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ABSTRACT

Spectral decomposition enables the resolution of seismic data to be improved signifi-
cantly yielding a new possibility to map thin layers such channel sands and any other
stratigraphic features. It has also been used in reservoir characterization. There are three
methods for implementing spectral decomposition i.e., The Short Time Fourier Transform,
the Continuous Wavelet Transform and the Matching Pursuit Decomposition. Among three
of them, the Matching Pursuit Decomposition seems to be the most sophisticated one. It
gives the best resolution among them. A simple and logical approach for explaining the
spectral decomposition methods together with real data examples are presented in this
paper by avoiding complex mathematical formulation.
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I. INTRODUCTION

Spectral decomposition has been frequently used
in the processing of seismic data, such as digital fil-
tering, spectral analysis and signal analysis. However,
only recently that spectral decomposition has been
used for the interpretation of seismic data (Johann
and Ragangin, 2003; Patyka et al., 1988, 1999;
Bahorich et al., 2001). By definition the spectral de-
composition itself refers to any method which pro-
duces a continuous time-frequency analysis from a
single seismic trace (see Figure 1).

Spectral decomposition can be used to display
broad band seismic data into its frequency compo-
nents. Analysis of frequency spectra and individual
frequency component can provide additional infor-
mation than obtained from other conventional analy-
sis of broad band data.

Nowadays, spectral decomposition is becoming
one of the central attentions which is expected to
resolve thin layer problems encountered in oil and
exploration.

Partyka (2001) and Kishore et al. (2006) have
used spectral decomposition for thickness estimation

of thin subsurface layers, Partyka et al.,(1999) have
also used it in reservoir characterization. Harilal et.al.,
(2009) has been successfully used spectral decom-
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Figure 1
The basic principle of spectral decomposition
of a seismic trace containing four different
frequencies (Castagna and Siegfried, 2003)
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Figure 2
The principle of spectral decomposition in
optic where a white light can be decomposed
into seven colors
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Figure 3
The principle of decomposition of seismic
wavelet into its frequency components using
the Fast Fourier Transform

position to map thin sandstone reservoir in the C-37
prospect in the Tapti-Daman subbasin of Mumbai
basin, offshore of western India.

I1. BASIC PRINCIPLE

A. The Spectral Components

Seismic volumes are complex images of reflec-
tions, wave interferences, tuning effects, attenuation,
absorption etc. It can be difficult to know what to
expect a given layer or stratigraphy to look like in the
seismic, or what a particular seismic reflection pat-
tern represents (Hall and Trouillot, 2004). By using
spectral decomposition method, the broad band seis-
mic data can be decomposed into its frequency com-
ponent. Spectral analysis of individual frequency com-

Figure4
A schematic diagram demonstrating the
decomposition a subsurface strata into five
tuning frequencies (Schlumberger article)
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Figure5
A schematic diagram demonstrating the
effect of tuning frequency in subsurface
mapping (Laughlin et al, 2003)

ponent can provide additional information than ob-
tained from other conventional analysis of broad band
data.

The philosophy of spectral decomposition origi-
nates from optics. Newton (1642-1727) has proved
that the white light is composed of seven different
colors each having its own frequency. In other words,
these frequencies are the components which con-
struct the spectrum of the white light. (Figure 2)

In seismic exploration, according to Fourier syn-
thesis (1822) a seismic wavelet is also composed of
many different waves, each having specific frequency
(Figure 3).

This principle can be expanded to analyze wave
interference commonly found in seismic exploration
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which is usually referred to as the tuning effect (Fig-
ure 4).

From this figure it can be concluded that a thick
layer has a wide frequency spectrum, without high
frequency ripple, while a thin layer has a frequency
spectrum which contains high frequency ripple. To
demonstrate the application of this principle, let us
investigate the following geologic model (Figure 5a).

Suppose we want to map thin layer whose thick-
ness is represented by the green
color. According to spectral de-

sented by the curve line shown in the lower (Figure
6).

