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ABSTRACT - Forecasting reservoir performances during the carbon capture, utilization, and storage (CCUS) 
operations is essential to monitor the amount of incremental oil recovered and CO2 trapped. This paper proposes 
predictive data-driven models for forecasting oil, CO2, and water production on the existing wells and future infill 
well utilizing long short-term memory (LSTM) networks, a deep learning variant for time series modeling. Two 
models are developed based on the number of phases referred to: 3-phases (3P) and 1-phase (1P), one interest 
phase at a time. The models are trained on the dataset from multiple wells to account for the effect of interference 
of neighboring wells based on the inverse distance to the target well. The performance of the models is evalu-
ated using walk-forward validation and compared based on quality metrics and length and consistency of the 
forecasting horizon. The results suggest that the 1P models demonstrate strong generalizability and robustness in 
capturing multivariate dependencies in the various datasets across eight wells with a long and consistent forecast-
ing horizon. The 3P models have a shorter and comparable forecasting horizon. The 1P models show promising 
performances in forecasting the fluid production of future infill well when developed from the existing well with 
similar features to the infill well. The proposed approach offers an alternative to the physics-driven model in 
reservoir modeling and management and can be used in situations when conventional modeling is prohibitively 
expensive, slow, and labor-intensive.

Keywords: carbon capture, utilization, and storage (CCUS), deep learning, time series forecasting, long short-
term memory (LSTM) networks.
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INTRODUCTION

Carbon capture, utilization, and storage (CCUS) 
in the upstream oil and gas industry involve the 
capture of carbon dioxide (CO2) from industrial pro-
cesses, the transport of this CO2 via pipeline, and the 
injection into a depleted oil reservoir to recover the 
remaining oil. The utilization of CO2 for enhanced 
oil recovery (EOR) sustains oil production and meets 
the climate goals. It is a viable emissions reduction 
technology that can be applied to Indonesia owing 
to the availability of reservoirs and CO2 captured 

ready from the gas processing plant (Iskandar & 
Syahrial, 2009).  

Forecasting reservoir performance during the 
CCUS operations is essential to monitor the amount 
of incremental oil recovery and CO2 trapped. Ad-
ditional oil recovery can amount from 5% to 20% 
of the original oil in place (OOIP) depending on the 
characteristics of the hydrocarbon and the reservoir 
conformance (Green & Willhite, 2003). Meanwhile, 
approximately 40% of the injected CO2 remains 
trapped in reservoirs during the CO2 injections 
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Figure 1.
Unfolded RNN structure at each time step

(Faltinson & Gunter, 2011). Forecasting entails es-
timating oil, water, and gas production over the life 
of wells. It enables decision-making for economic 
evaluation and field development planning (Tadjer 
et al., 2021). 

Reservoir simulation model is the most popular 
tool for forecasting petroleum field production and 
assisting in decision making. It is one of the most 
effective physics-driven modeling methods for 
analyzing and predicting reservoir behavior. The 
drawbacks of reservoir simulation are: (i) it requires 
a large amount of reservoir data and is labor and 
time-intensive; (ii) it necessitates extensive effort to 
comprehend and analyze the field; and (iii) uncer-
tainties in reservoir input data that affect reservoir 
performance prediction (Negash & Yaw, 2020). As a 
result, reservoir simulations are not always practical 
for field development plan and reservoir management 
studies, especially in a constantly and rapidly evolv-
ing environments, such as the volatility of oil prices, 
disruptive technologies, and pandemics

