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ABSTRACT

Reservoir rock physical properties, such as
porosity and water saturation, always play
prominent roles in the development of oil and
gas fields. Accurate information regarding
their distribution is always desired. For this
purpose, a new approach that uses a
combination of intelligent computing (artificial
neural network or ANN) and rock physics, with
a full utilization of core data, well logs and
seismic-derived attributes, is proposed. The
method is basically an effort to link the
required rock physical properties to seismic-
derived attributes through the use of rock
physics theories. The ANN itself is used to fill
the gaps of data array required by the proposed
method through its capacity for pattern
recognition. The proposed method is applied
to a limestone reservoir in East Java. Validation
is carried out by comparing the results to the
observed data at well locations as well as by
geological justification. The application has
shown a new potential for supporting reservoir
modeling and field development.

I. INTRODUCTION

An important factor in the reliability of a reservoir
model is the level of uncertainty in the reservoir charac-
terization stage. Various efforts have been made in or-
der to reduce the uncertainty level. Current developments
in reservoir characterization have given much attention
to integrating results from seismic data. In other words,
the main objective is to extract as much information as
possible from seismic surveys. Use of seismic data is
now beyond exploration activities and construction of
reservoir structure. Recent advances of seismic inver-

sion have facilitated -exploration toward extracting rock
physical properties for building reservoir simulation mod-
els (e.g. Furre and Brevik, 2000; Vidal et al., 2000).

The introduction of statistical pattern recognition (ar-
tificial neural network, ANN) in reservoir characteriza-
tion has the potential for further reducing the uncertainty
of reservoir predictions. Recent work by Mukerji et al.
(2001) attempts to integrate rock physics. statistical pat-
tern recognition, seismic inversion, and geostatistics in
order to map the distribution of lithofacies and fluid con-
tents. In general they apply a Bayesian statistical classi-
fication for grouping seismic attributes for lithofacies and
fluid contents, as well as their corresponding iso-prob-
ability surfaces. For spatial correlation, geostatistical
techniques (stochastic simulation) are used.

Following a similar approach this paper introduces a
methodology for combining the strengths of both ANN
and rock physics for improved porosity and water satu-
ration predictions from core data, well logs and seismic-
derived properties. The methodology is applied to a het-
erogeneous oil producing limestone reservoir (EJ field)
in I'ndonesia.

II. AN INTEGRATED TECHNIQUE

Widarsono and Saptono (1997, 2000a, 2000b, and
2001) propose a technique for preparing log and core
data for the purpose of extracting porosity and water
saturation from seismic attributes. Following its applica-
tion on real seismic data (Widarsono et al., 2001), the
proposed technique is best performed in the following
steps:

I. Measurement of porosity, water saturation, density,

P-wave and S-wave velocities, and the determination

of rock mechanical properties.

2

Modeling of the relationships between physical
properties  (e.g. porosity and water saturation),
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Figure 1
Model relationship for measured data from core samples
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Figure 2
Evidence of validity for water saturation
(core data)

P-wave velocity and Poisson ratio using a
combination of Gassmann acoustic velocity model
(Gassmann, 1951) and the theory of elastic wave

propagation (Figure 1-presents a typical example of

the model).

6.

Model validation through comparing, involving
iteration, both model and observed porosity and water
saturation values (an example for water saturation
is shown in Figure 2). The ‘effective’ rock matrix
bulk and shear modulus used in the validated model
is then used in the modeling on well log data as ‘first
guess’ values.

Similar modeling on well log data (preferentially done
on key wells that have the most complete sets of
data) taking into accounts the effect of variations in
density and shale contents. Adjustment of the “first
guess’ rock matrix data is made on the line of
comparing porosity and water saturation between
model and log data. Poisson ratio and acoustic
impedance data is used as input for the model. See
Widarsono et al. (2001) for the method for generating
synthetic poisson ratio from log data. An example
for the model validity is presented in Figure 3.
Confirmation and validation following step 4, which
results in the modeled relation, are ready to be used
to interpret seismic attributes. An example of the
relation (in the form of a cross-plot) is presented in
Figure 4.

