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 ABSTRACT - Wax deposit is one of the major fl ow assurance experienced in the process of oil production and 
transportation from sub- surface to surface. Large amounts of data are required to perform modeling using existing 
thermodynamic models such as carbon number data from HGTC. In this paper, a  machine learning algorithm 
using unifi ed model approach from Huang (2008). Two types of input are implemented in order to simulate 
infl uence of feature selection used in training and testing  machine learning which are input A consists of water 
volume fraction (fw), shear stress (τw), effective viscosity (μe), wax concentration gradient (dC/dT), and 
temperature gradient (dT/dR) and input B consists of water volume fraction (fw), shear stress (τw), effective 
viscosity (μe), wax concentration gradient (dC/dT), temperature gradient (dT/dR), shear stripping variable (SV) 
dan diffusion variable (DV). The random forest with Ntree = 500 known to be the best  machine learning method 
compared to others. Based on accuracy parameter it achieves  error parameter R-squared (R2) for training, testing 
and total data for input A and B are 0.999, 0.992, 0.9975 and 0.999, 0.993, 0.9977, respectively.
Keywords:  wax deposit,  machine learning,  wax deposition rate,  two-phase water in oil fl ow.

INTRODUCTION

Wax deposit is one of the problems in the process 
of production and transportation of oil and gas. 
Wax molecules will precipitate from the oil when 
the oil temperature is below the wax appearance 
temperature (WAT) (Zheng, 2017; Obaseki & 
Elijah, 2020). The difference in temperature between 
the temperature in the bulk oil and around the inner 
wall causes a difference in the concentration of wax 
dissolved in the oil. Molecular diffusion can occur 
due to differences in concentration. This is the most 
reliable mechanism that causes wax to accumulate 
on the pipe walls (Burger, et al., 1981; Azevedo & 
Teixeira, 2003). The presence of wax deposits in the 
pipe walls and reservoirs can cause the pipe walls 
to become smaller, reduce oil production capacity, 

increase handling costs, increase production down-
time, reduce production effi ciency and cause pipe 
damage when the pressure due to wax deposits is 
greater than the maximum yield strength of the pipe. 
(Kamari, et al., 2014; Chi, et al., 2017, Chu et al., 
2017; Alnaimat & Ziaduddin, 2019; Sousa, et al., 
2019; Hu, et al., 2019).

Massive research has been done in modeling 
the mechanism of deposition of wax on the pipe 
from thermodynamic and empirical model (Pedersen, 
et al., 1991; Singh, et al., 2000; Matzain, et al., 2000; 
Zhou, et al., 2015, Joshi, 2017; Obaseki & Elijah, 2020). 
There are 2 models that can be used in commercial 
software, namely the RRR model and the Matzain 
model. The RRR model is used in a multiphase model 
by considering 2 mechanisms, namely molecular 
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diffusion and shear dispersion. In the matzain model, 
3 mechanisms are considered, namely molecular 
dispersion and shear dispersion as a mechanism for 
wax formation and shear stripping as a wax grinding 
mechanism (Giacchetta, et al., 2019). The two models 
above are 2 of 3 models available in commercial 
software. The use of the above model requires many 
and complex inputs such as oil and wax composition 
data, oil and wax physical properties data, and pipe 
specifi cation data.

Huang (2008) developed a unifi ed model using 
fl ow loop test data from 9 types of crude oil. The 
concept of effective wax precipitation (EWP) and 
effective deposition ratio (EDR) to calculate the  wax 
deposition rate formed at a certain temperature. This 
model considers 4 parameters that affect wax deposition 
rate (W) on the pipe wall, namely shear stress 
(τw), viscosity (μe), wax concentration gradient 
(dC/dT) and temperature gradient near the pipe wall 
(dT/dR).

By considering shear stress, effective oil viscosity, 
wax concentration gradient, near wall temperature 
gradient and water volume fraction as input and  wax 
deposition rate as the target supervised  machine 
learning model is created. Supervised  machine 
learning is known to have the ability in self-learning, 
self-adaptability and successive non-linear fi tting. 
Several supervised  machine learning algorithms such 
as artifi cial neural network, support vector machine, 
and random forest will be used to determine the 
best model to predict  wax deposition rate. The best 
 machine learning algorithm will be used as the next 
 wax deposition rate prediction model.

