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ABSTRACT - Hydraulic fracturing has been established as one of production enhancement methods in the petroleum
industry. This method is proven to increase productivity and reserves in low permeability reservoirs, while in medium
permeability, it accelerates production without affecting well reserves. However, production result looks scattered and
appears to have no direct correlation to individual parameters. It also tend to have a decreasing trend, hence the success
ratio needs to be increased. Hydraulic fracturing in the South Sumatra area has been implemented since 2002 and there
is plenty of data that can be analyzed to resolve the relationship between actual production with reservoir parameters
and fracturing treatment. Empirical correlation approach and machine learning (ML) methods are both used to evaluate
this relationship. Concept of Darcy’s equation is utilized as basis for the empirical correlation on the actual data. The
ML method is then applied to provide better predictions both for production rate and water cut. This method has also
been developed to solve data limitations so that the prediction method can be used for all wells. Empirical correlation
can gives an R? of 0.67, while ML can give a better R? that is close to 0.80. Furthermore, this prediction method can be
used for well candidate selection means.
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INTRODUCTION improvement and additional reserve (if any) have to be
justified economically because hydraulic fracturing
jobs requires high cost and involve large scale
equipment.

Hydraulic fracturing is a stimulation treatment
to enhance well productivity and improves the
economic value of well reserves. It have been widely
applied to both low and moderate permeability
reservoirs. In low permeability reservoir, it greatly
contributes both to well productivity and to well
reserves, while in moderate permeability reservoirs,
it accelerates production without impacting the
well reserves (Holditch & Ma, 2016).The production

Meanwhile, hydraulic fracturing in some fields
in South Sumatra has been implemented on more
than 200 wells since 2002. Year by year, it becomes
more challenging due to increasingly limited well
candidates with good reservoir properties and
decreasing trend in production results. Thus,
hydraulic fracturing optimization both in planning
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that include well candidate selection/design and
job execution has to be applied. The objective is to
increase fracturing job success ratio and therefore
contribute to more oil production.

However, the production results from hydraulically
fractured wells looks scattered and has no clear
correlation to individual well parameters (Azhari,
2015). It gets even more challenging due to the
decreasing trend in production result of hydraulic
fracturing job that make the job economics becoming
marginal. There are hundreds of data sets that are
potentially useful for the evaluation. The data covers
the reservoir parameters from primary log data,
petrophysical analysis, and dynamic parameters from
well-testing analysis. Hydraulic fracturing parameters
both the treatment data and fracture geometry result
are also utilized.

To ensure that hydraulic fracturing job can give
additional value for the field, there is a need to estimate
and quantify conclusively the result of hydraulic
fracturing job in order to minimize unsuccessful
job. Thus, the prediction tool has to be developed to
determine well candidate based on reservoir and well
properties. Two (2) methods to develop the prediction
tools are presented in this paper.

The first method is empirical correlation equation.
It contains a mathematical equation based on some
parameters from a given set of empirical data that will
be used for predicting other data (Ribari¢ & Sustersi¢,
2017). In this paper, the empirical correlation
equation is used to predict the hydraulic fracturing
result based on combined parameters of reservoir
pressure, transmissibility data and dimensionless
productivity index from hydraulic fracturing
treatment.

The second method is machine learning approach.
Machine learning is the study of computer algorithms
that can improve automatically through experience
by discovering general rules in large data sets to
meet the user’s interest (Mitchell 1997). Temizel,
et al. (2021) has described the applications of
machine learning in oil & gas industry and provide its
capability and limitations in unconventional reservoir
engineering and well completion calculations. In
many cases, machine learning was proven able to
predict the output that has problem in data limitation
and data quality (Makhotin, et al., 2019).

Finally, both two (2) approaches are expected
to yield a robust prediction tool that can be easily
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applied to all wells using common primary data as
input parameters. The prediction tool is then utilized
in well candidate selection to determine the good
well candidates and eliminate non-potential well
candidates in the future hydraulic fracturing job
campaign. It’s also expected to ensure and guide
the fracturing treatment optimization to maximize
the production result.

DATA AND METHODS

The workflow in developing this study consist
of 5 major phases that represents the whole process
and details of working procedure. It is shown on
Fig.1 that consists of data preparation, empirical
correlation approach, machine learning approach to
predict production and water cut, and its application
on well candidate selection. Actual data field will be
incorporated in the discussion of each step to ensure
that this methodology is applicable.

