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ABSTRACT

Rock true resistivity (RrJ is known as more
sensitive than compressional-wave velocity (V,)
the principal output of a seismic survey, to varia-
tion in water saturation. Therefore, it would be
of a great value if there were a way to predict
resistivity distribution from seismic signals. This
study is essentially an effort to see the possibility
of predicting R, from V_through a pattern recog-
nition approach. For the purpose, a series of
laboratory tests were performed on some Cen-
tral Sumatran clay-free sandstone samples of
various porosity values and at various water satu-
ration levels. For studying the pattern of rela-
tionship, artificial neural networks (ANNs) were
applied. From the ‘training’ (i.e. pattern recog-
nition) activity performed using the ANNs, it has
been shown that there are patterns of relation-
ship between VP and R. In the following ‘blind
test', it has also been shown that the trained re-
lationship can be used to estimate R, reliably us-
ing other data as input. Comparisons between
estimated and observed R, data have indicated
good agreement implying the success of the ap-
proach taken in the study. This has laid the foun-
dation and justification for further application
of the approach on seismic and well-log data.

I. INTRODUCTION

Current developments in reservoir characterization
have shown that much attention is given to integrating
results from seismic survey into the activity. The use of
seismic data is now beyond the traditional exploration
activities and construction of reservoir geometry. Re-
cent advances in seismic inversion have facilitated the
exploration toward extracting petrophysical properties

for building reservoir simulation models (e.g. Furre and
Brevik, 2000). These developments include some works
that are devoted to extracting information about water
saturation distribution.

In their works Widarsono et al (2000 and 2001) en-
countered, despite some promising results, difficulties in
obtaining water saturation values from seismic data
through a combination of acoustic velocity modeling us-
ing Gassmann model (Gassmann, 1951) and artificial
neural network. The main factor that was considered to
be the cause is the fact that acoustic velocities do not
vary significantly with variation in water saturation when
compared to variation in porosity. This is also clearly
shown by the Gassmann model itself, as well as by labo-
ratory experiments performed in the past (e.g. King, 1966;
Gregory, 1976; Widarsono and Saptono, 1997). There-
fore, even small bias caused by, say, moderate-scale het-
erogeneity may result in considerable error in the pre-
dicted water saturation.

Traditionally, the main source of water saturation data
for the purpose of reservoir characterization and reserves
estimation is resistivity logs normally run for most oil and
gas wells, due to their sensitivity to variation in water
saturation. Logically therefore, it would be preferable to
have first resistivity distribution substracted from seis-
mic data, rather than trying to produce water saturation
data directly from seismic. It is therefore, the main ob-
jective of the works presented in this paper is to observe
relations between reservoir rock acoustic velocity and
resistivity. And for the first step: experiments in core
laboratory with application of artificial neural network
as a supporting means of pattern recognition and data
prediction.

II. INFLUENCE OF WATER SATURATION:
ACOUSTIC VELOCITY VS RESISTIVITY

Theoretically, variations in water saturation have their
influence in varying both rock acoustic compressional
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wave velocity (V) and resistivity (R ). The Gassmann
model of acoustic velocity in elastic media has shown
that
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where P, is the P-wave modulus for the rock frame
(or dry rock), and f{K ) is the function of the incom-
pressibility of the fluid in the pore spaces. The P-wave
modulus for the dry rock can be expressed, in turn, by:
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and the function f{K ), by:
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in which K is incompressibility (or bulk modulus), G is
shear modulus, and the subscript d, /, and m refer to the
rock frame (or the dry rock,), fluid, and rock matrix.

For rock containing both water and hydrocarbon, the
bulk density is expressed as:

y=0-p,+(1-0)p, (4)
where:
P, =80, +(1=8,)ps (5)

and the fluid incompressibility, K, which is the inverse of
compressibility, ¢, is given by:
1 1
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where § denotes saturation, and the subscript hc refers
to hydrocarbon.

