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FAST HILBERT TRANSFORM

Suprajitne Munadi

ABSTRACT

The uze of Hilbert trangform is becoming more and move Imporiant for analysis and processing of geophy-
sical data. However, the direct mathematical formulation in the form of contour integration is not easy to pro-

Famme.

A specific formulation which relates the Hilbert transform and the Fourler transform has been established
for developing a computer programme. This relationship enables us to execure the Hilbert transformation in
& very quick manner using the well known Fast Fourier transform algorithm,

The apiicarion of this method for generating quadrature seismic trace and recovering minimum phase spec-
mum from the magnitude demonstrates the effectiveness of the programme, The conversion of non-minimum
phaze seipmic wavelet into its corresponding minimum phase wavelet which has similar spectral Higgritiede can

e done using the Hilbert trangform,
L INTRODUCTION

Although the mathematical concept was intro.
@uced more than 60 years ago (Titchmarch, 1926,
1537, 19438), the uwse of Hilbert transform in the
s=arch of oil and gas has just been introduced recently
{Tamer et al, 1979; Robertson and Nogami, 1984).
In this case the Hilbert transform is applied to gene-
rie the attribuies of the complex seismic data,

The Hilbert transform not only does contribute
m the analysls of the complex seismic trace hut alsy
gves a valuable contribution to the analysis of gra.
wity and magnetic data (Shuey, 1972; Nabighian,
1972; Cerveny and Zahradnick, 1975; Stanley and;
Geeen, 1976; Stanley 1977; Mohan ct al, 1982). In
this paper the use of the Hilbert transform only for
the mmalysis of seismic data will be discussed, Imple-
mentstion of computer programme for fast Hilbert
tmansform will also be discussed.

In seismic data enalysis, the Hilbert transform is
med for generating the quadrature function of 3
s=immic trace. The guadraiure trace can be considered
& the potential energy a3 a pair of the kinetic energy

mcorded by geophones. As a result from the passage 2

of mismic waves, the geophones record the velocity
of the particle motion which manifest as the amplitude
of the sismic tracc. The square of the velocity is
proportional to the kinetic energy. On the contrary,
&5 e particle motion is opposed by an elastic res-
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toring force of the rock, the enargy become stored as
potential energy (Taner et al, 1979).

An advantage of having the quadrature trace is
that it can be combine with the real selsmic trace to
form an anvelope of the selimic waves which is re-
ferred to as the reflection sirength, The reflection
strength is proportional to the square root of the
total energy. A portion of a real selsmic trace, the
comresponding quadrature trace and the reflection
strength ie given in Figure 1. Apart from the refleg-
tion strength, the instantaneous frequency can also
be generated.

Figare 1. A portion of a real seismic trace, its corres-
ponding quadrature trace and the reflection strength.

{from Taner et al, 1979)
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Figure 2. The sgn w as a function of frequency and its
Fourier transform, the Kemel function as a fusction of

lme.

The maximum points of the reflection strength
differs from the maximum points of peak or through
amplitude, especially when the reflection is composed
by interference of several sub-reflections. In this case
the reflection strength has its maximum at phase
point (Taner et al, 1979). Polarity is derived at the
maximum points of the reflection strength. The geo-
logical indications by reflection strength, instanta-
néous phase, instantaneous frequency and polarity is
summarized in Table -1.

0. REVIEWOF MATHEMATICAL BACKGROUND
A.  Basic formula
The Hilbert transform of f{t) is defined by

1
E SR U - St
Hilt) = F—

the singularity at t = T ishandled by taking the Cauchy
principle value of the mntegral. Fyyit) is abso called
allied function to £t). (Titch march, 1926: Jeffreys
and Jeffreys, 1972; Pllant, 1979; Aki and Richards,
1980). The inverse Hilbert transform of f{t) is define
by Fyp(T) dT
1 - Hi
s

It can be shown (Bracewell, 1965) that Fyyit) is a
linear functional of f{t). This relationship can be
expregied a3 (¢ abo Aki and Richards, 1980;

4

qith

Kanasewich, 1975, 1981).

where (-#t)! is the Kemel function whose Fourber
transform is j go o which s cqual
to 4 for positive wand -j for negative
@, [see Figure 2).
- denote convolution,

The Hilbert transform of a Kernel function is the
Dirac delta function.

Figure 3 iz an example of Hilbert transform in
sucoession (Bracewell, 1965). The left-hand side
shows a function and the result of two successive
Hilbert transformation, while the right-hand column
shows the corresponding Fourier transforms. It can
be szen that the Hilbert transform conserves the spec-
tral amplitude but alteres the phase by 90 degrees,
positively or negstively according to the sign of w
It can aleo be seen that the Hilbert transform of even
functions are odd and those of odd function even.

