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ABSTRACT - A detailed understanding regarding the rocks Brittleness Index is helpful in oil and gas exploration 
as upfront information to determine the rock fracture gradient. Researchers have proposed several methods to 
estimate the rock Brittleness Index. However, different ways may yield different results and lead to varying 
interpretations regarding the Brittleness Index classifi cation. This paper evaluates the Brittleness Index of an 
Indonesian gas well using three approaches based on the  elastic properties log data,  elastic properties  rock physics 
modeling, and mineralogical  rock physics modeling to assess the consistency of the methods. The results obtained 
in this study suggest that  elastic properties-based and mineralogical methods produced a consistent Brittleness 
Index. However, the vertical resolution is different. It indicates that the Brittleness Index estimated from the actual 
log data showed higher resolution than the Brittleness Index calculated from the  rock physics modeling. Combining 
TOC data with the Brittleness Index is recommended to optimize hydraulic fracturing design and planning. For 
further investigation, the authors will be suggesting direct sampling from cores and laboratory measurements to 
obtain the in-situ mechanical properties of shale rocks.
Keywords:  brittleness index,  mineralogy,  elastic properties,  rock physics modeling. 

INTRODUCTION

A detailed understanding regarding the rock 
Brittleness Index is signifi cant in oil and gas exploration 
as upfront information to estimate the rock fracture 
gradient. The Brittleness of the shale formation plays 
a vital role in evaluating the potential interval area for 
hydraulic fracturing. Brittleness, a measure of rock’s 
ability to fracture, is a complex function of mineral 
composition, the amount of Total Organic Carbon 
(TOC), effective stress, reservoir temperature, 
diagenesis process, thermal maturity, porosity, and type 
of fl uid (Wang & Gale, 2009)  Therefore, Brittleness 
is one of the critical mechanical properties of 
rocks and is included in most of the petrophysical 
reports of unconventional shale reservoirs (Hucka & 

Das, 1974)  However, the absence of a universally 
accepted defi nition and measurement of Brittleness 
has led to various methods or models for its 
quantifi cation (Göktan, 1991).

One of the critical parameters in shale gas 
exploration is that the interval should be brittle and 
contain fractures. The shale should have composed 
more quartz than clay minerals to keep the fractures 
open during production. We quantifi ed the Brittleness 
indicator of gas-saturated shale interval using two 
parameters of Poisson’s Ratio and Young’s Modulus. 
Both are affected by the kerogen content (high TOC), 
the maturity of kerogen, and the fl uid type saturated 
within the pore space. 
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Rock-Eval and Vitrinite Refl ectance (Ro%) plot 
analysis indicated that the amount of Total Organic 
Carbon (TOC) in the studied area was about 2-3% 
and within the maturity level of immature and early 
mature. This work aimed to be the feasibility study 
for evaluating the sweet spot of the gas shale layers 
using the integrated analysis of petrophysical and 
estimated  elastic properties from Rock Physics 
Modeling of shale intervals by utilizing the dataset 
available at a certain limited depth.

DATA  AND METHODS

We quantifi ed the Brittleness Index of shale 
intervals by utilizing at least three approaches of rock 
mineral compositions,  elastic properties from well 
logs analysis, and  elastic properties from the  rock 
physics modeling to obtain the optimum brittleness 
information of fully gas saturated. 

According to their interval values of mechanical 
rock properties, mineral composition, TOC, and others 
(Altamar & Marfurt, 2014); we classified these 
values into several groups as below:

Finally, we incorporated the combined porosity, 
mineral composition, TOC, and fluid type into 
the rock physics model to estimate the Brittleness 
Index. The modification of our rock physics 
schemes (Figure 1) aims to discriminate the ductile 
and brittle interval layers using the information of 
 elastic properties of rocks, which then transformed 
into mechanical properties of Poisson’s Ratio and 
Young’s Modulus.