Rock frame incompressibility, K , in Equation (3),
which is the inverse of compressibility of dry rock, ¢ , is
related to PV compressibility, ¢ , by:

1 1
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The relation between compressional wave velocity
(V,) and water saturation (S) is clearly shown by the

Equations (1) through (7). There are two governing vari-
ables in the main Equation (1) that are influenced by
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Figure 1
An example of acoustic measurement results (from
Widarsono and Saptono, 2000a)

variation in S . Even though the two variables in the
Equation (1) are reciprocal in nature but the increase in
S tends to increase the V. especially in oil-water two-
phase system. Figure (1) presents some experimental
results on core samples.

On the other hand, the relation between R and S is
more straightforward. This is true since for brine-satu-
rated clean sedimentary rocks the total electrical con-
ductivity is solely governed by the amount of the brine
within the pore system. The electric current simply flows
through the tortuous pore system that is filled continu-
ously by the brine and completely ignores the non-con-
ductive hydrocarbon fraction and rock matrix.

The relationship is best expressed by the empirical
Archie formula

5" = a R, &
d_)m Rf
where n, a, f, m, and R are respectively saturation ex-
ponent, twistedness degree (tortuosity) of the rock pore
system, porosity, cementation factor (hardness), and
brine resistivity. The Equation (8) clearly show the di-
rect influence of variation in S_to R. Figure (2) shows
some experimental results using synthetic samples with
various porosity
A comparison between variations in V,and R, re-
veals that variations in S_have changed R, much hlgher
(up to 2,000%) than in the case of V, (max. 20%) as
later observed. This can be explained by comparing the
Gassmann and Archie models in Equations (1) through
(8). It is obvious that R is directly influenced by §
changes (first order influence) compared to ¥, that is
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Figure 2
An example of resistivity measurement results
(from Atmoko and Widarsono, 2000)
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Resistivitymeter

influenced merely through fK) and r, (second order
influence).

These different degrees of response towards varia-
tions in §_have prompted the need to recognize the re-
lation of R, to the traditional seismic attribute, the b
This is to be achieved through a series of laboratory ex-
perimental study on some sandstones.

III. LABORATORY TESTS
A series of acoustic velocity and resistivity tests were
conducted on 8 samples of shale-free Central Sumatra
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Figure 5
Measurement results for acoustic velocity
measurement

sandstones with porosity ranging from 12.8% to 25.1%.
In the tests, all dry samples were fully saturated using
representative synthetic brine. No clay swelling was
feared since the samples are basically clay-free.

In the fully saturated condition, as well as after some
de-saturations through the use of porous plate appara-
tus, both I«"p and R (see Figures (3) and (4) were mea-
sured. Figures (5) and (6) present examples of the test
results. The results are in accordance with the common
expectation even though the ‘jump’ in v, as the S ap-
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Figure 6
Measurement results for resistivity
measurement

proached 100%, as observed by Gregory (1976),
Domenico (1976) and suggested by the Gassmann model,
was not encountered for an unclear reason. The use of
high net overburden pressure (2,500 psi), meant to simu-
late the ‘real” condition is probably the cause. At high
external pressures, the gap in V between dry and fully
saturated sands tend to be less than in the case of low
external pressure (Fjaer, 1992).

As additional data, water saturation, porosity. bulk
density, and shear wave velocity (V) were also mea-
sured. As the final laboratory data. a set of 't-”ﬂ. R.,S., 1
r,. acoustic impedance (Al), and Poisson ratio (n) was
available for the purpose of pattern recognition between
V and R data.