DATA  AND METHODS

Selection of good input parameters is very 
necessary for the development of  machine learning 
in making accurate predictions. The use of 75 data 
from Kamari, et al. (2014), Fan, et al (2015), and 
Xie & Xing (2017) is selected. On that data wax 
deposition rate based on laboratory experiment 
only available until fw = 0.3. In addition to variate 
the data, a wax deposition model based on the 
commercial software hypothetical case was created 
with the existing wax components. The carbon 
distribution components of the gas chromatography 
results based on the hypothetical case are shown in 
Figure 1 While the wax precipitation curve in Figure  2 
wax precipitation curve can be obtained from the 
results of differential scanning calorimetry (DSC) 
or other heat testing experiment. From that fi gure 
wax content is about 10.5% and wax appearance 
temperature is 63.83oC. Multifl ash results from the 
known carbon number distribution are then prepared 
as input in commercial software.

Before conducting the simulation, it is necessary 
to know the basic assumptions used in this study are 
wax only diffuses through the oil molecules, condition 
of water in oil fl ow on horizontal pipe, pipe roughness 

(1)

The  wax deposition rate (W) here shows how 
dangerous the condition of wax deposits that form 
on the pipe wall is (Huang, 2008). Shear stress and 
viscosity are variables that show the shear stripping 
mechanism and the wax concentration gradient and 
the temperature gradient near the pipe wall indicate 
the molecular diffusion mechanism.

The development of computational technology 
increases the development of  wax deposition rate 
prediction models using  machine learning algorithms. 
Qiyu & Ma (2008) predict  wax deposition rate using 
BP Neural network of 26 unifi ed model data and it 
showed R-squared (R2) of training and testing data 
set 0.97 and 0.95. Wei, et al. (2010) proposed a seven 
hidden neurons back-propagation neural network to 
estimate  wax deposition rate for single phase fl ow. 
The estimated result indicated that the error is less 
than 2%. Kamari, et al. (2014) proposed LSSVM 
with coupled simulated annealing as optimization 
strategy to predict wax deposition for single phase 
fl ow in 10 different data. This method has error 
parameter R-squared (R2) in training and testing 
data with a value of 0.999. The last is from Xie & 
Xing (2017) which created random basic function 
neural network to calculate  wax deposition rate 
which acquire relative error of predicted data to 
experimental values is 1.5%. In this paper, two phase 
water in oil fl ow wax deposition will be modeled 
using a unifi ed model approach (Huang, 2008). 

Figure 1
Carbon number distribution 

of crude oil A (Multifl ash, 2017).
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is considered as smooth pipe, fw in deposit is the 
same as fw in liquid fl ow. PVT data and wax data is 
then used in the simulation. A horizontal pipe with 
a length of 8.2 km is made by discretization per 40 
m. This follows a sample case from commercial 
software simulation. As the purpose  of this paper is 
to build a wax deposition model for water in oil fl ow, 
the sensitivity to water cut is carried out from 0.1 to 
0.9. Water inversion viscosity will be set at water 
volume fraction 0.9. In addition to the water cut, 
other parameters that were carried out by sensitivity 
analysis were liquid fl ow rate (Q), inlet temperature 
(Tin). Table 1 below shows the sensitivity of these 
variables.

The image below shows the simulation results 
of several scenarios used. Figure 3 shows the effect 
of fw on the same Q and Tin values. Figure 4 shows 
the  wax deposition rate curve at different Tin  but for 
the same Q and fw values. Figure 5 shows the  wax 
deposition rate curve at different Q valuesbut for  the 
same Tin  and fw. From all this sensitivity scenario 
fw andTin has the bigger effect to shaped of wax 
deposition rate than Tin. Difference Tin only effect the 
front thickness of wax start to build up meanwhile 
fw and Q tend to reduce  wax deposition rate when 
those two variable are increase. 