With the industrial revolution 4.0, the oil and 
gas industry is embracing artificial intelligence (AI), 
predictive analytics, and automation to facilitate ef-
fective decision-making, cost-cutting on inefficient 
operations, and better understanding well and res-
ervoir performances (Khan & Louis, 2021). Many 
researchers are using deep learning algorithms for 
production forecasting. Al-Shabandar et al. (2021) 
proposed the novel architecture of a deep gate recur-
rent neural network, which is an advancement to the 
standard recurrent neural network for the prediction 
of oil production. The architecture can run for a 
long time without using the memory unit and can 
train well in less time. Similarly, Song et al. (2020) 
presented long short-term memory (LSTM) for oil 
forecasting and a particle optimization algorithm 
to optimize the architecture of LSTM. de Oliveira 
Werneck et al. (2022) developed a novel data-driven 
system N-th Day for predicting several outputs by 
utilizing machine learning techniques. Additionally, 
the authors evaluated four deep learning architectures 
for time-series data prediction, including LSTM and 
gated recurrent unit (GRU) layers. Wei et al. (2021)) 
has utilized three algorithms i.e., recurrent neural 
network (RNN), LSTM, and GRU to forecast the 
pore-water pressure. The multi-layer perceptron 
(MLP) is used for comparison to the RNN, LSTM, 
and GRU.

This study proposes a predictive data-driven 
model for forecasting oil, CO2, and water produc-

tion on the existing wells and future infill well using 
LSTM networks. The significant contributions of 
this work are: i) the proposed approach has never 
been implemented in the CCUS operations; ii) it 
considers well-to-well interactions and the number 
of phases; iii) the data required to develop the deep 
learning model is relatively limited; iv) and it uses 
the knowledge of existing wells to forecast the 
performance of future infill well. Two models are 
developed considering the number of phases, 3-phase 
(3P) and 1-phase (1P) models. They are trained on 
the dataset from multiple wells to account for the 
effect of interference of neighboring wells based on 
the inverse distance to the target well. Performance 
of the models is evaluated using walk-forward vali-
dation and compared based on quality metrics and 
length and consistency of the forecasting horizon. 
While not intended to substitute for conventional 
reservoir simulation, the proposed approach to res-
ervoir modeling and management can be used when 
conventional modeling is slow, cost, and workforce 
prohibitive.

Data-driven Models
A. Recurrent Neural Network (RNN)

Recurrent neural network (RNN) is a type of 
artificial neural networks (ANNs) that has temporal 
loop beside input, hidden, and output units. A direc-
tional loop may aid in remembering when to make 
a choice, what the current node’s inputs are, and 
what it has learnt from prior inputs. RNN is able to 
perform effectively with time series since its internal 
memory can recall the prior input received (Tariq et 
al., 2021). This may assist the RNN generate accurate 
predictions. Fig. 1 displays the RNN framework for 
modeling time-series observations.
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B. Long Short-term Memory (LSTM) Networks 

The long short-term memory (LSTM) network 
is a recurrent neural network (RNN)-based machine 
learning technique (Hochreiter & Schmidhuber, 
1997). LSTM is the most widely used for time series 
forecasting. It may retain knowledge learned over a 
short time and utilize it for long-term training. In cap-
turing long dependencies, LSTM outperforms RNNs 
because RNNs suffer from the vanishing gradient 
issue, which consists of the gradient diminishing as 
the number of layers increases (Dama & Sinoquet, 
2021). The difference between LSTM and RNN is 
the transmission of an internal unit state together 
with the hidden state.

LSTM contains units called memory blocks 
in the hidden layer. These blocks receive the input 
sequence and then determine if it is dynamic using 
a gate activation unit. This activity modifies the 
state and adds information that conditionally flows 
through the block (Tariq et al., 2021). Gates in the 
memory blocks are superior to traditional neurons 
since it enables them to remember current streams.

During the training phase, the weight of the 
gates may be improved. It makes the LSTM unit 
flexible because the gating function regulates 
the input, retains the content of the internal state 
variables, and manages the output, as shown in 
Fig. 2 (Abdel-Nasser & Mahmoud, 2019).

In brief, these gates fall into three categories: (i) 
an input gate determines conditionally which input 
values contribute to updating the memory state; (ii) a 
forget gate decides what information will be removed 
from the module; (iii) an output gate decides the 
output based on module input and module memory 
state (Dama & Sinoquet, 2021). A gate may or may 
not become active based on the sigmoid activation 
function.