IV. PATTERN RECOGNITION FOR V, - R,

RELATIONSHIP

For the purpose of finding the correlation between
the V and R, artificial neural networks (ANNs) were
applied to measured data. ANNSs are the most popular
technique in artificial intelligence for advanced signal pro-
cessing. Given a set of multivariate input and target mea-
surements, ANNs can learn and extract their complex
non-linear relationships. The relationships can be applied
to estimate the target variables when the actual mea-
surements are not available. Many previous studies have
shown encouraging results in field applications, compared
to the well-established techniques such as multiple linear
regression and discriminant analysis (e.g. Wong e al.,
1995: Bruce et al.. 2000).
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Comparison between predicted and
observed R, values
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Comparison between predicted and
observed S values.

The neural networks used in this study are the su-
pervised backpropagation networks. Backpropagation
is a gradient descent algorithm that uses to estimate the
coefficients (neural connection strengths) by minimiz-
ing an error function. Readers can refer to Bishop (1995)
for technical details.

The application of ANNs in this study is divided
into two parts, “training’ and *blind test’. In the training
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stage. the ANNS are trained and forced to find relation-
ships among V . R, Al and n. The reasons behind the
use of V . R, Al and n in the training is that those vari-
ables can usually be derived from log data, except n due
to rarity in shear wave velocity data from log. In the
blind test stage. the connectivity among the variables is
tested on some of the measured data that is not included
in the training stage. The V . AlLand n (variables that
can theoretically be derived from seismic data) are used
as input in the prediction of R. The predicted R and
subsequently calculated S _(using Archie equation) are
then compared with the measured data.

From 36 data points (i.e. 36 sets of V. R, Al and n)
obtained from the eight samples. 28 were used in the
training stage and the remaining 8 were assigned to the
blind test. For training the ANNS, 9 hidden layers were
finally used to achieve convergence between predicted

and observed values at an acceptable training error of

0.00012. In the blind test stage the ‘trained” ANNs was
applied on the 8 data sets and the comparisons between
predicted and observed R and S (calculated) were made
and are presented in Figures (7) and (8). All deviations
from the diagonal lines are within an acceptable range
of tolerance.

Comparisons presented in Figures (7) and (8) have
shown that the ANNs can reasonably recognize the re-
lationship pattern among the variables used in the train-
ing. This becomes worth noting since the responses of
V and R to variation in §_are not necessarily similar in

gas-water system used in the core samples in term of

regularity. In this case, R shows more regularity (sece
Figures 5 and 6).

V. DISCUSSION

The use of Gassmann model to relate the observed
V, to S seemed to be l[]]pll\‘slhlt since the model pre-
dicts the occurrence of a Jump’in V as water satura-
tion approaches 100%. As stated earlier, this ‘jump’ does
not occur for a probable reason also suggested earlier.
This also means a difficulty if Gassmann modeling is to
be applied to extract water saturation information from
seismic data. Nevertheless. the success in relating V 1o
R at laboratory scale, as concluded from this work, has
laid a foundation for a real field application.

The success in the application of ANNSs in the care-
fully measured laboratory data suggests that the same
approach can be applied at field scale with log data used
as training data and seismic derived attributes used as
mput for R prediction. The task of applying the ap-

proach to the field is not easy. The heterogeneity that
characterizes most of rock formations can ecasily raise

problems in ANNs training and prediction. and conse-
quently a careful data selection has to be performed.

The choice of R instead of S as the deliverable
from the approach used in this study is meant to provide
flexibility to engineers and geologists in choosing the most
suitable water saturation model they think suitable for
their reservoirs. As commonly acknowledged, no single
saturation model can suit to different heterogeneity prob-
lems found in different reservoirs.

VI. CONCLUSIONS

From the study, some main conclusions have been
drawn:

I. Although different in response towards variation in
water saturation. relationships between compres-
sional wave velocity (V) and true resistivity (R)
have been established by the use of artificial neural
networks (ANNSs), this has laid the foundation for
the use of seismic data to predict the distribution of
R .

2. The problem of difficulty in applying Gassmann
model on the observed V (air-brine system) data
resulted from the work has been minimized by the
use of ANNs,

3. The use of “trained” ANNS in the blind test has
proved successful. All estimated water saturation
values (calculated from the predicted R using Archie
equation) are in good agreement with the corre-
sponding observed values.