After performing sensitivity with several cases 
selected variables such as water volume fraction (fw), 
shear stress at wall (τw), effective oil viscosity (μe), 
wax concentration gradient (dC/dT), temperature 
gradient near wall (dT/dR) and the  wax deposition 
rate (W) which will be used as input for  machine 
learning. The value of the water volume fraction 
and the effective viscosity of the oil can be directly 
obtained from the simulation results. Values for τw 
and dT/dR can be calculated based on the output data 
from simulation. τw is calculated using the Newtonian 
fl uid fl ow equation assumption for the correlation 
of turbulent Darcy/Fanning fraction factor with 
Reynolds number (Wang & Huang, 2014).

equations given in the commercial software manual 
(Giacchetta, et al., 2019; Montero, 2020).

Figure 2
Wax precipitation curve of crude oil A (Multifl ash, 2017).

Table 1
Simulation sensitivity analysis

(2)

For laminar fl ow, 

(3)

Where τw is liquid shear stress at wall (Pa), RE is 
reynolds number, V is fl uid velocity (m/s), μe is inside 
diameter of pipe (m), μe is  effective viscosity of oil 
(cP). Meanwhile dT/dR can be calculated using the 

(4)

Where dT/dR is radial temperature gradient (oC/
mm), Tb is bulk temperature (oC), Tws is wall section 
temperature (oC), hhin is heat capacity inside pipe 
(W/m2-C), kmix  is mix conductivity (W/moC). 
Lastly, the dC/dT value can be calculated based on 
the equation of the line formed in Figure 2.

Based on the simulation results, there are a total 
of 13995 total input data which will be the fi nal data 
in making  machine learning. The distribution of data 
for each variable such as the minimum, maximum, 
standard deviation, and average values is shown in 
Table 2. 

This input data will be divided using deterministic 
sampling into 80% as training data and 20% as 
testing data.

A. Feature Engineering Method

In producing robust  machine learning, it is necessary 
to determine the input parameters that have the best 
relationship to the output or target being sought. 
The closer the value of correlation coeffi cient to 
1 or -1, the better the relationship between the input 
and the output. Viscosity and shear stress known to 
have negative effect on build up of wax. Because of 
that, those two variables are divided into 1/τw and 
1/μe. Meanwhile, the variables dC/dT and dT/dR are 
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Figure 3
Wax deposition rate on different water fraction.

Figure 4
Wax deposition rate on different Tin.

Table 2
Input data distribution
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multiplied by the normal log so that they become ln 
(dC/dT) and ln (dT/dR). With this new data, it can 
be seen that there is an increase in the correlation 
value between the input and the target W as shown 
in Figure 6.

The relationship between 1/μe and wax deposition 
rate (W) is up to 0.613. Meanwhile, ln (dC/dT) and 
ln (dT/dR) also showed high correlation to target 
which are  0.85 and 0.69, respectively. Nevertheless, 
this is not indicated by 1/τw which has low correlation 
to target. The value of the relationship between 
1/τw and W is 0.16. Therefore, 2 additional features 
were introduced, namely shear stripping variable and 
diffusion variable. In the shear stripping variable, the 
new variables from the 2 basic variables are carried 
out mathematical operations as follows.

The relationship between these two variables with 
other parameters can also be seen in Figure 7.

The results of these feature engineering strategy 
will be used in a supervised  machine learning 
development strategy. Both will be compared in 
terms of the ability to predict train data and test data 
that have been generated previously. Table 3 shows 2 
types of strategies used in making  machine learning 
models based on the results of feature engineering 
that has been carried out.

B. Machine Learning Development

The data that will be used as  machine learning 
input will be normalized into a simpler form that is 
-1 to 1. Min - max normalization of  machine learning 
input data is done using the following equation.

Figure 5
Wax deposition rate on different rate.

(5)

While the diffusion variable is formulated as 
follows.

(6)

(7)

Where Xact is variance value, Xmin is minimum variance, Xmax is maximum variance, normmax is maximum normalization value, normmin is minimum normalization value.
Making  machine learning in predicting regression 

of existing data is done using 3 supervised  machine 
learning algorithms, namely back propagation artifi cial 
neural network, random forest and support vector 
machine. Back Propagation Artificial Neural 

These two additional features are then included 
in the correlation coeffi cient analysis. It was found 
that these two variables had a fairly good correlation 
value to the target, namely the shear stripping variable 
and the diffusion variable 0.46 and 0.83, respectively. 
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Figure 6
Correlation matrix after feature engineering A.