Similar to RNN, LSTM hyperparameters include 
the number of hidden layers, the number of units 
in each layer, network weight initialization, activa-
tion functions, learning rate, momentum values, the 
number of epochs, batch size (minibatch size), decay 
rate, optimization algorithms, sequence length for 
LSTM, gradient clipping, gradient normalization, 
and dropout (Sezer, Gudelek, & Ozbayoglu, 2020). 
The optimal choice of these hyper-parameters is es-
sential, as these values greatly influence the predic-
tion results obtained by the network.

The feedforward calculation used the hyperpa-
rameters of LSTM is shown in Eqs. 1 – 5  (Sezer et 
al., 2020):

Backpropagation through time is used to train LSTM 
networks, which helps avoid the vanishing gradient 
problem.

Figure 2.
LSTM unit and its components

Long Short-term Memory (LSTM) Networks for Forecasting Reservoir Performances in Carbon Capture, 
Utilisation, and Storage (CCUS) Operations (Utomo P. Iskandar and Masanori Kurihara)

The characteristics of RNN are: (i) feed the out-
put of activation function back to the same neuron; 
(ii) have short term memory because recent behavior 
has more influence on the current behavior; and (iii)
great for predicting something in short contexts (Yu 
et al., 2019). However, several critical problems of 
RNN include: (i) Has a difficulty in learning long 
range dependencies; (ii) Severely difficult to train as 
the number of parameters become extremely large; 
and (iii) Vanishing gradient or exploding gradient 
problems.

Particularly the latter occurs when network is too 
deep. To illustrate, for the error to backpropagate the 
chain rule must be applied (Fig. 1). The multiplica-
tion of the same exact weight multiple times occurs 
many times as needed to go through the temporal 
loop. If at 100 epochs the weight cannot be finished 
updated, the overall network will be not properly 
trained. Furthermore, if any one of the gradients 
approached to zero, all the gradients would rush to 
zero exponentially due to the multiplication.
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Figure 4.
Well configurations on the PUNQ-S3 reservoir model to 

generate dataset for deep learning model

Figure 3.
Cross-sectional view of the PUNQ-S3 reservoir model

Table 1.
 Reservoir properties of the PUNQ-S3 model

METHODS

A. Reservoir Model

To construct the deep learning model, a 
PUNQ-S3 reservoir model was used to gener-
ate a dataset containing the reservoir properties 
as features and fluid production as targets. The 
compositional simulator of Computer Modelling 
Group Ltd. (CMG)-GEM was used for simulating 
the CCUS process. 

The synthetic PUNQ-S3 model depicts a 
realistic geological model for flow simulations 
and has been used in several reservoir simulation 
investigations (Kovscek & Cakici, 2005; Lyons 
& Nasrabadi, 2013). It comprises 19 × 28 × 5 
grid cells, 1,761 of which are active. The size 
of each grid block is 180 × 180 meters. Table 1 
provides a summary of the PUNQ-S3 reservoir 
model properties.

In this study, well locations have been re-
configured as shown in Fig. 4. The permeability 
distributions in each layer guided the placement 
of each producing wells (PRO-1 through PRO-8). 
As a result, each well has several completions in 
the productive zone to contribute to oil produc-
tion. In addition, two CO2 injection wells (INJ-1 
and INJ-2) were positioned in the northern and 
southern portions of the reservoir to sweep the 
remaining residual oil.

Floris et al. (2001) described the PUNQ-
S3 model as a five-layer model (Fig. 3). The 
PUNQ-S3 model was developed from a reservoir 
engineering study on a real field-performed Elf 
Exploration Production. It was qualified as a 
small-size industrial reservoir engineering model. 
The top depth of the PUNQ-S3 reservoir is 2,430 
m. It has a dip angle of about 1.5 degrees and is 
bounded by a fault to the east and south. A rela-
tively strong aquifer on the north and west pro-
vides pressure support. There is also a small gas 

cap in the PUNQ-S3 reservoir model in layer 1. 
Each layer of PUNQ-S3 has different thicknesses 
and facies comprising channel fill, lagoonal shale, 
and mouthbar.