A. Data Preparation

Data from actual hydraulic fracturing job were
collected and tabulated that including input and output
data. The output data is the production performance
whereas input data covers well data including well
completion data such as perforating length and
wellbore size, and reservoir data including several
parameters such asreservoir pressure, open-hole logand
petrophysical data. Hydraulic fracturing parameters
also covers actual treatment data and calculated
fracture geometry.

The data was evaluated to become a ready-to-
use data set. It consists of several steps that includes
data conversion, ignoring & filling missing values
and outlier data elimination. The data set is tested
by using Pearson correlation coefficient (Pearson,
1920) to measure the direction and strength of the
linear relationship between input parameters and
output parameter.

B. Empirical Correlation Approach

The empirical correlation approach utilizes
the Darcy equation in radial condition as shown in
equation (1). This equation need reservoir properties
that are represented by transmissibility and reservoir
pressure and fracture parameters. Transmissibility
can be defined from petrophysical analysis and well
testing. The latter method is preferred because it
represents the reservoir quality at certain radius.
This method utilizes the pre-frac data obtained
in mini-fall-off test and analyzed using short
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Figure 1

Workflow for performance prediction of hydraulic fractured well.

impulse injection test to obtain reservoir permeability
(Abousleiman et al., 1994). Through this method, we
can also estiamte the reservoir pressure.
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Fracture parameter is represented by
dimensionless productivity index (PI) or J; as shown
in equation (2). This parameter can be calculated
based on a simulated result of fracture geometry
using equivalent wellbore radius concept and unified
fracture design method thru proppant number.
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Prats (1961) first introduce the idea of the
effective wellbore radius (r ). It based on a simple
balancing of flow areas between a wellbore and
a fracture gives the equivalent value of r_. for a
propped fracture. Cinco-Ley et al. (1978) later
integrated this into a full description of reservoir
response, including transient flow. For pseudoradial
flow, rw” is expressed as a function of fracture length
(X,) and dimensionless fracture conductivity (C,.)).

The unified fracture design methodology
provided by Economides, Oligney, and Valké (2002),
expands the above approach to include fracture and
well drainage area dimensions that will not reach
pseudoradial flow before the onset of pseudosteady
state. The key of this approach is the idea that for a
given proppant volume and well drainage area, there
is a fracture half length, width, and conductivity that

maximize the well productivity. For a given proppant
volume, square well drainage area, and values
for both proppant and reservoir permeability, the
dimensionless proppant number, Np, is defined as

p kx,? kx,2h kV,ps

All above parameters are combined based on
equation (1) and then plotted versus production
result (in BFPD) at pseudosteady state regime. The
correlation of this cross plot can be utilized in a form
of empirical correlation to predict the result of next
hydraulic fracturing job.

C. Machine Learning Approach

Machine learning (ML) is a broad subfield of
artificial intelligence aimed to enable machines to
extractpatterns fromdata set. Itisbased on mathematical
statistics, numerical methods, optimization, probability
theory, discrete analysis, geometry and etc (Smola
& Vishwanathan, 2008). There are three main
components in ML that consists of data, features or
parameters and algorithms or method.

Nowadays there are four main directions in
machine learning that consist of classical ML,
ensemble methods, reinforcement learning and
neural networks & deep learning (www.vas3k.com).
Classical ML utilizes pure statistics method and
consist of supervised (e.g. linear regression) and
unsupervised (e.g. clustering). Ensemble methods
construct a set of classifiers and then classify new
data points by taking a (weighted) vote of their
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predictions (Dietterich, 2000). Some wellknown
ensemble method are Random Forest (Breiman,
2001), Gradient Boosting (Friedman, 2001) and Ada-
Boost (Dietterich, 2000). Reinforcement learning is
used in case no data input but it have an environment
to live in. Neural Networks and Deep Leaning is used
for replacement of all previous algorithms. It often
used in object identification, speech recognition and
synthesis, image processing and etc.

In this paper, ML is used to create relationship
between production result as output and reservoir/
hydraulic fracturing parameters as input. The ML
approach is divided into two phases. In phase 1, the
input data is limited to pressure, transmissibility
and PI dimensionless data, similar to the empirical
correlation approach. It aims to compare the result
of empirical correlation and ML methods, and
to evaluate the importance of each parameter in
machine learning. In phase 2, the input used in phase
1 is replaced by primary data such as open-hole log,
petrophysical parameters, and fracturing treatment.
This phase is proposed to make the ML model
usable practically by using parameters that almost
all wells have.