Equation (3) shows that the Hilbert
can be found by Fourier transforming f{t) to
Fc), and the 90 degrees phas: advance can be
out by interchanging real and imaginary part of F(
with sign change in the resulting imaginary part.
inverse Fourier transform then reétums to the
quired Hilbert transform (Aki and Richards, 1

Sclemtific Contribution 1




Geological Indications by Seismic Parameters

Reflaction
Phas Strength Polarity Frequency
ETRUCTURAL FEATURES
Correlation _!_empha.:izes
. Continuity of
| Weak evenis
Unconformities angularities
show well often strong and variable
Faulis show clearky pattern mps cofrelation across m -
1 — e ———
STRATIGRAPHIC FEATURES
''‘'-—-.—---'''_""~--"'_"----_---"'I
Major breaks in
section show on-lap, often strong; nature of mioderately low
off-lap comtrast may indicate frequency
patiermns clastic to carbonate
| orviceversa
Pinchouts oftenshow | ey A
i clearly varlation in pattern
Prograding often show
chearly
Turbidites local irregular
mound pattern
Raefs local
pattem interruption in pattemns, lower frequency
fLI_J]D CONTENT
| Gas often strong often negs- low frequency
tive shadow under-
neath _
Condensate 0T
sometimes low
increass frequency
shadow
Flat Spot shows clearly
l Limits to change in
4 Production pattern
Distinguish gas
from lime budldup, sometimes sometimes
conglomerate, etc. distinctive distinctive
Table = 1. (from Taner gt al, 1979}
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the remlt of two successive Hilbert transformations,
while the right-hand colomn shows the comesponding

Fourier transforms. (from Bracewell, 1965)

B. Analytic signal and Hilbert transform

A function is called analytic if it 13 continous in
the time domain and the frequency responge is zero
for negative frequencies, Let

GOLE(VEST 37 () NN (4)

be an analytic functlon, Fy(t) is referred to as the
quadrature function of fi(t).

For the sake of clarity, let us consider an analytic
funiction of the form

exp(—jt)= coat)—j an(t) .......... (5)

The analytic signal corresponding to cog(t) i3 expljt)
and the Hilbert transform of cos(t) is — sint). Thus,
by analogy it can be conbuded that the analytic signal
bears the same relationship to (1) as exp{=jt) does to
cos(t) (Bracewell, 1965).

L. Hilbert transform of a cousal funciion

An infimite Wt} is causal if w(t) = 0 for £<<0.
Kanasewich (1965, 1981) has showm that for a linear
system which is physcally realizable whose impulse
response is causal, the real and imaginary part are
Hilbeert transform.

Ygiw) is the real part of the spectra
‘l’l{mj is the imaginary part of the spectra
Equation (&) and (T) are comparable to the log

magnitude spectra and phase specira of o caussd
function.

Lat
Yiad= [ Yo} oI PO o0l (%)

The log modulos and the phase are Hilbert transforms

log [ Y(e) ] =— IT ¢ 2

W L]

Interested reader can find proof of thess equation &
Oppenheim and Schafer (1975}

Equations (%) and (10) tell us that we can
the phase spectrum of any signal and any inst
by only knowing their spectral modulus. This is I
portant if we want to correct the phase caused
the instrument which is generally not known.

Ancther interesting application of equations
and (10} is the conversion of a non minémum
wavelet imto its cormesponding  mindrnam
wavelet. The corresponding minimom phase
has the same speciral magnitude ag the min
phase wavelet. This application arises from the
that the Hilberl transfomm pair given by equation
and (10} are derived from minimum phase
ion, so that the phase obtained from equation (10}
the minimum version of the phase specirum of
signal whose spectral magnitude is Y (e
D, Reflection strength, instantaneouy phase

insigninects frequency

Let us refer to the analytic function given
equation (4), the reflection strength or the e
is defined by




BO=1 2 @+F 01" ... .
from which the instantaneous phase can be found as

() = tan~! [FpgT6D ] ... . (12)
Since

L e R, (13)

where o is the angular frequency, the instantaneous
frequency can be found by differentiating the instan-
taneous phase with respect to time. The differeniia-
tion of a function can be carried out easily in the fre-
quency domain by multiplying its spectra by j w. The
instantanecous frequesicy maybe useful function to
plot for dafa that shows dispersion (Kanasewich,
1981).