To produce a reliable CO2 miscible injection 
process, this study utilized the reservoir fluid data 
from a crude oil data bank containing more than 5000 
PVT and gas injection data curated by Jaubert et al, 
(2002). Since the fluid data contains many hydrocar-
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bon components that are computationally inefficient 
for compositional reservoir simulation, they were 
lumped into several pseudocomponents using the 
method suggested by Jessen & Stenby (2007). This 
method can capture significant information regarding 
the mixture compositions that will form during the 
gas injection process. 

The minimum miscibility pressure (MMP) was 
computed using CMG-Winprop PVT simulator by 
employing cell-to-cell simulation. The procedure 
involves mixing a solvent with a primary gas. Then, 
a solvent is added to the oil such that the solvent-
to-oil molar ratio increases by a specified value for 
each mixture. Flash calculations are performed for 
a maximum of 100 mixtures of solvent and oil. If no 
two-phase region is detected, the process is judged to 
be first-contact miscible, and the calculations stop. 
If a two-phase region is encountered, the calculation 
procedure proceeds by removing all liquid in the pre-
vious step. The remaining gas is combined with the 
original oil in the gas-oil ratio to form a tie line in the 
ternary diagram. A flash calculation is performed, and 
the liquid is removed. The procedure is repeated. This 
simulates a multi-contact vaporizing or extraction 
process. As a result, the MMP is achieved at 26,750 
kPa by backward contacts–condensing gas drive.

The field development plan is illustrated in Fig. 
5. First, the reservoir underwent natural depletion 
for five years, followed by continuous miscible CO2 
injection for ten years with the injection pressure and 
rate of 32,545 kPa and 7,000 m3/day, respectively. 
Finally, the infill well was drilled in the year-15.

B. Dataset

A dataset encompassing production data from 
eight producing wells (PRO-1 to PRO-8) was used 
to build the deep learning models. A decade of A 
decade of production history from January 2004 
to December 2013 was recorded with 3,653 daily 

Figure 5.
Timeline of the field development plan of PUNQ-S3 

reservoir to generate dataset for deep learning model

time series observations. These time-series data 
are oil production (m3/day), gas production (CO2-
kg/day), and water production (m3/day) (Fig. 6).  
The gas production is expressed in mass rate to pro-
vide a simple estimate the amount of CO2 sequestered 
during the injection process with the injection rate 
is 3,308 tonnes/day (as comparison Weyburn field 
~5,000 tonnes/day) where the composition of CO2 in 
the reservoir fluid is miniscule, around 0.7% mole.

 

Year-1
Continuous CO2 Miscible Floods
Injector:

• Injection pressure = 32,545 kPa
• Injection rate = 7,000 m3/day

Year-5

Drilling the Infill Well

Year- 15

Natural Depletion
BHP = varies for each 
well

 
Figure 6.

Time series data used to train the model: (a) oil; (b) gas; 
and (c) water production
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C. Features and Targets

Features used for training the deep learning 
model comprise static parameters: porosity, per-
meability (mD), formation thickness (m), well 
location x-axis (i), and well location y-axis (j); 
and dynamic parameters: bottom hole flowing 
pressure (BHFP-kPa). These features (Table 2) 
were selected as they influence the fluid flow 
most. Besides that, these parameters were se-
lected due to the following reasons: (i) they are 
readily available from field measurements and 
do not require processing and acquisition from 
the lab; (ii) they represent the capability of the 
well to produce a fluid; (iii) each well has its 
unique values which help to distinguish the 
characteristics between wells: as a result, the 
data-driven model can learn and correlate the 
selected parameters to production characteristics 
of each well. Because certain wells were com-
pleted in several layers, features such as porosity 
and permeability could not be simply averaged 
without considering the thickness of each layer. 
Consequently, the features such as porosity and 
permeability were engineered to storage capac-
ity and flow capacity to improve the quantitative 
correlation between reservoir parameters on each 
layer and production data. Storage capacity indi-
cates the amount of hydrocarbons can be stored 
in the rock, while flow capacity represents the 
rate at which hydrocarbons may be produced 
(Fanchi & Christiansen, 2016). Meanwhile, the 
targets of the models are the time series data of 
oil production, water, and gas production.