Application of spatial correlation, whether determin-
istic or stochastic, on seismic attributes. The seismic
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Examples of the model relationship for in situ condition
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attributes required by the proposed technique are

acoustic impedance (Al) and Poisson ratio.

7. Application of the validated model (Figure 4) on
seismic attributes. Provided the needed distributions
of seismic attributes are available, porosity and water
saturation distributions can be established.

8. Validation of results through analyses on reservoir
geological and engineering evidence.

Although the presented methodology is simple and
straightforward. its application on real field data may
require some improvisation (Widarsono et al., 2001).

In applying the technique to a limestone reservoir EJ
field (Figure 5), there are several_problems that hinder
its immediate use in the interpretation of seismic
attributes. The problems are summarized as follows:

1. Unlike the Al attribute (for the top 10 millisecond of
the reservoir) that is provided directly from seismic
inversion (Figure 6) corresponding Poisson ratio data
is absent due to the absence of amplitude variations
with offsets (AVO) analysis or any data recorded
using multi-component receivers. Since there is no
such map available from seismic processing, its
creation based on log data from all wells is a
necessity.

19

Unfortunately, some of the wells do not have
complete log suites. This makes it difficult to
determine all necessary paramelers, i.e. porosity,
water saturation, acoustic impedance, and Poisson
ratio.

The above two problems in fact cannot be solved by
conventional practices, although rock physics theory is
well understood. It becomes a necessity to apply more
advanced technologies such as artificial neural networks
to account for the associated uncertainty.

III. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) are currently the
most popular technique in artificial intelligence for
advanced signal processing. Given a set of multivariate
input and target measurements, ANNs can learn and
extract their complex non-linear relationships. The
relationships can be applied to estimate the target
variables when the actual measurements are not
available. Many previous studies have shown
encouraging results in field applications, compared with
well-established techniques such as multiple linear
regression and discriminant analysis (e.g. Wong et al.,
1995; Bruce et al., 2000).

The neural networks used in this study are supervised
backpropagation networks. Backpropagation is a gradient
descent algorithm that is used to estimate coefficients
(neural connection strengths) by minimizing an error
function (Bishop, 1995).

A. Prediction of missing log suites

The immediate problem that must be solved is the
absence of some well log data. The most important
synthetic log data is the acoustic log (monopole) and
density log. Alternatively, missing Poisson ratio values
would be required for the generation of Poisson ratio
spatial distribution. Also, the missing acoustic impedance,
along with the corresponding Poisson ratio values is
required for validation purposes, presented later in the
process of validation for both Al and Poisson ratio maps.

The presented example uses fourteen (14) wells from
the EJ field. Of the 14 wells only five wells have acoustic
logs and seven wells have density logs for the estimation
of Poisson ratio and AL These data are important for
the generation of Poisson ratio spatial distribution, and
for the validation purposes. The missing logs (acoustic
and density) are generated from known relationships
found in other wells.

Based on a detailed analysis of the well logs in all
wells, one of the wells was selected as the key well for
the study. The well logs of this well were used as training
data. A neural network was setup to predict the missing
logs. The types of input logs presented to the neural
network were the conventional open-hole well logs, and
the output logs were the missing logs (i.e. acoustic and/
or density logs). Figure 7 shows an example of the
predicted acoustic and density in a candidate well (well
EJ-2). The results conformed with the geological setting
of the field. The predicted acoustic and density logs were
then presented to the corresponding equations derived
from rock physics theory for the estimation of both Al
and Poisson ratio.