ll. IMPLEMENTATION PROCEDURES

The fast Hilbert transform can be carried out by
using the Fast Fourier trunsform. For this purpose;
the relationship between bhoth transforms must be
established, It should be noted that the Fast Fourier
transform operates on the discrete, finite duration
sequence of data,

Kanasewich {1975, 19810 has shown that

Fr(ed = jF(w) s ...ooo.... . (14)

which is just the Fourier transform of the equation
{3} and

Sgnw =1 for w>0
« e S (15)
= =] w0

Let rewtite analytic function given by equation (4) in
the form :

H=fit) — j fgl) ............ (16}
its Fourier transform can be written as
Z{e)= Fled = j Fyled rrereae (1T)

Now substitute equation (15) into (14) and combine
with equation (17) to yield :
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Z(w)= Flod= (=F{eh) for w>0
Flud— 0 for ta= 0
Fed) - Flod for w=C0

Which means that the spectrum of an analvtic func-
tion is related to the spectrum of its real function by :

Zich= 2F(ed for > 0
= Fluw) w= 0 (18)
= w= 0

Inverse Fourier Transform of equation (18) vields an
analytic function in which i3 real and imaginary part
are Hilbert transform pair.

By considering equations (16) and (18), the
Hilbert transform can be executed using the Fast
Fourier transiorm through the following steps :

1. Fourier transforming f (t) to yield F ().

2. Set Z(a)=2 Fied) for n=2to 12“‘—
(n iz the number of sample in frequency
dormain].

3. Bet Z(w)= F(ud for n= 1.

4. Set Z{w)= 0 for o= Eﬂ + 1 to M.

3. Inverse Fourer transforming Z(w) from
n= 1M to yield a real and an imaginary fumc-
tion in the time domain,

6. The negative of the imaginary part of step 5
is the Hilbert transform of its real part and
wice versa,

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Conversion of meximum phase wavele: into

maxintiim phase correspondence

A minimum phase doublet of amplitude 2,1 and
a maximom phase doublet of amplitude 1,2 has
exactly the same spectral magnitude as shown in Fi-
gurs 4-a. Their amplitude phase are different. The
phase spectrum of the minimum phase wavelet is
illustrated in Figure. d.b, while the phase snectrum
of the maximum delay wavelet is given in Figure
&,

A computer programme has been written to take
the Hilbert transform of the log spectral magnitude

7
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Figure 4-s. The magnitude spectrum of 3 2, doublet
and a 1,2 doublet. Their spectral magnitude are exactly
the same, Frequency must be multiplied by 15.625 He
for all magnitude and phase spectra in this paper,
oul-
f,re

Figure 4-b. The phase spectrum of the 2, 1 wavelet.




Phasge

Frequency
Figure 4=c. The phase spectrum of the 1,2 wavelet,

2 Frequency
mh.:EHI Thphuleq:ﬁhm-n!liul‘lmdﬁ
Hi!ﬂ't‘_.‘ transforming the log spectral magnitude of
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and using Figure 4-a as the input data. The result is
the phase spectrum as illustrated in Figare 4-d which
is exactly similar to the phase spectrum of the mini-
mum delsy doublet. This proves that the Hilbert
transform of the logarithmic (base ¢) of the spectral
magnitude of 3 wavelet yields another wavelet whose
phase spectrum is minimum, Experiment also shows
that if the wavelet has already minimum phase, this
process does not change the mput wavelet,

If the phase of any given wavelct can be obtained
from its magnitude by using the Hilbert transform,
the comesponding minimum phase wavelet can be
computed by inverse Fourier transforming

Where M () Is the spectral magnitude of any given
wavelel.

& (i) is the mmspmﬂhgmﬂhmmphmqﬂ:tmm
obtained by taking the Hilbert transform of the M
().

Another interesting example is the conversion of
2 more complicated wawvelet as illustrated in Flgure
5-3. Whose spectral magnitude is given in Figure 5-b.
The phase of the wavelet is a function of frequency
which has a lot of discountinuities as shown in Figure
S-c

Magnitude Spectrum

FEEEm———
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Figure 523, A non-minimum phase wavelet with
amplitude : 1,2,3,4,5,-3,-2,-1.

[ E

Frequency =

Figure 5-b. The magnitude spectrs of Figure 5-a.
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The Hilbeit transform of the log spectral mag-
nitude yields a spectrum which is minimum a3 shown
in Figure 5. It can be scen that this phase specirum
is a smooth function of frequency. The minimum
phase wavelet which comesponds 10 the wavelet
shown in Figure 5-a can be found by using equation
(19) then followed by inverse Fourier transformation.
The result is given in Figure 5-¢.