Table 2. 
Features for building a deep learning model

The notions above were formulated by com-
bining the data from surrounding wells with the 
target well. For a number of old observations 3 
(N_old_obs = 3), these formulations are shown 
in Fig. 7 and Fig. 8 for 1-phase (1P) and 3-phase 
(3P) models, respectively.

In Figs. 7 and 8, Gradients (G) are the differ-
ence between observations and suggest a more 
favorable curve. The input data were prepared 
as batches in a high-dimensional tensor.

Two approaches were experimented with to 
teach the deep learning model the concepts of fluid 
displacement, pressure interference between wells, 
the impact of the operational constraints, and reser-
voir characteristics on production. The first approach 
simultaneously considers three phases (oil, water, 
and gas) on each well, whereas the second method 
focuses only on one interest phase at a time. Further-
more, since each well affects the neighboring wells 
at a different rate, the inverse distance method (Eqs. 
(6) – (8)) was utilized to account for this impact 
(Abedini & Nasseri, 2008).
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D. Data Pre-processing

The normalization technique was utilized as 
data pre-processing to scale the six features. Data 
pre-processing is common in developing a deep 
learning model because features have different 
units and magnitudes. Such feature scaling helps to 
accelerate the model learning process to converge 
faster. The min-max normalization is a general and 
effective procedure in the scientific literature (Wei 
et al., 2021). This process is represented as follows 
(Eq. (9)):

E. Model Development
The model was developed utilizing the Keras 

framework with TensorFlow as the backend. The 
model development process is depicted in (Fig. 
9). Initially, the dataset was split into several seg-
ments by honoring their temporal order. These 
segments consist of: the training set (40%) for 
the first four years, the validation set (20%) for 
the following two years, and test sets (40%) for 
the rest four years.

The model development (Fig. 9) began with 
creating a baseline model. The objective is to obtain 
a decent model as fast as possible to make baseline 
predictions. This default starting point may not pro-
duce the best possible model as the model structure 
and topology were configured based on the rule 
of thumb in the machine learning application. The 
number of hidden layers and neurons is relatively 
small, and the hyperparameters were not optimized.

Figure 10. 
Data split for training, validating and testing the deep 

learning LSTM model

Figure 7. 
The input and output of 1-phase model for N_old_obs = 3

Figure 8. 
The input and output of 3-phase model for N_old_obs = 3

Figure 9. 
Model development flowchart
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Table 3. 
Hyperparameters used for grid search

Finally, the model was ready to be deployed to 
forecast the time series. Two prediction methods 
were used: walk-forward (WF) and walk-forward 
over data (WFOD), as shown in Fig. 12. WF 
prediction uses the last number of actual observa-
tions to make the next prediction. Once the last 
observation is used, the model uses observations 
generated by the model in the previous time step. 
In contrast, WFOD uses the actual observations of 
the current period to predict subsequent periods 
or generates forecasts in a rolling fashion.

Figure 11. 
Prediction methods to forecast the time series

Mean Absolute Percentage Error (MAPE), Eq. 
11, was used as the performance metric to evaluate 
the prediction results. Since the datasets comprise 
different time series with different units, MAPE is 
convenient for this case because the error values are 
presented in percentages. It enables a direct compari-
son of the accuracy of various time series datasets.

The model was trained by applying stochastic 
gradient descent to minimize the loss function, the 
difference between the predicted value, and actual 
observation. During this step, 50 epochs were used 
to train the model. Mean squared error (MSE) (Eq. 
10) was selected as the loss function:

Walk-forward validation (WFV) method was 
adopted to evaluate the model on the validation set 
and perform prediction on the test set. However, dur-
ing the process, the model was not updated. It is the 
standard method for evaluating time series models 
using past data and honoring the historical sequence. 
The procedure of WFV is described as follows:

1. Step 1: Starting at the beginning of the vali-
dation set, the last set of observations in the 
training set is used as input of the model to 
predict the next set of data (the first set of 
true values in the validation set).