B.The Tuning Thickness

At a thickness less than a quarter wavelength,
amplitudes of the seismic wavelet superimposed yield-
ing resultant amplitude which depends on the thick-
ness of the thin bed represented as notches (Figure
7). The peak frequency corresponds to the frequency

composition principles if the thin
layer appears at a tuned fre-
quency of 30 Hz, a thick layer
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whose thickness is represented
by red color will appear with a
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tuning frequency lower than the
first one; i.e., 15 Hz. The anal-
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ogy of the principle mentioned -
above can be demonstrated by
the following Figure 5b and 5c.
It can be concluded that differ-
ent tuning frequency reveals dif-
ferent structure. In this case
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green prism represents spectral
decomposition process.
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other interesting feature related i il i
to spectral decomposition. In this "
case the wedge model is used.
It can be seen that the temporal 5]

thickness in the time domain (up-
per figure) is greatly exaggerated
in the frequency domain (lower
figure). If for example we have
top and bottom of a layer is sepa-
rated by a temporal thickness of
10 msec, it means that in the fre-
quency domain, they will be
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separated by 1/10 msec = 100
cps. If we take a smaller tem-
poral thickness say 4 msec, then
the separation in the frequency
domain will be 1/4 msec = 250
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cps. This means the smaller the

Figure 6

separation in the time domain,
the larger the separation in the
frequency domain and vice
versa. The relationship is repre-

(a). A wedge model representing a strata with thickness variation.
It thickening to the right or thinning to the left. (b). The corresponding

synthetic seismic section of figure 3a. (c). The spectral amplitude as

a function of temporal thickness and frequency (Partyka, 1999)
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Figure 7

A thin bed model demonstrating the effect of the thickness in the amplitude spectrum (Partyka, 1999)
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Figure 8
A band limited spectral amplitude as a
function of temporal thickness and frequency
(BP article)

value at which the maximum amplitude occurs, and
this maximum amplitude is the peak amplitude.

Figure 8a demonstrates the peak amplitude as-
sociated with the dominant frequency of the wave-
let. The blue one with a frequency of 30 Hz has the
smallest tuning thickness, i.e. 17 msec. The green
one with a frequency of 20 Hz has the moderate tun-
ing thickness which is 25 msec. And the red one with
a frequency of 10 Hz has the thickest tuning thick-
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Figure 9
The tuning frequency as afunction
temporal thickness (BP article)

ness of around 50 msec. Incorporation of this fact
into Figure 8 yields an enlarged picture as given in
Figure 9 (see below) which analogically can be ex-
aggerated as given in Figure 10.

Animportant rule of thumb which can be applied
from the spectral decomposition is that the period of
the notches in the amplitude spectra depends of the
thin bed thickness.
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C. SPECTRAL DECOMPOSITION three categories (Rojas, 2008), i.e.: Short Time Fou-
METHODS rier Transform (STFT), Continuous Wavelet Trans-
form (CWT), and Matching Pursuit Decomposition

There are a variety of spectral decomposition (MPD). None of this methods are right or wrong;

methods, the most commonly used can be grouped in

Figure 10
A simplified spectral decomposition application (Liu, 2007)

98



SPECTRAL DECOMPOSITION MADE SIMPLE
SUPRAJITNO MUNADIAND HUMBANG PURBA

LEMIGAS SCIENTIFIC CONTRIBUTIONS
VOL. 32. NO. 2, AUGUST 2009 : 94 - 102

each method has its own advantages
and disadvantages, and different ap-

plication requires different methods
(Castagna and Sun, 2006).

1. The Short Time Fourier
Transform (STFT)

In the STFT, a time frequency
spectrum is produced by taking the
Fourier transform over a chosen time
window. When a seismic signal is
transformed into the frequency domain
using the Fourier transform, it gives the
overall frequency behavior. This trans-
formation is inadequate for analyzing
a non-stationary signal (Sinha et al.,
2005). In this method, the seismogram
is segmented by multiplication with a
window function. The Fourier trans-

Frequency

form of this windowed seismogram is
then computed and the process is re-
peated by shifting the window in time.

2. The Continuous Wavelet
Transform (CWT)

In the CWT the wavelet is scaled in such a way
that the time support changes for different frequen-
cies. Awavelet is defined as a finite energy function
with a zero mean belongs to Hilbert space. By scal-
ing and transforming this wavelet, we produce a fam-
ily of wavelets which are function of scale param-
eter and translation parameter. Once a wavelet fam-
ily is chosen, then a Continuous Wavelet Transform
at a scale and translation time can be defined.