The ML model that used in this phase is su-
pervised machine learning (linear regression) and
ensemble method that consist of Random Forest,
Gradient Boosting and Adaboost. The best model
is chosen based on mean absolute error (MAE),
coefficient of determination (R?) and Pearson
correlation coefficient (R) on actual production rate
and prediction based on ML model.

Beside production rate prediction, the ML is
also used to predict the water cut (WC) and net oil
production. In this case, the k-Nearest Neighbor
(k-NN) model is utilized due to the similarity of
its base concept with the WC prediction based on

geographical coordinates. The main concept of kNN
is to predict the label of a query instance based on
the labels of k closest instances in the stored data
(Kang, 2021). The stored data in our case is the WC
data of each producer wells.

D. Application on Well Candidate Selection

The best ML model on production rate and water
cut predictions are implemented in well candidate
selection for future hydraulic fracturing job. Economic
value is determined for each well based on the net
oil prediction. This method can eliminate wells with
low oil production potential that yields low economic
value.

Moreover, the ML model can be utilized to
optimize the fracturing treatment plan in order to
have more oil production. The optimization can be
conducted by tuning the proppant type, proppant
volume and other parameters.

RESULTS AND DISCUSSION

This section presentsresults of empirical correlation
and ML approaches to establish the relationships
between actual production and reservoir/fracturing
parameters.

A. Empirical Correlation Approach

There are 45 hydraulic fractured wells that have
complete data as required by the Darcy’s equation.
Products of pressure, transmissibility data, and
dimensionless productivity index is plotted against the
actual production rate to get the trend and empirical
correlation as well.

Two (2) correlations have been developed based
on two methods to define the dimensionless PI.
The first method is the Cinco-Ley correlation using
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Figure 2
Empirical Correlation based on (a) Cinco Ley Correlation
using equivalent wellbore radius and (b) Unified Fracture Design using proppant number.
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the equivalent wellbore radius whereas the second
method is unified fracture design using proppant
number. The empirical correlation results for each
method are shown on Figure 2.

The empirical correlation shows that there is a
linear correlation between the product of pressure,
transmissibility, and dimensionless PI to the production
rates. It complies basic Darcy’s equation. Empirical
correlation based on dimensionless Pl using wellbore
equivalent radius gives better result than empirical
correlation based on proppant number. The R? of the
first method is 0.67 which is higher than R? from the
second method of 0.57. So is the Pearson correlation
coefficient, it shows that the first method give +0.82
which is higher number than the second method of
only +0.72. The cross plot between actual production
and production result based on empirical correlation
is shown in Figure 3. At production rate of more than
400 BLPD, the plot starts to deviate from line R>=1,
resulting in R? of lower than 0.7.

B. Machine Learning Approach

Machine learning phase 1 was carrying out using
input as same input as for the empirical correlation
approach. The objective is to assess and ensure that
ML can be utilized for the production prediction
of hydraulic fractured well. The result then will be
compared to the empirical correlation approach.

Input evaluation has been applied by assessing
the input using feature engineering and feature

importance for each ML model. As described on
Figure 4, reservoir transmissibility appears to be the
most influential parameters to the production rate
result. It is represented by the Pearson correlation
coefficient value of +0.72, which is the highest among
the parameters. Then it is followed by reservoir
pressure and dimensionless PI.

Consistent with the feature importance evaluation,
reservoir transmissibility becomes the most important
for all ML models with values between 0.5 and 0.6.
Reservoir pressure and J | have ranging values within
0.1 — 0.3 for all ML models.

The 45 wells data is then divided into two groups
of 80% data for training and 20% data for testing. As
previously mentioned, the ML models used to predict
production results is Linear Regression, Random
Forest, Gradient Boosting and AdaBoost.