2. Step 2: The model makes a prediction for 
the next time step.

3. Step 3: Get true observation and add to his-
tory for predicting the next time.

4. Step 4: The prediction is stored and evalu-
ated against the true observation.

5. Step 5: Go to step 1.

The next step involves improving the topology 
of the baseline model. The most significant leverage 
is by examining deeper and wider topology. It can 
be achieved by gradually increasing the number of 
hidden layers and the number of neurons. If there 
is overfitting due to this process, a dropout will be 
implemented. These hyperparameters are not learned 
and are fixed values inside the model equations. Grid 
search was used to evaluate the different combina-
tions of hyperparameters. 

Table 3 summarizes, based on early tests, the 
ranges of feasible values and pertinent hyperparam-
eters (Torres, Hadjout, Sebaa, Martínez-Álvarez, & 
Troncoso, 2021).
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Similar methods were used for infill well predictions. 
Eight existing wells were used to predict the infill 
well future time series (Fig. 11). Each well represents 
a distinct deep learning model.

The number of old observations (N_old_obs) 
determines the number of time steps used to com-
pute the initial data. Subsequently, these data were 
weighted proportional to the inverse distance of 
existing wells to the infill well. To make prediction, 
the features of the infill well (e.g., well location and 
storage capacity) were fed to each of the existing well 
models. The walk-forward prediction (WF) method 
was used to forecast the oil, gas and water produc-
tion of future infill well by utilizing N_old_obs time 

The AND is a more reliable evaluation if the 
actual observation value is close to zero.

series data. As a result, each existing well generated 
one forecast for each time series data. Since there 
are eight existing wells and three time series data, 
the total time series data generated are 24 time series 
representing 24 deep learning models. In addition, 
two time series data were generated for each time 
series using weighted and simple averaging of indi-
vidual time series.

Instead of employing MAPE as described above, 
each prediction generated from each model was 
evaluated to the actual observation using average 

Figure 12. 
Prediction method for infill well
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RESULTS AND DISCUSSIONS

A. Final Model Topology

The results for developing both 3-phases (3P) 
and 1-phase (1P) LSTM models are shown in Table 
4. The number of hidden layers and units varies for 
the 1P models. This variation was attributed to the 
time series used for training each model. Each phase 
has a different trend; for instance, the gas production 
rate generally has an upward trend. Consequently, 
the weights and biases were adjusted to the corre-
sponding target. Meanwhile, the 3P models require 
many units to handle the complexity of three distinct 

time series simultaneously. As the number of hidden 
layers or units increases in deep learning, the neural 
network will provide power and flexibility, improv-
ing accuracy (Hornik et al., 1989).

During training, it was observed that overfit-
ting occurred. Therefore, dropout was introduced to 
enhance the model generalization capability. This 
strategy was applied to all developed models, which 
is a common practice due to the increase in model 
topology. As a result, the network becomes less 
sensitive to the specific weights of neurons, forcing 
the network to distribute its learning.

Table 4. 
Results of topology and hyperparameter tuning

B. Existing Well Forecasting

3P Model
The 3P model predicts the values of time-depen-

dent targets based on the flow of oil, gas, and water 
from each well to the inverse distance of the target 
well. The predictive performance is evaluated using 
the test dataset of 1,460 observations. The predictions 
of 3P models for each time-series data are shown 
in Fig. 13. Owing to space constraints, only PRO-1 
well is shown.

The purple line on the graph is the WFOD predic-
tion that forecasts one time step in advance based on 
actual data. The model could generally predict the 
downward slopes and flat lines for a certain period 
before deviating from the actual observations. For ex-
ample, the prediction of oil production shows a good 
agreement with the actual data for several months 
before it underestimates the trend. Meanwhile, the 

model can forecast upward trends, and the prediction 
is accurate through the completion of the project for 
gas production. In contrast, the prediction of water 
production is relatively shorter compared to other 
time series. It may be because the water production 
profile comprises fluctuated portions at the tail of 
the time series.
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Figure 13. 
Prediction results of 1P models PRO-1 for each time 

