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ABSTRACT - Oil measured volume discrepancies in custody transfer systems is becoming a persistent
challenge, which is often caused by complex thermal, hydraulic, and compositional interactions. Therefore,
this study aimed to introduce a data-driven framework incorporating Principal Component Analysis (PCA)
and machine learning (ML) to identify as well as predict discrepancies at a representative onshore gathering
station (GS) in Indonesia (Field-X). Major operational parameters, including gross volume, unallocated net
oil, pressure, temperature, and basic sediment & Water (BS&W), were analyzed to assess the impact on
volumetric imbalance. During the analysis, PCA reduced 64 correlated variables to five principal
components, explaining 95% of the total variance and showing gross volume, pressure, and temperature as
dominant factors. Four ML models, namely XGBoost, Random Forest, Support Vector Regression, and
ElasticNet, were trained as well as validated with three-fold time series cross-validation for temporal
robustness. Incorporating PCA significantly improved predictive performance, with Support Vector
Regression showing the largest R? increase (from —0.0082 to 0.82). Results signified that discrepancies were
primarily governed by thermodynamic shrinkage, temperature changes, and BS&W-related metering errors.
In addition, the proposed PCA-ML framework offered an interpretable, reliable method for early detection

and mitigation of oil volume discrepancies in complex production environments.
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INTRODUCTION

Both onshore and offshore operations are
frequently encountering oil measured volume
discrepancies (OMVD) in oil and gas industry.
OMVD is defined as the difference between the
measured volume of crude oil received and
delivered through shared transportation systems
(Hermawan et al., 2021). Typical oil mixing
phenomena in these systems are shown in Figurel.
OMVD often occur when the total volume
measured at the receiving terminal or storage tank
does not match the total volume recorded at the
delivery points. These inconsistencies may arise
from wvarious factors, including differences in
pipeline configuration, operational pressures and
temperatures, production rate fluctuations, or
measurement inaccuracies in flow as well as
sampling systems. The use of shared pipeline
networks further causes difficulties in the issue.

When crude oil from multiple shippers is
transported through a common pipeline and blended
in storage facilities, determining the exact
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contribution and loss for each shipper becomes
challenging (Badings & van Putten 2020).
Consequently, the allocation process aims to fairly
and accurately assign the produced as well as
transported oil volumes to each shipper by
correcting for parameters such as shrinkage,
emulsion, and evaporation (Kanshio 2020). The
challenges show the importance of developing
reliable predictive systems capable of identifying
anomalies in  oil  allocation  processes.
Advancements in machine learning (ML) have
enabled data-driven solutions to complex
prediction problems in petroleum systems. ML
algorithms are capable of handling large, nonlinear,
and multivariate datasets (Masini et al., 2023;
Suwono & Utama 2025). In oil and gas
applications, several studies have shown the
potential of ML in forecasting production rates,
detecting anomalies, and estimating reservoir or
system parameters (Alharbi et al., 2022; Hidayat et
al., 2025; Mai-Cao & Truong-Khac 2022;
Rhamadhani & Saputra 2023; Song et al., 2023;
Ulil et al., 2025).

Main
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Figure 1. Mixing phenomena in shared oil transportation system.
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High-dimensional operational data, such as
pressure, temperature, flow rate, and basic
sediment & water (BS&W) from multiple
gathering station (GS), often contain redundant as
well as correlated features, which reduce model
generalization and lead to overfitting. To address
this issue, principal component analysis (PCA) can
be applied to transform correlated variables into a
smaller number of uncorrelated principal
components, improving model interpretability and
computational efficiency (Li et al., 2021; Rangga
et al., 2022; Sherif et al., 2019; Tian et al., 2024;
Zhang et al., 2024). Since oil allocation data are time
-dependent, model evaluation should respect the
temporal structure of the data. Therefore, time series
cross-validation (TSCV) is used to ensure consistent
performance assessment (Bikmukhametov & Jaschke
2019; Sulandari et al., 2024; Vien et al., 2021).

This study aims to evaluate and compare the
performance of several ML algorithms, such as
Random Forest, XGBoost, support vector
regression (SVR), Linear Regression, ElasticNet,
and Bayesian Ridge in predicting OMVD values at
Field-X GS. The analysis also investigates how
dimensionality reduction using PCA and validation
through TSCV can improve model accuracy,
reduce overfitting, and improve generalization. The
proposed framework offers a systematic data-
driven method for predicting and mitigating
OMYVD, supporting operational decision-making in
crude oil transportation systems.

METHODHOLGY
Dataset description

OMVD analyzed in this study for Field-X arose
from the difference between the net oil volume
calculated by the shippers (VXsh, in barrels) and
the volume recorded at Primary Meter (PM, in
barrels). This discrepancy occurred because oil
flow from each shipper was combined into a single
stream before passing through Primary Meter at the
main terminal.