Training and testing result evaluations for each
ML model are shown in Table 1. The ML model
that has R? consistent above 0.7 are Random Forest
and Gradient Boosting. AdaBoost has a tendency
for overfitting in the training, having testing R* of
only 0.67. Linear regression shows not too robust
as the testing R? is larger than the training value. As
described on Fig. 5, the cross plot between actual
production and prediction from ML model that follow
the R=1 are Random Forest and Gradient Boosting.
Linear regression shows scatter and AdaBoost clearly
shows overfitting in the training data set but scatter
in the testing data set.
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Through this approach, it can be concluded that
ML can be used to estimate the production result of
hydraulic fractured well. Transmissibility from mini-
fall-off test becomes the most important parameter
in machine learning. However, the main concern is
that the ML model cannot be applied to other well
because of:

- The availability of transmissibility data from
mini-fall-off test are limited to only 45 wells. It
required high effort/cost to obtain this data.

- The correlation between actual transmissibility
and petrophysical analysis is low at R* = 0.597.
The utilization of transmissibility of petrophysical
analysis will lead to lower R? in the correlation
and produce more error. Thus, it cannot replace
the actual transmissibility.

C. Machine Learning with Primary Data Set

In order to have ML model that is practically able
to be used for well candidate selection, ML model
based on the primary data set is then developed.
This ML model will utilize common parameters
that almost all of wells have. The input parameters

will consist of basic well data, open-hole log, petro-
physical analysis and fracturing treatment. Fracturing
treatment data are preferred to be used because lack
of validation on fracture geometry data. Only limited
number of wells that have temperature log to validate
the simulated fracture geometry.

Feature engineering is applied to both reservoir
properties and fracturing treatment to select the
parameters that can be input as feature in ML model.
The value of Pearson correlation coefficient to
production data that higher than +1 and lower than -1
are selected to feature in ML. Some important
parameters were also selected to be input feature in
ML. Finally, the parameters that were selected to be
the input feature in ML model are shown in Table 2.

There are 140 wells data set to be analyzed by
ML. They are divided into two groups consisting of
80% data for training and 20% data for testing. Same
as previous, ML model used to predict the production
result are Linear Regression, Random Forest, Gradient
Boosting and AdaBoost.

The training and testing results of each ML model
are shown in Table 3. The ML models that show R?

Table 1
ML phase 1 result evaluation

Training : 80%

Testing: 20%

ML model
MAE R? R MAE R? R
Random Forest 32 0.88 0.94 29 0.76 0.95
Linear Regression 64 0.57 0.75 19 0.87 0.96
Gradient Boosting 21 1 1 26 0.83 0.91
AdaBoost 0.1 1 1 33 0.67 0.95

(a) Feature Engineering
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Figure 4
Input evaluation using (a) feature engineering and (b) feature importance for each ML Model.
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consistent above 0.7 are Random Forest, AdaBoost
and Gradient Boosting. Random Forest and Gradient
Boosting give satisfying results based on R? and
Pearson Correlation coefficient. AdaBoost tend to
have over-fitting in the training but also give good
result in the testing, whereas Linear Regression’s R?
value is the lowest one.

Figure 6 also describes the cross plot between
actual production and prediction result from each ML
model. Training and testing data that follow the R*=1
was shown in gradient boosting and random forest.
However, both Random Forest and Gradient Boosting
exhibit deviation from line R?=1 at rate higher than
500 BLPD. This might be caused by the small data
population in this production rate range. So the
ML model does not have adequate data for having
accurate prediction at this range production rate.

However, Linear Regression model shows
scattered correlation between actual and prediction
result both for traninig and testing data set. Linear
Regression does not seem fit with the typical data
with many input and have an issue in the quality.
AdaBoost tend to have over fitting in training data
set so that looks scatter in testing data set.

Finally, we can inferred that Gradient Boosting is
the most reliable ML model to predict the production
rate of hydraulic fractured well. Gradient Boosting
has stable R? both in training and testing data set that
indicates the robustness of this model. This model is
then recommended to be applied in the production
rate prediction.

D. Water Cut (WC) Prediction

ML can also be utilized to predict the water cut
of each well by position. For this purpose, k-Nearest
Neighbors (k-NN) is used for the water cut prediction
based on XY coordinate as well as vertical position
of the bottom zone. The dataset is taken from all
producer wells with the updated WC and is also
divided into two sets, training and testing. This
partition to ensure that the model has good robustness
and consistency.

Table 2
Input evaluation result for ML phase 2
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Figure 5
Cross plot between actual production Vs production result from each ML model in phase 1.
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The k-NN manipulates the training data and
classifies the new test data based on distance metrics.
There are some parameters that need to be tuned to
improve the performance such as K value, distance
metric and weights. Scaling/normalizing the data set
can help to improve the k-NN performance. K value
indicates the count of the nearest neighbors. Some
method to define distance metric can be adjusted to
have reliable model such as Euclidean, Manhattan
and Chebyshev distance (Cantrell, 2000).