Figure 7
Correlation matrix after feature engineering B.
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Network (BP-ANN) systems are made up of processing 
units called neurons. The BP-ANN training process 
is used to achieve a balance between memorization 
and generalization abilities. Thus, the results of the 
BP-ANN that have been created can be perfectly 
reused for other new data inputs whose quantities are 
still within the range of the previous training process 
(Agustin & Prahasto, 2012).

The fi rst thing to do is to prepare a training 
sample consisting of inputs and ideal outputs. In 
this case the inputs are shown in Table 3. When the 
results of the calculation of the output match the ideal 
output, the training is stopped. This process can be 
repeated automatically with self- adaptation of the 
weight and activation value until the ideal output is 
obtained (Wei, et al., 2010).

Back propagation artificial neural network 
(BP-ANN) is used in this paper. In this algorithm, 
each unit that is in the input layer is associated with 
the hidden layer and continues to be interconnected 
with the output layer. This network can consist of 1 
hidden layer or many (multilayer network). When 
this network is given input as training data, then the 
pattern goes to the hidden layer units to be forwarded 
to the units in the output layer. Then the output 
layer units will respond as the target/output of the 
neural network. When the output does not match the 
expected target, the output will be returned backward 
to the hidden layer and input layer and the output 
will be recalculated. This condition will continue to 
repeat until the error value between the target and 
the output is minimal.

Network created using Levenberg-marquardt 
training function and gradient descent adaptive 
learning. The use of Levenberg-Marquardt training 
function because it has a good fi tting ability on the 
training set and also has the fastest training network 
(Huang, 2008). The amount of learning rate used is 
0.01 with the activation function used, namely the 
tansig function for the input, hidden layer, and output 
layer. The number of hidden layers and hidden 

neurons becomes the sensitivity parameter. Table 4 
below shows the sensitivity of BP-ANN.

Random forest is a supervised  machine learning 
development of an iterative  decision tree so as to 
produce a better level of accuracy. Because random 
forest is an ensemble method from CART, random 
forest also has no assumptions or is good for use in 
nonparametric cases (Mulyahati, 2020). This method 
is used to build a  decision tree consisting of root nodes, 
internal nodes, and leaf nodes by taking attributes 
and data randomly according to the applicable 
provisions (Siburian & Mulyana, 2018). The root 
node variable which is also the separator variable 
is a determinant in making the splitting tree which 
can be done by using the MSE value, Gini ratio, and 
entropy/information  ratio. After getting the separator 
attribute with the lowest MSE/gini ratio value, it will 
proceed to the next branch. This continues until the 
stopping criteria are met, namely the minimum leaf 
node is met (Mulyahati, 2020).

The fi nal prediction results can be calculated 
by combining or aggregating the prediction results 
of each  decision tree which can be shown in the 
following equation.

Table 3
Featured used on  machine learning

(8)

Where Ntree is number of trees. Random forest 
was created using Orange data mining software by 
varying the Ntree value. Based on Breiman (2001) 
the Ntree value of 50 has resulted in a satisfactory 
predictive value. Meanwhile, according to Sutton 
(2004) the value of Ntree > 100 will produce a low 
level of error. Therefore, the Ntree values of 50, 100, 
200, 300, 400, 500, 600, 700, 800, 900, 1000, are 
used to produce variations in accuracy.

The third  machine learning is Support Vector 
Machine (SVM). Support vector machine basically 
uses the basic principle of linear classifi er. By using 
kernel functions such as gaussian or polynomial, 
classifi cation and prediction can be used in non-linear 
cases. In a space with high dimensions, a hyperplane 
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Table 4
Sensitivity of BP-ANN
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that can maximize the distance (margin) between 
data classes. Hyperplane in support vector machine 
can be defi ned as follows (Octaviani, et al., 2014):

Where Wpred is prediction  wax deposition rate 
(g/m2h) and Wact is actual  wax deposition rate 
(g/m2h).

RESULTS AND DISCUSSION

In the experiment using BP-ANN using input 
scenario A, it was found that the BP-ANN sensitivity 
no. 38 at Table 4  where using 2 hidden layers 
with each hidden layer is 56 has the best error and 
accuracy. 