series

The WF prediction, shown by a light blue line, 
demonstrates a significant premature deviation from 
the actual observations. The forecasting horizon 
is shorter than the WFOD prediction method. The 
prediction could not be anticipated in certain wells 
as it is gradually off from the historical data. In 
general, the model struggles to forecast downward 
slopes and plateau trends in oil and water produc-
tion and upward trends in gas production. However, 
such deviation can be solved by updating the model 
after the inclusion of new data in order to apply the 
most recent trend character. Nonetheless, having 
WF prediction gives access to forecast several time 
steps in the future, thus allowing decision-makers 
to see the future trends and optimize their actions 
throughout the course.

1P Model

The forecasting results for all time series and 
wells for the 1P models are shown in Fig. 14. It 
can be observed that the WFOD predictions in 
most time series resulted in a longer forecasting 
horizon than the 3P models. Although some pre-
diction errors exist in a few wells, the model can 
generally represent the multivariate relationship 
between reservoir parameters and production data. 
In particular, reproduction of the oil and water 
patterns showed substantial improvements.

Likewise, the WF predictions perform better 
in most wells and time series. The forecasting 
horizon is extended, and sudden jumps in the 
prediction are reduced significantly. However, 
the forecasting results tend to overestimate gas 
production in some wells after certain periods. 
Meanwhile, the prediction trends in oil and water 
production agree with the actual observations. 
Overall, the non-linear approximation holds for 
short-term forecasts, but the deviation is more 
pronounced when the forecasting horizon be-
comes large.
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Figure 14. 
Prediction results of 1P models PRO-1 for each time 

series

C. Comparing 3P Models vs. 1P Models

The accuracy between 3P and 1P models is com-
pared to evaluate model predictive capability. Table 
5 presents the average MAPE values for the entire 
wells and time series. These MAPE values were 
computed over four years. The reduction of features 
significantly impacts the accuracy of the 1P model 
for both prediction methods. Reducing the number 
of features improved the predictive performance of 
the 1P models, as observed in most time series. As 
the number of features decreases, the input sequence 
becomes shorter. Particularly for LSTM, a short input 
sequence facilitates the model for capturing long-
term multivariate dependencies of data (Abdullayeva 
& Imamverdiyev, 2019).

In addition to accuracy, the model performance 
was evaluated based on the forecasting horizon. The 
longer the forecasting horizon reproduces actual well 
performance, the more preferable. Table 6 presents 
the average number of days for each prediction 
method with less than 5% error. An error less than 
5% denotes that the model has an accuracy of 96% 
in a specific forecasting horizon. For instance, the 
walk-forward (WF) prediction of the 1P model for 
oil rate has an average of 176 days. This value indi-
cates that from day 0 of prediction up to day 176, the 
difference between actual observations vs. predicted 
observations within this horizon is maximum 4%. In 
other words, the model enables prediction for 176 
days with an accuracy of 96%.

The feature reduction also influences predictive 
power on the forecasting horizon. WFOD prediction 
typically has a larger forecasting horizon than WF 
prediction since it uses the most recent time step to 
anticipate the next time step. Generally, the fore-
casting horizon of the 1P models outperforms the 
3P models in most time series and both prediction 
methods. However, the discrepancies of both models 
are not statistically different. The shortest forecasting 
horizon on 3P and 1P models are oil and water pro-
duction, around 150 days and 170 days, respectively.

Consistency in producing long-term forecasts 
was evaluated according to the standard deviation 
of the average number of days (Table 7). These 
figures represent the mean of eight wells for each 
model type and prediction method. The 1P models 
have more consistent in producing a long forecast-
ing horizon across eight wells, as indicated by the 
lower standard deviation. This implies that the 1P 
models have a high degree of generalizability and are 
robust at capturing multivariate relationships across 
various datasets.



