg–Marquardt
algorithm.

VI.  RESULT AND DISCUSSION

We  provide  a  standard  model  data
given  in Table 1.

Below is flow chart of implementation
of AVO inversion using Levenberg-Marquardt opti-
mization technique.

An example of AVO anomaly observed in a CDP
gather as an input for AVO inversion is illustrated in
Figure 7 (red line). We can see clearly that there is
amplitude variation as CDP increases. In other words,
there is AVO anomaly when offset increases. It is

Figure 5
The original function which fits after several iterations

 and converges quickly using Levenberg-Marquardt
optimization technique

Figure 4
The original function to be fitted \

superimposed by first guess

called anomaly because in normal condition ampli-
tude decreases with offset, but in this data amplitude
increases as offset increases.

Figure 8a (1) is an example of amplitude data
computed from standard model representing shale
over gas sand (expressed in red dot color) and its
initial guess of the required parameters (blue dot
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Figure 6
Flow chart of implementation of AVO inversion

Table 1
Standard model data

Model Vp (m/s)
Density 
(gr/cc)

Poisson 
Ratio

Shale 3000 2.52 0.33

Gas sand 3500 2.00 0.10

Shale 3400 2.55 0.35

Oil sand 3000 2.00 0.20

Shale 3300 2.53 0.34

Water sand 4000 2.20 0.125

color). Figure 8a (2) is an example of perfect match-
ing between data and its fitting using Levenberg-
Marquardt optimization algorithm.

Figure 8b (1) is an example of amplitude data
computed from standard model representing shale
over oil sand (expressed in red dot color) and its ini-
tial guess of the required parameters (blue dot color).
Figure 8b (2) is the perfect matching using Levenberg-
Marquardt optimization algorithm yielding expected
petrophysical values.

Figure 8c (1) is an example of amplitude data
computed from standard model representing shale
over water sand (expressed in red dot color) and its
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Figure 7
AVO anomaly in a CDP gather

TRUE Guess
Optimi-
zation

Shale 0.33 0.20 0.336 1.7%

Gas sand 0.10 0.30 0.107 6.9%

Shale 0.35 0.20 0.352 0.6%

Oil sand 0.20 0.30 0.205 2.6%

Shale 0.34 0.20 0.342 0.6%

Water sand 0.125 0.30 0.128 2.3%

Layer

Poisson Ratio

Error

Table 2
Summary of Levenberg-Marquardt

optimization technique

Figure 8a
(1) AVO anomaly (red color) computed form standard model

 (shale over gas sand) and its first guess  (blue dot)
(2) Fitting well after using Levenberg-Marquardtoptimization technique

CDP

T
W

T
 (

m
s)

initial guess of the required parameters (blue dot
color). Figure 8c (2) is an example of perfect match-
ing between data and its final guess using Levenberg-

Marquardt optimization algorithm yielding expected
petrophysical values.

The net result of AVO inversion using Levenberg-
Marquardt optimization technique is summarized in
Table 2.

It can be seen that AVO inversion using
Levenberg-Marquardt optimization technique yields
Poisson’s ratio which is close to the given model with
a relatively negligible error. The Poisson’s ratio is the
basic element for S-wave prediction which in turn
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can be used for estimating other petrophysical prop-
erties.

VII. CONCLUSIONS

1. AVO inversion proves to be an effective tool for
estimating petrophysical properties from P-wave
seismic data.

2. The inversion process can be tedious if matching
AVO anomaly with the model data is not man-
aged wisely.

3. The Levenberg-Marquardt optimization technique
has proved to be an effective way for accelerat-
ing the matching process because it enables the
convergence to be reached very quickly.

Figure 8b
(1) AVO anomaly (red color) computed form standard model

(shale over oil sand) and its first guess (blue dot)

(2)  Fitting well after using Levenberg-Marquardt
 optimization technique

Figure 8c
(1) AVO anomaly (red color) computed form standard model

(shale over water sand) and its first guess (blue dot)

(2) Fitting well after using Levenberg-Marquardt
optimization technique



105

AVO INVERSION USING LEVENBERG-MARQUARDT                                                   LEMIGAS SCIENTIFIC CONTRIBUTIONS
SUPRAJITNO MUNADI AND HUMBANG PURBA             VOL. 33. NO. 2,  SEPTEMBER  2010 : 98 - 105

REFERENCES

1. Aki, K. and Richards, P.G., 1980, Quantitative
Seismology, Freeman & Co.,

2. Avseth, Mukerji, Mavco, 2006, Quantitative Seis-
mic Interpretation: Applying Rock Physics Tool
to Reduce Interpretation Risk, Cambridge Uni-
versity Press, London.

3. Bortfeld, R., 1961, Approximation to the reflec-
tion and transmission coefficients of plane longi-
tudinal and transverse wave, Geophysics Prosp.,
9, 485-502.

4. Castagna, J.P. and Backus M.M., 1995, Offset-
dependent reflectivity-theory and practice of AVO
Analysis, Society of Exploration Geophysicists,
Tulsa, Oklahoma.

5. Haris, Abd., 2008, Komputasi Geofisika, Physics
Department, Faculty Mathematics and Natural
Science, University of Indonesia

6. Koefoed, O., 1955, On the effect of Poisson’s
ratio of rock strata on the reflection coefficients
of plane wave, Geophys.Prosp., 3, 381-387.

7. Munadi, S., 1985, Vertical Seismic Profiling: Nu-
merical Simulation, Data Processing and Analy-
sis, Ph.D. thesis, Flinders University of Australia,
Bedford Park.

8. Ostrander, W.J., 1984, Plane wave reflection co-
efficients for gas sands at non normal angle of
incidence, Geophysics, 49, 1637-1648.

9. Shuey, R.T., 1985, A simplification of the Zoeppritz
equation, Geophysics, 50, 609-614.,

10. Zoeppritz, K., 1919, Erdbeben Wellen VIIIB, leber
Reflexion and Durchgang  Seismischer Wellen
Durch Unstetig-Keitsflachen, Gottinger Nachr,
1,66-84.ˇ


	LSC V33 NO 2 TH 2010 P02