For the WC prediction in this case, the optimum
model is obtained using k=5 and Chebyshev distance.
The result of kNN on WC prediction in two fields are
shown by Figure 7. Figure 7.a shows the position of
well that currently producing. The WC is measured
from liquid sample by laboratory testing. Figure 7.b
represents the result of k-NN model in WC mapping

E. Application on Well Candidate Selection

The most reliable of the ML models for fluid
production and water cut prediction is then applied
to predict the performance of well candidate after
hydraulic fracturing job. There are total eigth well
candidates for next hydraulic fracturing campaign.
These well candidates have already had water cut
from the existing zone and produce oil rate below

Table 3
ML phase 2 result evaluation

Training : 80% Testing: 20%

ML model

MAE R? R MAE R? R

Random Forest 39 0.87 0.95 47 0.77 0.91
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thus the recovery factor is still low. The reservoir in
this field has been massively developed since 2015.
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Figure 6
Cross plot between actual production Vs production result from each ML model in phase 2.
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5 BOPD. Workover change layer and hydraulic
fracturing as stimulation treatment will be proposed
to these wells.

The prediction tool based on Gradient Boosting
and k-NN is shown in Table 4. The economic cut off
for hydraulic fracturing job is equivalent to the initial
production 40 BOPD. Based on the prediction, there
are four wells that will have initial oil production
higher than 40 BOPD and three wells that lower
than 40 BOPD.

Further assessment is then applied to those three
wells. Preliminary optimization to the hydraulic
fracturing treatment is assessed and the result is
predicted. After optimization of proppant type and
volume, then we can conclude that only one well can
afford to get higher than 40 BOPD, while the remaining
wells is still under economic cut off. Thus, the other

two wells as shown in Table 5 will be excluded from
hydraculic fracturing job plan.

By this result, it can be confirmed that ML model
through Gradient Boosting and k-NN model can
be applied for both production rate and water cut
predictions. The ML approach can be applied using
primiary data that almost all wells have. Empirical
correlation cannot be applied in this case because of
the data limitation such as unavailability of actual
transmissibility data.

The objective to develop the prediction tool
that can be applied for any wells can be achieved. It
enable quantitative comparison on estimated hydraulic
fracturing result so that potential well candidate can
be easily selected. This tool also can be utilized to
ensure and guide the fracturing treatment optimization
to maximize the production result.

(a) Well Producer Map

Field 2

' (b) WC Map

Field 2

.0-10%
50 - 60%

* 10-20%
60 - T0%

o o w0 ames £ iz o woen

Figure 7
Water cut prediction map using k-NN model.

Table 4
Prediction result based on ML model for hydraulic fracturing well candidates

Well Res(:::?;;ure KH (md.ft) Pl’:;;’: " volr:;':p(al(r:tt)s) prScll-iz::i)on pre:\ilcc::tion przgzt?on Remarks
W-0103 698 112 3 60 166 0.78 37 Below economic cut off
W-0313 553 266 3 60 175 0.85 26 Below economic cut off
W-0329 612 663 3 60 274 0.83 48
W-0343 624 928 3 60 243 0.81 47
W-0331 849 16.4 3 90 134 0.25 100
W-0335 972 16.4 3 90 82 0.39 51
W-0367 500 508 3 60 207 0.89 22 Below economic cut off
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Table 5
Prediction result based on ML model for hydraulic fracturing well candidates after optimization

Res Proppant

KH Proppant BLPD wcC BOPD
Well  pressure (md.ft) type volume rediction prediction prediction Remarks
(psig) ' P (kibs) P P P

W-0103 698 112 3 80 184 0.78 41

W-0313 553 266 3 80 193 0.85 28 Below economic cut off
W-0329 612 663 3 60 274 0.83 48

W-0343 624 928 3 60 243 0.81 47

W-0331 849 16.4 3 90 134 0.25 100

W-0335 972 16.4 3 90 82 0.39 51

W-0367 500 508 3 80 225 0.89 24 Below economic cut off

CONCLUSIONS ML model through Gradient Boosting for

Some conclusions can be inferred from the
above discussion about the prediction of hydraulic
fracturing job result using empirical correlation and
machine learning model. Several points that can be
inferred is below:

Empirical correlation based on Darcy equation
gives maximum R? of 0.67 and Pearson correlation
coefficient +0.82 between actual and prediction
production. It can be applied as prediction tool but
require input parameters which is not all wells have
such as actual transmissibility and dimensionless PI.