Due to limited data in modeling our gas-saturated 
shale rock, we had carefully done several steps to 
get the best model in delineating the sweet spot 
according to Brittleness Index from the targeted well 
as the following:
-  estimating the bulk modulus of matrix mineral 

(Kma) using the Voigt-Reuss-Hill Bounding Average 
(5)-(7), which is mainly composed of quartz, 
clay, and several minor minerals from the X-ray 
Diffraction (XRD) dataset. Kma plays a signifi cant 
role in calculating shale gas-saturated bulk modulus. 
For depicting the actual condition of rocks, 
we expected an adequate solid shale model.

-  combining the information of aspect ratio for 
computing bulk modulus of dry rock (Kdry) using 
the Kuster-Toksӧz approach (8)-(9) by using the 
type of inclusion of the penny cracks (Table 1). 

Mineral composites of rocks were the crucial 
factor determining the mechanical behavior of 
rocks (Ye , et al., 2020). The most brittle area 
has abundant quartz, and the least dominantly 
consists of clay minerals (Jarvie, et al., 2007). 
First, we estimated the brittle intervals of shale rocks 
by utilizing the information of mineral variability and 
TOC of rocks using the equation (1). 

(1)

Next, evaluating the average value brittleness 
using the combination of Poisson’s Ratio and 
Young’s Modulus calculated from well logs data, 
as the controlling mechanical properties (Grieser & 
Bray, 2007) using the following equation (2)-(4).

(2)

(3)

(4)

-  fi nally, estimating the best Vp and Vs (11)-(12) of 
shale gas saturated from Biot-Gassmann equations 
(10) where the aspect ratio distribution is obtained 
from the use of the constant Pore Space Stiffness 
Zimmerman Equation (13)-(16), and transformed 
these parameters into Poisson’s ratio and Young’s 
Modulus.

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)
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Both properties obtained were assumed to be 
the best-fi t parameters in the model, representing 
the condition of minerals composing rock, fully 
gas-saturated rock, and pore space of rock.

RESULTS AND DISCUSSION

A.  Brittleness Index Based on Elastic Property 
Data Log

Based on the modulus of elasticity information 
from the log data, the corrected Brittleness Index 
value is in the range of 0.001 - 0.795 (Table 2), 
where the Brittleness of the rock in the research 
well has a ductile to brittle type. Rock Brittleness is 
dominated by less ductile rocks to less brittle, with an 
average Brittleness Index value of 0.294 (Figure 2). 
The higher fracture layers potential, the average 
value of Brittleness index of 0.425 within seven 
depth points at each thickness. These intervals tend 

(13)

(14)

(15)

(16)

  

Table 1 
Pmi and Qmi coeffi cients for the form of inclusion of penny cracks modifi cation: (Berryman, 1995)

Figure 1 
A modifi ed  rock physics modeling scheme modifi ed (Zhu, et al., 2012).
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Figure 2 
Histogram of brittleness Index data log.

Table 2 
Brittleness index based on elastic property data log
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to have higher Vp and Vs, higher Young’s modulus, 
and lower Poisson Ratio (Figure 3), indicating the 
excellent ability to fl ow the fl uid. 

B. Brittleness Index Based on Elastic Properties 
from Rock Physics Modeling

Rock physics analysis is the proper tool for 
estimating the change of mineral composite of solid 
rock with various fl uid content within pore types. 
This study aimed to delineate the gas saturated 
layers of shale formation to account for their 
Brittleness Index.

Figure 4(a) indicates a relatively softer solid 
matrix of shale. This is due to the clay mineral fraction 
and lowering the Km into Reuss’s lower bound. We 
estimated the pore size within the shale model using 
the Zimmerman theory (Russell & Lines, 2011) of 
aspect ratio shown in Figure 4(b). The aspect ratio 
ranges from 0.05 to 0.1. In that case, utilizing the 
penny cracks model to calculate the dry rock modulus 
may lead to the closest condition of the actual pore 
space in the shale matrix. 

We have successfully obtained the best fi t of 
P-wave velocity as the representation of Km, Kdry, 

Figure 3 
Brittleness Index interpretation based on  elastic properties of data logs with maximum fracturing point location.