47DOI: 10.29017/SCOG.45.1.943 |

Long Short-term Memory (LSTM) Networks for Forecasting Reservoir Performances in Carbon Capture, 
Utilisation, and Storage (CCUS) Operations (Utomo P. Iskandar and Masanori Kurihara)

Table 5. 
Average MAPE of eight wells for four years

Table 7. 
The standard deviation of the average number of days with prediction error < 5% for eight wells

Table 6. 
The average number of days with prediction error < 5% for eight wells

D. Future Infill Well Forecasting

The performance of future infill well was fore-
casted using 1P models derived from knowledge of 
existing wells. The available information on the infill 
well includes well location and static and dynamic 

Fig. 15 shows the prediction comparisons gen-
erated from the model and real dataset. The 1P 
model using PRO-6 well can mostly reproduce 
the trend of real datasets. In the first year, the 
model was prone to underestimate the oil pro-
duction while overestimating the gas production. 
Afterward, it closely followed the upward trend 

Figure 15. 
Infill forecasting performance using LSTM 1P model PRO-6 well

features. Such information was fed to the models 
trained on the existing wells. Only the most accurate 
of five years performances of infill well for all time 
series are presented in Fig. 15.

of gas production. The profile of water production 
could not be perfectly reproduced for the whole 
well’s lifetime, especially the oscillating part. 
However, it matched the plateauing trend for the 
first two years.
As the models generated multiple forecasts from 
the existing wells, the prediction error for each 
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Furthermore, MAPE was utilized to quantify the 
discrepancy between model-generated predictions 
and actual data. Additionally, the curvature was 

assessed using shape difference (Table 8). Overall, 
the 1P flow model PRO-6 well can satisfactorily 
predict the performance of the infill wel.

Table 8. 
The 1P model PRO-6 evaluation results

The PRO-6 well has similar features to the 
infill well with an average difference of 6%, 
which may contribute to the satisfactory predic-
tions (Table 9). The model trained on PRO-6 can 

capture the time series trend and characterize 
the dependent relationship of time sequence data 
with the features. This finding can assist in field 
development plans from an economic standpoint.

Table 9. 
Features similarity of the existing wells compared to the infill well

time series data was computed using average 
normalized difference (AND). Fig. 16 presents 
the range of uncertainty generated from the mod-
els for each time series. The prediction can be 
anticipated to underestimate 105% at the end of 
the project for gas production. On the other hand, 
in the commencement of the infill well, it can be 
expected that the model overestimates the water 

Figure 16. 
Range of uncertainty 1P flow models for eight wells

production by 188% of the actual production. 
In the traditional numerical simulation, where 
various scenarios are simulated with significant 
uncertainties, the range of uncertainty is con-
sidered excellent if within ± 100% of the actual 
production. Nonetheless, this range provides the 
degree of confidence to determine if the well 
location is optimal.



49DOI: 10.29017/SCOG.45.1.943 |

Long Short-term Memory (LSTM) Networks for Forecasting Reservoir Performances in Carbon Capture, 
Utilisation, and Storage (CCUS) Operations (Utomo P. Iskandar and Masanori Kurihara)

CONCLUSIONS

Deep learning models utilizing long short-term 
memory (LSTM) networks were developed and 
investigated to fit the static and dynamic features of 
PUNQ-S3 reservoir models. The models were de-
veloped by considering three phases simultaneously 
(3P) and focusing on only one phase of interest (1P), 
and the interference of neighboring wells based on 
the inverse distance. The findings suggest that 1P 
models outperform the 3P models in most time series 
and in walk-forward over data (WFOD) and walk-
forward (WF) prediction methods. The 1P models 
have a high degree of generalizability and are robust 
at capturing multivariate relationships across various 
datasets. Reducing the number of features improved 
the predictive performance of the 1P models on the 
accuracy and the forecasting horizon.

The performance of the 1P models in forecasting 
the fluid production of future infill wells is encour-
aging. By selecting the similar features of the exist-
ing wells, the performance of the infill well can be 
satisfactorily predicted.

Future works may involve observing model im-
provements by experimenting with a different train-
ing size. In addition, the actual data from the field 
should be considered to test the model’s capability 
in handling more variable datasets.
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WA – B Weight of well-A and well-B - 
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(i,j) Well location - 
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permeability, porosity] 
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G Gradients for respective 
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