The error and accuracy values for training, testing 
and total data using input scenario A are shown in 
Table 5. Using this model on input scenario B achieve 
error and accuracy better than input scenario A. The 
error and accuracy values for training, testing and 
total data are shown in Table 6. It was also found 
that the more hidden layers used the better adjustable 
parameters to define the nonlinear relationship 
between input parameters and output parameters. 
This has a positive impact on the network that is 
made, it will be better at storing memory about the 
predictions made. So that a more precise solution will 
be obtained when making predictions using other 
data (Wei, et al., 2010). Nonetheless, the training 
time will be longer when hidden layer increase. In 
this best parameter ANN, it takes 143.3 seconds of 
training time for input scenario A and 156.2 seconds 
for input scenario B. The addition of additional 
feature variables seems to only affect the training 
time not signifi cantly. 

Figure 8
Model establishment of  machine learning at Orange Data Mining.

(11)

(12)

(13)

(10)

Where w is the linear regression slope, x is the 
input vector of the model, b is the intercept linear 
regression and T is the transpose matrix (Kamari, 
et al., 2014). 

Trial and error of  cost and regression loss epsilon 
(σ) has been done to acquire best SVM prediction. 
Figure 8 shows the scheme used in making  machine 
learning using Orange data mining.

These three  machine learning models will be 
compared based on the mean absolute error (MAE), 
mean square error (MSE), root mean square error 
(RMSE), and R-squared (R2) error parameters using 
the following equation.

(9)
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The result of feature selection that has been done 
previously also shows that the presence of additional 
features as input for scenario B will result in a better 
level of predictability than input for scenario A. The 
increase in total data R-squared (R2) from 0.995 to 
0.997 indicates that the SV and DV parameters have 
a positive effect on  machine learning’s ability to 
recognize target. 

Sensitivity of the Ntree value will be carried out 
when modelling using a random forest. The value 
of growth control on leaf nodes and individual trees 
is not limited. Based on the experimental results, it 
was found that Ntree = 500 produced the best error 
and accuracy values compared to the others with a 
training time of data is 21.06 seconds. The results of 
the accuracy and error of the random forest model 
Ntree = 500 can be seen in Table 7. The use of input 
B scenarios at the same Ntree = 500 also shows an 
increase in the accuracy and error obtained. It can 
be seen in Table 8. 

This condition is similar to the experiment using 
the best parameter BP-ANN. Increasing the Ntree 
above 500 did not improve the accuracy and error 
parameter values obtained. The addition of Ntree will 

Table 5
Input A scenario accuracy and error using best BP-ANN

Table 6
Input B scenario accuracy and error using best BP-ANN

only increase the training time so that it will take 
longer to perform calculations. 

The last  machine learning is Support Vector 
Machine (SVM). In making the best SVM model the 
cost value and regression loss epsilon (σ) values are 
varied. It was found that in the input scenario A, the 
best error and accuracy values were in the combination 
of cost and regression loss epsilon (σ) of 2.05 and 0.1, 
respectively. This trial and error and can be done by 
by change the value in red box on Figure 9. The error 
and accuracy values for training, testing and total can 
be seen in Table 9. Meanwhile in the input scenario 
B, the use of cost and regression loss epsilon (σ) of 
2.05 and 0.1, respectively, produces better error and 
accuracy values than the input scenario A. This can 
be seen in Table 10.

When the cost value is fi xed, an increase in epsilon 
regression loss will reduce prediction accuracy. 
Meanwhile, at a fi xed epsilon regression loss value, 
an increase in cost value will increase the predictive 
ability of the data and then it will decrease that 
predictive ability. In this case the use of cost 2.05 is 
the optimum value. 

Table 7
Input A scenario accuracy and error using best random forest
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Table 8
Input B scenario accuracy and error using best random forest

Table 9
Input A scenario accuracy and error using best SVM

Table 10
Input B Scenario Accuracy and Error using Best S

Figure 9
Sensitivity of cost and regression loss epsilon in SVM.