Figure 4 
Voigt Reuss Hill modeling (Mavko, Mukerji, & Dvorkin, 2020), (b) Pore aspect 

ratio distribution using Zimmerman’s constant pore space stiffness (Russell & Smith, 2007).
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Ksat, and the porosity of the shale model, as shown 
in Figure 5. Next, calculated the Poisson’s Ratio and 
Young’s Modulus and estimated Brittleness Index. 
In this case, we expected a considerable difference 
in S-wave velocity due to the limited information of 
mineral and TOC contents at all depths. 

A ductile to brittle layers with the estimated ranges 
of 0.241-0.502 distributed through the depth (Table 3). 
The average Brittleness Index value of 0.294 is 
grouped as less ductile (Figure 6). The potential 
location of the maximum fracture zone is localized 
at four depth points with different thicknesses 
with the level of rock Brittleness from less brittle to 
brittle with an average Brittleness Index of 0.384. 
The maximum Brittleness of rocks tends to have high 
seismic wave velocities, high Young’s modulus, and 
low Poisson Ratio (Figure 7). This shows that the 
potential zone as the maximum fracture point tends 
to have high seismic wave velocities associated with 
its excellent ability to penetrate rock layers with 
maximum Brittleness.

C. Brittleness Index Based on Mineralogical 
Rock Physics Modeling

Based on  mineralogy information from Rock 
Physics Modeling, the corrected Brittleness Index 
value is in the range 0.140 - 0.354 (Table 4), where 
the rock Brittleness in the research well has a ductile 
type to less brittle. Less ductile rocks dominate rock 
brittleness with an average Brittleness Index value 
of 0.191 (Figure 8). The potential location of the 
maximum fracture zone is localized at three depth 
points with different thicknesses, and the level of 
Brittleness of the rock is less brittle 0.230 (Figure  9). 
The maximum Brittleness of rocks tends to have 
a relatively high distribution of non-clay minerals 
(Quartz + Composite) (23.3 - 23.6 %), relatively 
low clay minerals (73.0 - 74.6 %), and relatively 
high Total Organic Carbon content (2.2 - 3.4%) as 
a determining factor for the optimum and economic 
fracturing potential zone (Figure 10). Localized 
zones 1 and 2 which have the potential to be fractured 

Table 3 
Brittleness index based on  elastic properties from  rock physics modeling

Table 4 
Brittleness index based on mineralogical  rock physics modeling
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Figure 5 
Seismic velocity modeling results with Biot Gassmann Modeling.

Figure 6 
Histogram of  brittleness index  rock physics modeling.

have low TOC levels so that it becomes less 
economical to be used as a hydraulic fracturing point 
as a non-conventional oil and gas source, while zone 3 
has considerable potential as a non-conventional oil 
and gas source for hydraulic fracturing.

The results of applying the Brittleness Index 
using the  elastic properties of rocks with log data 
provide more complex and dynamic results than 
the Brittleness Index modeling results, which is 
limited to several data on the constituent minerals 
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Figure 7 
Brittleness index interpretation based on  elastic properties of 

 rock physics modeling with maximum fracturing point location.

Figure 8 
Histogram of  brittleness index  mineralogy.

and related physical properties (11b). This affects 
the vertical resolution of the Brittleness of the rock 
facies in the study area, where the vertical resolution 
of the Brittleness Index using the  elastic properties 

of log data is better than the vertical resolution of 
the Brittleness Index using the  elastic properties and 
 mineralogy of Rock Physics Modeling (Figure 11a).
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Figure 11 
Brittleness index interpretation.

Figure 9 
Brittleness index interpretation based on mineralogical properties 
of  rock physics modeling with maximum fracturing point location.

Figure 10 
Mineral composition at maximum fracture point based on mineralogical modeling.
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CONCLUSIONS

We proposed three approaches for estimating the 
Brittleness Index in the case of shale gas saturated. 
The results show consistency in the in-situ logs. It is 
critical to incorporate the information of mineral 
composites and TOC amount within pore space to 
optimize the hydraulic fracturing design and planning. 
This study may be implemented in the actual fi eld as 
the quick look of fracturing schemes analysis when 
the core data is not available. For further investigation 
in the future, we suggest measuring the in-situ 
mechanical properties of shale rocks in the laboratory 
from the sample/core to the study area.
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