4. The training process of the ANNs on the training
data used several assigned hidden layers before an
acceptable training error was reached. The train-
ing process for field scale would be more compli-
cated and tricky. Caution has to be taken in assign-
ing number of hidden layers.

REFERENCES

I, Atmoko, H.. & Widarsono. B. (2000). “The Influ-
ence of Heavv-Conductive Mineral in Sandstone
on Cementation Factor and Saturation Expo-
nent” (in Bahasa Indonesia). Proceeding Jambore
llmiah 20" FTM Universitas Trisakti. 16-17 Novem-
ber.

Bishop, C.M. (1995). Neural Network for Pattern
Recognition, Oxford University Press, London.

3. Bruce, A.G., Wong. PM., Zhang, Y.. Salisch, H.A..

12

LEMIGAS SCIENTIFIC CONTRIBUTIONS NO. 1/2003




Fung, C.C. & Gedeon, T.D. (2000). A State of the-
art Review of Neural Networks for Permeability
Prediction. APPEA Journal, 40(1), 343-354.

Domenico, S.N. (1976). Effect of Brine-gas Mix-
ture on Velocity in An Unconsolidated Sand Res-
ervoir, Geophysics, 41: 882-894.

Fjaer, E., Holt, R.M., Raaen, A.M. & Risnes, R.
(1992). Petroleum Related Rock Mechanics.
Elsevier Science Publishers BV, Amsterdam, pp
338.

Furre, A. K. & Brevik, 1. (2000). Integrating Core
Measurements and Borehole Logs with Seismic
Data In The Statfjord 4D Project. Proceedings,
presented at the 2000 EAGE Conference.
“Petrophysics meets Geophysics™, Paris.
Gassmann, F. (1951). Elastic Waves Through A
Packing of Spheres. Geophysics, 16, 673-685.
Gregory, A.R. (1976). Fluid Saturation Effects
on Dynamic Elastic Properties of Sedimentary
Rocks, Geophysics, 41: §895-924.

King, M.S. (1966). Wave Velocities in Rocks as a
Function of Changes in Overburden Pressure
and Pore Fluid saturants, Geophysics, 31: 50-73.

10. Widarsono, B. & Saptono, F. (1997). Acoustic Mea-

surement In Laboratory: A Support In Predict-

CONNRIBUNIG NS

ing Porosity and Fluid Saturation From Seismic
Survey. (in Bahasa Indonesia) Proceedings., Sym-
posium and 5" Congress of Association of Indone-
sian Petroleum Experts (IATMI), Jakarta.

. Widarsono, B. & Saptono, F. (2000a). A New

Method In Preparing Laboratory Core Acoustic
Data For Assisting Seismic-based Reservoir
Characterization. Proceedings, extended abstract
presented at the 2000 Symposium of Society of Core
Analyst (SCA/SPWLA), Abu Dhabi.

Widarsono, B. & Saptono, F. (2000b). A New Ap-
proach In Processing Core and Log Data For
Assisting Seismic-based Mapping of Porosity and
Water Saturation. Proceedings, presented at the
2000 EAGE Conference, “Petrophysics meets Geo-
physics”, Paris.

Widarsono, B. & Saptono, F. (2001). Estimating
Porosity and Water Saturatiom from Seismic/
acoustic Signals: A Correction on The Effect of
Shaliness, Lemigas Scientific Contributions, no.1/
2001.

Wong, PM., Taggart, 1.J. & Jian, EX. (1995). A
Critical Comparison of Neural Networks and Dis-
criminant Analysis In Lithofacies, Porosity and Per-
meability Predictions. Journal of Petroleum Ge-
ology, 18(2), 191-206. »

LEMIGAS SCIENTIFIC CONTRIBUTIONS NO. 1/2003