Regardless type of machine 
learning used, it was found that the 
use of random forest produces the 
best error and accuracy values in 
the use of input scenario A and input 
scenario B. In addition, the use of input 
scenario B which defi nes additional 
parameters or features increases 
the predictive ability. As for each 
 machine learning, slightly increase 
of accuracy observed from random 
forest which has total data R-squared 
(R2) = 0.9975 to R-squared (R2) = 
0.9977. This value is quite good 
comparing to another machine 
learning nodel that previously created 
in another article to predict wax 
deposition rate using BP-ANN 
o r  L S S V M  w h i c h  a c q u i r e  R - s q u a r e d 
at range 0.95 to 0.999 using test data. (Qiyu & Ma,
2008; Wei, et al., 2010; Kamari, et al., 2014).

 Here fi gure 10 described  actual vs predicted wax 
deposition rates for input scenario B using random 

forest which is the best algorithm  machine learning 
in this case.

To prove the ability of the random forest algorithm 
that has been made previously in making predictions, 
in this section predictions will be made in several 
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Figure 10
Input B scenario comparison between predicted and actual  wax deposition rate for best random forest.

cases. The case used in this prediction is still the 
same as that described in the Data and Method 
section where wax content of waxy crude is 10.5%, 
wax appearing temperature is 63.83oC, and density 
of oil at standard condition is 800oC.

Figure 11 shows the results of predictions and 
calculations using dynamic multiphase fl ow at a fl ow 
rate of 1891 m3/D, an inlet temperature of 70 oC, 
and variations of water fraction at 0, 0.2, 0.4, 0.6, 
and 0.8 (case 1). The results of the predictions using 

Figure 11
Comparisons of wax deposition ratio between dynamic multiphase fl ow and best  machine learning (Case 1).
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Figure 12
Comparisons of wax deposition ratio between dynamic multiphase fl ow and best  machine learning (Case 2).

the random forest used show a similar pattern to the 
results of calculations using dynamic multiphase 
fl ow for each case. The mean absolute percentage 
error (MAPE) obtained also shows a value of 0.73% 
to 1.32%. Another case is shown in Figure 12 where 
the water fraction is 0 inlet temperature is 70oC and 
variations of Liquid rate (case 2). The good predictive 
ability of random forest can also be seen in this case. 
MAPE values ranging from 0.34 % - 1.1 %. This 
indicates that the predictive ability of the random 

forest algorithm is quite good when compared to 
using a dynamic multiphase fl ow simulator.

As can be seen in Table 11. the value of MAPE 
not linear to the increasing value of water fraction. 
This condition can be mean that change of water 
fraction is not corellated linearly to feature obtained 
from calculation which used as an input of  machine 
learning. Regardless of that, this condition still 
acceptable because error obtain in prediction is 
below 20%.

Table 11
MAPE of predicted  wax deposition rate
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CONCLUSIONS

Machine learning has been made to predict  wax 
deposition rate in this paper. Two types of scenario 
which are input A and input B have been made and 
compared each other. input A consists of water 
volume fraction (fw), shear stress (τw), effective 
viscosity (μe), wax concentration gradient (dC/
dT), and temperature gradient (dT/dR) and input B 
consists of water volume fraction (fw), shear stress 
(τw), effective viscosity (μe), wax concentration 
gradient (dC/dT), temperature gradient (dT/dR), 
shear stripping variable (SV) dan diffusion variable 
(DV). Based on the data obtained from the results of 
simulations using commercial software and recent 
article, it is known that the use of random forests 
with Ntree = 500 produces the best predictive ability 
based on the error values obtained for both types 
of input scenarios. Using input scenario A It has 
R-squared (R2) for training, testing and total data are 
0.999, 0.992 and 0.9975, respectively. The strategy to 
include additional features is also known to improve 
predictability for best parameter random forests even 
on slightly values. Using the same parameter of best 
random forest for input B achieves R-squared (R2) 
for training, testing and total data are 0.999, 0.993 
and 0.9977, respectively. Beside that prediction 
using random forest while compare to the result from 
dynamic multiphase fl ow showed good prediction. It 
can be seen on the value of MAPE obtained is under 
20%. Establishment of  machine learning for next 
study can be made by varying input of simulation 
and apply another feature which has better correlation 
with target so it can have wider range of data 
that can be predict and also increase accuracy of 
predicted data.
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