B. Computing reflection strength

The reflection strength as deseribed in section
1.4 was computed using equation (11). This requires
the computation of the quadrature function Fig(t)
from the real scismic trace f(t) must be executed
first. For this purpose, 2 compuier Progranme
HILBERT has been developed. (see Appendix).

Figure -2 is an example of a real synthetic sis-
mic trace whose quadrature trace was computed by
subroutine Hilbert mentioned sbove. The result is
given in Figure &b. The corresponding  reflection
strength can be seen in Figure 6-c. To facilitate the
comparation between the reflection strength and the
absolute value of the trace amplitude, the absolute
value of Figare 6-a is given in Figure 6-d. It can be
ohserved that the maximum vale of the reflection
strength Is not always the same with the maximum

Il i L 1 ] i

amplitude of the sjesmic trace. The reflection strength
has its maximum at phas: point.

V. CONCLUSION

Hilbert transform techniques plays an important
role for generating quadrature trace from an observed
real seismic trace. The quadrature trace and the real
selgnic trace can be combined to yield the reflection
strength or the envelope which represents the total
energy of the propagating waves. A part from the
reflection  strength, the instantaneous phase and
instantaneous frequency can also be obtained, Thes
in formatlons are wery valuable for detail analyss
of complex selsmic data.

The Hilbert transform technique can be executed
more efficiently using the Fast Fourier transform
algorithm which enables us to obtain the quadrature
trace in a véry quick manner.

The Hilbert transform can be used to convert a
non minimum delay wavelet into its corresponding
minimum delay wavelet which has the same magnitude
spectral. This convertion is useful to facilitate analysis
and processing of complex sedsmic signal.
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spectrum of Figure 5-¢, after
the log spectral magnitude of
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Figure 5-d. The phase
Hilbert
Figure 5-b,

corresponding minimum phase wavelet
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of Figure 5-a,

Figure S, The



R ki = fuien i T
fal trace amplitude
ol quadrature trace
fel reflection strength
(a] absohute amplitude
& l'ﬂ- i'ﬂ III : ”II:LI;E‘-“m.rﬂ;
Time {m s=c)
Figure 6. (a) An example of a synthetic real scismic
trace,
(b} The quadmture trace of (a).
{¢) The reflection stremgth computed from
{2) and (b).
{d) The absolute amplitude of (a).
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APPENDIX.
C Subroutine Hilbert (N, X, XH) 2 Continoe
C Generates analytic function of the form : Return
€ X(T)=U(M+ j V(T) o
C  Where U(T)is the real seismic trace Subroutine Findnu (M, M)
C Inputdatais X(T) = CMPLX [U(T), 0] C
C Upen transformation U(T) retums to real C Finding exponent of 2 from a given N
[X(T)) C LE. N = 2=sM
C Hilbert transform of U(T) = V(T) is stored in C
XHI(T) : Do 10 T = 1,12
Dimension X(N), XH(N) LF(N - 2+s) 10,5, 10
Complex X 5 M=1
Call Findnu (N, LN) Goto 20
Call FFT (X,-1.LN) 10 Continue
Dol I=2 N2 20 Return
X(M=2.+X{D End
e T C234567
1 Continue Subroutine 'FFT (F, Sign, LN)
K{1+N/2)= 0.0 C
Call FFT(X, +1.,LN) C Sign = -1. For direct transformation
Doz2l=1;N C Sign = +1. For invers transformation
XH(T) = ~-ATMAG (X{T)) C  ZeslN=N
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Complex F(1024),],W, T
Pl=3.141593

N = 2+sLN

V2= N2
NM1 = N-1

FN = FLDAT(N)
FC=1.0

T=]

DD 4 1=1,MMI
IF(L.GEJ) Go To 1
T=E(J)
F(7=F(I)

F(l)=T

K=NV2

2 IF(K.GE.T) Go To 3

FO

I=1-K

K=K

Go To 2

I=J+K

Contimue

IF(Sign. NE. 1) FC=-FC
Do 7 L=1,IN
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Le=Jss].

Lel = Lef2

U = CMPL X (1.0,0.0)
FCS = FC#Sin (PI/LEL)

W = CMPLX (Cos(PI/LE1), FCS)

Do6l=], LEI
Do 51=],K,LE
IP=1+Lel

T =F{[F=U
F(IF)=F()-T
F=FDO+T
Contimoe
U=UsW
Confinue
Continue
lf(sign. eq. -1.) Return
Dodl=1H
F(I) = F(T/FN
Continue

Retum

End