B. Generation of the Poisson ratio map

The Poisson ratio data set contains a total of 841
values from fourteen wells. However, many calculated
Poisson ratio values were out of the range that is
considered typical (0.05 to 0.35) (coals can have Poisson
ratios higher than 0.4). This was partly due to physical
limitation of the equations when applied to reservoirs with
extreme porosity values (too low and too high) and partly
due to difference in resolution that characterizes the
acoustic and density logs needed for the estimation of
Poisson ratio. It is worth noting that two survey tools,
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Figure 8

Test for Poisson ratio estimates.
Comparison between porosity esti-
mates and porosity from conventional
log analysis (EJ-14 well)

Figure 10
Poisson ratio map for the 10 miliseconds
interval of the EJ reservoir
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Test for Poisson ratio estimates. Comparison
between water saturation estimates and
water saturation from conventional log
analysis (EJ-14 well)
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Figure 11
Comparison between Poisson ratio values
from map at well locations and average
Poisson ratio values from the wells

LEMIGAS SCIENTIFIC CONTRIBUTIONS NO. 1/2002



SEENTIFGC CONTRIBULTICNES

having different depth of investigation (giving
different resolution), operating in highly
heterogeneous limestone may produce
inconsistencies in the data they produce.
Accordingly, a careful selection was made
on the Poisson ratio data.

In this separate study, the first step was
to select Poisson ratio with values between
0.05 and 0.35, and take them as the most
representative log patterns. This resulted in
total of 151 values. The second step was then
to setup a neural-network aimed at re-
estimating the remaining 690 values (841
minus 151) using all the well logs as inputs.
A sigmoid transfer function was used to
constrain the Poisson values from 0.05 to
0.35. After the network converged. all
Poisson values within the desired range were
obtained.

The third step was to check the validity
of the estimated Poisson ratio data. Poisson
ratio estimates and corresponding Al data
were input into the model derived previously
(Figure 4), and this resulted in porosity and Y
water saturation estimations. The porosity
and water saturation estimates were then
compared to the porosity and water saturation
values produced by conventional log analysis
(Figures 8 and 9).

The fourth step was to model the spatial
relationships of Poisson values. Another
neural network was setup using the spatial
coordinates (x,y,z) and the Al values (derived
from well logs) as inputs, and Poisson ratio
as output. Initially, the network used all 841
training patterns but the iteration did not
converge to a satisfactory error. An
examination was then made on the individual
error value for each pattern, Only the
patterns with low errors (“clean™ patterns)
were selected (410 points) for further training.
The inconsistent Poisson ratio values were later to be
replaced by the produced estimates.

After the removal of the unrepresentative patterns,
the network converged and the seismic-derived Al value
at each coordinate was presented to the trained network.
It is emphasized that this approach used the log-derived
Al values to train the networks, followed by the seismic-
derived Al values to make subsequent predictions. This
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Figure 12

Porosity lateral distribution for the top 10 microseconds

interval of EJ reservoir
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Figure 12
Water saturation lateral distribution for the top
10 microseconds interval of EJ reservoir

is a valid approach in the sense that neural networks
provide only approximations to the log-derived Al values
during the learning phase. The scaling problem becomes
insignificant after the network is trained. Figure 10 shows
the Poisson ratio lateral distribution for the top 10
milliseconds travel time (approx. 40 ft) of the reservoir.

In the final step a comparison was made between
the predicted Poisson values at the well locations and
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Comparison between porosity values from
map at well locations and average porosity
values from the wells
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Figure 15
Comparison between water saturation values from
map at well locations and average water saturation
values from the wells
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the average Poisson ratio values of the wells for the
particular interval. The results were satisfactory, except
for wells with very low porosity values (wells EJ-12 and
EJ-13), which were lower than the engineering cut-off
value of 7%= (Figure 11).

IV. SPATIAL DISTRIBUTION OF
PETROPHYSICAL PROPERTIES

Initially. it was planned that as Al and Poisson ratio
data became available then the distributions of porosity
and water saturation would be established through the
use of the correlation presented in Figure 4. However, it
was later thought that it would not produce any significant
new information since the training patterns that were
used in the generation of Poisson ratio have already been
strictly controlled by the correlation in Figure 4. The
provision of the porosity and water saturation distribution
was then assigned to neural networks with the selected
log data used as the training patterns. and the Al and
Poisson ratio spatial distributions (Figures 6 and 10) as
input data for the resulting trained network. The porosity
and water saturation distribution for the area of interest
is presented in Figures 12 and 13, respectively.