3. The Matching Pursuit Decompositiion
(MPD)

The Continuous Wavelet Transform (CWT) men-
tioned above has a better time-frequency resolution
than the STFT. The resolution of the STFT is not
uniform across the entire time-frequency plane. The
CWT has good time resolution for high frequencies
therefore poor frequencies resolution. It has also good
frequency resolution for low frequencies. So, the
CWT alone is not sufficient to get good frequency
resolution at intermediate to high frequencies an in-
terval where seismic data are rich in frequencies. In
this case the Matching Pursuit Decomposition (MPD)
provides better resolution (Mallat and Zhang, 1993).

Figure 11

Comparison of spectra obtained from Short Time Fourier
Transform (STFT), Continuous Wavelet Transform (CWT),
and Matching Pursuit Decomposition (MPD)

Similar to the CWT, in MPD a set of basis func-
tion are generated by scaling, translating, and modu-
lating a single window function as :

g,(t)= W{tTu} explio(t —u) + @] (1)

Where w(t) is a Gaussian window, u is the time
delay (translation), o is the spread in the time axis
(scale), wd is the center (angular) frequency modu-
lation, and ¢ is the phase shift. Thus, a Gabor wave-
let is characterized by a set of four parameters, y =
{u,0, 0 ¢}

To understand the inferiority and superiority be-
tween STFT, CWT, and MPD, let us investigate the
following figure (Chakraborty and Okaya, 1995)

Figure 11(a), is the synthetic seismogram con-
taining wavelets with different frequency and differ-
ent times indicated by (a),(b),(c), and (d). It can be
seen at a time position less than 0.25 sec, by using
STFT wavelet. A can be decomposed into a frequency
around 40 Hz. At an interval from 0.50 to 0.75 sec, a
group of wavelet B, by STFT can be decomposed
into three different dominant frequencies. At a time
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around 1.0 sec an overlapping
wavelet C, by STFT can be
decomposed into two differ-
ent dominant frequencies
which is lower than wavelet
B. Finally, the low frequency
wavelet D at a time interval
between 1.5 — 1.75 sec, by
STFT is represented by a low
frequency spectrum with a
dominant frequency of 12 Hz.

The above figure has dem-
onstrated the ability of spec-
tral decomposition method in
resolving interesting feature in
seismic time section. By con-
trast to figure 11(b), figure
11(d) display the superiority of
the MPD compared to STFT.
It can be seen clearly that fre-
quency resolution of MPD is
much higher than the STFT.
But not only does the MPD
has a higher resolution than the
STFT, the MPD has also a
better time resolution than the
STFT.

Figure 11(c) is the CWT
of figure 11(a), it can also be
seen that the CWT has suc-
cessfully decomposed seismo-
gram into scale index and time
position indicated by the cen-
ter of the ripples pattern. The
scale is inversely proportional
to the frequency, since the
smaller scale, the higher the
frequency and vice versa.

1. IMPLEMENTATION
OF SPECTRAL
DECOMPOSITION

The spectral decomposi-
tion can be applied to the 2D
seismic data as well as the 3D
seismic data. For application
in the 3D seismic data, the fol-
lowing workflow can be done.
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Figure 12
The schematic diagram of the workflow for implementing
spectral decomposition
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IV. RESULT AND DISCUSSION

The purpose of this chapter is to explain the suc-
cess stories of spectral decomposition in solving prob-
lems encountered in oil and gas exploration. Examples
are selected from the published literatures as cited.

A. The 2D seismic data examples

B. The 3D seismic data examples

IV. CONCLUSION
1. Spectral decomposition offers a new possibility
for exploring thin layer

2. Ingeneral the thinner the layer, the higher the tun-
ing frequency and vice versa

3. Asubsurface geological feature has a specific tun-

Figure 13
Spectral decomposition applied to 2D seismic
data tuned at frequency 10 Hz and 20 Hz. At a
tuned frequency of 10 Hz areef built up like
structure appears more clearly than at a tuned
frequency of 20 Hz (Johann, et.al, 2003)
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Figure 14

Spectral decomposition applied to 3D seismic data (X-Gas field, Mexico Gulf). (a) 3D seismic C-
Formation. (b). Amplitude time slice at 92 msec. (¢c) CWT analysis tuned at 83 Hz. (d) MPD analysis
tuned at 89 Hz. Observe the superiority of (¢c) and (d) compared to (b)
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ing frequency to make it appear in the seismic
section as well as in the time slice map
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