Machine learning phase 1 (Random Forest &
Gradient Boosting) using same input as empirical
correlation, give better result with R* > 0.75 and
Pearson correlation coefficient > 0.9 between actual
and prediction production. It describes that ML
approach can be utilized in prediction of hydraulic
fractured well performance.

Machine learning phase 2 (Gradient Boosting)
by utilizing primary data such as open-hole-log,
petrophysical analysis and frac treatment data yield
R? > 0.8 and Pearson correlation coefficient > 0.9
between actual and prediction production. It confirms
that this method is the most reliable prediction tool
with the lowest error.

The most important parameter that majorly
contributed to hydraulic fracturing results is the
reservoir quality that can be expressed by permeability
or transmissibility data.

K-NN model can be utilized to predict the WC
using coordinate and altitude well. It can give a
satisfying result with R? value of 0.845 in the testing
data set.
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production prediction and k-NN for WC prediction
can be used as prediction tool for well candidate
selection implementation and frac treatment
optimization.

Some recommendations for further improvement
in the prediction of hydraulic fracturing result using
machine learning are below:

Mini-fall-off analysis should be applied and
collected from all hydraulic fracturied job to create the
correlation between open-hole data & petrophysycal
analysis with the actual transmissibility data. It will
help to create a reliable empirical correlation as
prediction tools. However, it will extend the overall
execution time and lead to additional extra cost.

Some parameters that also influence the fracture
geometry such as shale barrier and stress contrast
based on sonic log should be considered as additional
feature in the ML model. This paper excludes these
parameters because of the lack of sonic log data
availability in the data set.

Individual ML model to determine each of reservoir
properties factor and hydraulic fracturing factor may
help to improve R? in the production prediction and
enable additional optimization methods in hydraulic
fracturing. Additional number of data is required for
this purpose.

Additional hydraulic fracturing job data from
other area (outside South-Sumatra) will improve the
data diversity thus yield more reliable prediction tool.
The data confidentiality and company’s discrecy is
the major challenge to overcome.
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Pr Reservoir Pressure psig fluid flow path from the
formation to the well.
Flowing bottom hole . o "
Pwf psig A specialized well testing
pressure procedure that enables
analysis of the reservoir
v Viscosity cp . response following a
Impulse Testing relatively short duration of
fluid injection or
B Formation Volume factor - production (Ayoub et al.,
1988)
re Reservoir radius ft A,n |nject.|0n-falloff
diagnostic test performed
before a main fracture
stimulation treatment.
rw Wellbore radius ft The intent is to break
down the formation to
Mini-fall-off Test  create a short fracture
, Equivalent Wellbore during the injection
rw . Ft .

radius period, and then to
observe closure of the
fracture system and the

S Skin - reservoir response after
closure

kh Tragsrr:is?ibility, thk?'l't The linear correlation

_ produc 'Othpelzmea i 3('1 Pearson coefficient developed by

;e§er\{0|r _'C ness an md.ft/cp Correlation Karl Pearson that

luid viscosity that L Coeffcient (R) measures the strength

r?present .the productivity and the direction of a

ot reservorr. linear relationship

D Dimensionless ) )

Productivity Index A broad subfield of
artificial intelligence
aimed to enable

Np Proppant Number - machines to extract
patterns from data based

Machine Learning on mathematical

statistics, numerical

kf Fracture permeability md methods, optimization,
probability theory,
discrete analysis,

xf Fracture length ft geometry, etc.
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Symbol Definition Unit
One of ensemble ML
model that works by
weighting the

AdaBoost observations, putting

more weight on difficult to
classify instances and
less on those already
handled well.

The development of
AdaBoost algorithm that
identifies the
shortcomings by using

Gradient Boosting  high weight data points.
Gradient boosting
performs the same by
using gradients in the
loss function

Ensemble ML model that
has algorithm to build
multiple decision trees
and merges them
together to get a more
accurate and stable
prediction.

Random Forest

A supervised machine
Learning model in which
Linear the model finds the best
Regression fit linear line between the
independent and
dependent variable.
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