In judging the validity of the porosity and water
saturation maps, two approaches were taken. Firstly, a
well-based approach was taken, to check the agreement
between predicted values at well locations and the
average values form log analysis for the relevant wells.
Secondly, a macro approach was used to check the
soundness of the maps from the point of view of reservoir
geology.

Figures 14 and 15 respectively present the
comparison between map and average well values for
all wells (except well EJ-3 which is dry hole). In general,
the agreement seems satisfactory except for some wells
that are characterized by low porosity (wells EJ-12 and
EJ-13). This is indicated by plots, which show that most
data fall within the 3-porosity unit (pu) envelope (Figure
14) and 10 percent water saturation envelope (Figure
15). As stated earlier, the exclusion of porosity and water
saturation data from wells EJ-12 and EJ-13 is considered
Justified since much of this data has been excluded from
the training patterns due to inconsistencies discussed
carlier. However, one marked consistency is shown by
causality between the two variables in which water
saturation tends to be high for low porosity low for high
porosity. This correlation, which can be demonstrated
petrophysically, shows that the neural network output is
consistent with the input data.
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A second approach in assessing the reliability of the
porosity and water saturation maps (Figures 12 and 13)
is through geological consideration. It is commonly
acknowledged that lateral porosity variations in carbonate
reservoirs are very difficult to determine. As stated by
Murray (1960), porosity in carbonate rocks results from
many processes, both depositional and post-depositional,
and is dictated largely by the history of the rocks
themselves. Considering the complexity of porosity in
carbonates, it is therefore difficult to assess the validity
of porosity maps, without detailed studies of the origin of
the porosity in the EJ reservoir. The porosity map is
consequently not included in the evaluation.

Evaluation of the water saturation map (Figure 13)
is easier to conduct than the evaluation of porosity map.
By comparing top-structure map (Figure 5) and the water
saturation map, a_similarity is visible. The most notable
consistency is the presence of oil-water contact in the
southeast corner of the study area, indicated by the
presence of higher water saturationy upon which is
separate from areas of lower water saturation. Indeed,
it is worth noting that considering the estimated water
saturation cut-off value of 60% the highest water
saturation value of roughly 44% (Figure 15) appears to
be too optimistic. This bias is probably caused by the
validity of the model as it is applied throughout the
reservoir as well as by the validity of Gassmann model
itself in the case of non-clastic limestone reservoir.
Considering the modeling is conducted in one key well
only, inclusion of more wells representing different
locations may yield better results. Nevertheless,
considering the potential error of 10-20 percent of pore
space, depending on the reliability of log data and
problems encountered, often found in water saturation
values derived from log analysis the water saturation
map in Figure 13 can still be regarded as a reasonably
good and reliable result.

V.  CONCLUSIONS
A series of conclusions has been drawn from the study:

* An intelligent approach to help determining rock
physical properties from seismic data has been
proposed. However, improvisation may have to be
used depending on data availability.

e The use of rock physics theories (“*hard computing™)
has benefited much from the intelligent approach
(“soft computing™) in the form of artificial neural
networks (ANNs). The use of ANNs could be more

intensive in cases that need the ability to learn patterns
of other variables, such as rock matrix density and
shale content.

e A separate method that combines modeling of log
data and the use of ANN for generating Poisson
ratio distribution map has been established. The
method can be used in the absence of Poisson ratio
data that is derived through seismic inversion.

e The application of an intelligent approach is useful
for solving intrinsic problems normally encountered
by log analysts. As shown, potential inconsistencies
exhibited by two logs with different depth of
investigation can be reduced significantly by selecting
the most representative patterns and replacing the
“faulty” values with ANN estimates.
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