Oil loss (bbl) = Vpy — Vs (1)
Vem — VZsh 2)

Oil loss (%) = r
Vpm

Before preprocessing, the dataset was
thoroughly assessed for quality during the analysis.
No missing values or outliers were detected,
ensuring a clean dataset suitable for time-series
modeling without the need for additional
imputation or anomaly handling procedures.

Principal component analysis

PCA was implemented as a dimensionality
reduction method to address multicollinearity and
improve the generalization ability of ML models.
The analysis identified directions (principal
components) that captured the maximum variance
in the dataset and transformed correlated features
into a set of linearly uncorrelated components
(Salem & Hussein 2019; Vahabi & Selviah 2019).
During this study, the minimum number of PCs
used was generally determined by a threshold of
85% or greater of the cumulative contribution rate
(Han & Kwon 2021). Data collection was
conducted from June 6 to August 15, 2023, during
this study. Observations at each GS provided
several major data points, including BS&W, fluid
pressure and temperature in the pipeline,
unallocated net volume (gross volume with
blending factor correction), allocated volume (gross
volume from the main terminal), metering factor
data, as well as gross volume data.

PCA-ML incorporation process. Operational
variables collected from multiple GS (GS1-GS7)
were first passed through PCA, where the features
were transformed into a reduced set of uncorrelated
(PC1, PC2, ..., n-PC).
These components then served as inputs to ML

principal components

algorithms used for OMVD prediction.

The system used a control parameter that
customized the selection process for each original
tree, improving its flexibility in adapting to specific
data sets rather than to other sets of trees (Chen &
Guestrin 2016; Wood 2023).

Model construction

Several ML models were used to identify which
model performed best in predicting OMVD values.
This section reviewed the specific characteristics
and algorithmic configurations of each model, as
shown in Table 1.

DOI org/10.29017/scog.v48i4.404.1 193


https://doi.org/10.29017/scog.v48i4.404

Scientific Contributions Oil & Gas, Vol. 48. No. 4, December 2025: 191 - 202

GS1
G52
GS3
/% PG
GS 4 Principal : Machine
Component |— PC2 Learning — OMVD
GS5 Analysis model
— 1 n..PC
GS6
GS7 ——
Figure 2. PCA-ML workflow for OMVD prediction.
Table 1. Review of ML models used.
Model Description Algorithm Parameters
The system used a control parameter that ¢ The number of estimators was
XGB customized the selection process for each 1000
original tree, improving its flexibility in e Max depth was 6
adapting to specific data sets rather than to e Learning rate was 0.1
other sets of trees (Chen & Guestrin, 2016; e Alphais0.8
Wood, 2023).
An ensemble tree-based model using bootstrap e  Number of estimators was 1000
RF aggregation (bagging) for improved variance e  Max depth was 10
reduction and interpretability (Ilic et al., 2021; e Min sample leaf was 3
Nemer, 2024).
A kernel-based regression model that discover e Kernel type was RBF
SVR the optimal hyperplane minimizing prediction e SVRcostwas |
error (Dsouza, 2024; Pisner & Schnyer, 2020; e Gamma was 0.0001
Wardhana et al., 2021). e Epsilon was 0.005
MLR A linear model assuming a direct relationship
between predictors and the target variable None
(Alharbi et al., 2022).
A hybrid regularization model combining e Alpha was 0.01
EN Lasso (L1) and Ridge (L2) penalties to e L1 rasio was 0.1
improve model stability and feature selection e  Maxium iteration was 500
(Al-Jawarneh et al., 2022).
A probabilistic li . del th e Alphal was 0.1
BR Pro a IIS'FIC 1n'ear. regressmn mode t' at e Alpha2 wasO0.1
estimated weight distributions under Gaussian
riors (Effrosynidis et al., 2023) *  Lambda was 0.001
P » ) e Cost was 0.000001
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Figure 3. Schematic representation of validation scheme.

Model validation and evaluation

TSCV was used to ensure model robustness in
temporal prediction, rather than conventional
random k-fold wvalidation. Traditional
validation assumed independent and identically
distributed samples, which was not suitable for
time-dependent data (Botache et al., 2023).

Cross-

TSCV method divided the dataset sequentially,
allowing the training data to often precede the
validation data in time (Bikmukhametov & Jaschke
2019). In this study, the dataset was divided into
80% training and 20% testing, with three folds
applied for model validation, as shown in Figure 3.
The method prevented data leakage and provided a
realistic assessment of predictive performance on
unobserved future data.

Model evaluation was conducted using three
standard forecasting performance metrics, namely
mean absolute error (MAE), root mean square error
(RMSE), and coefficient of determination (R?).

These metrics were selected to measure both
absolute deviation and predictive goodness-of-fit.

n

MAE:lZ|yi—37i| ()
n

i=1

1 n
— |= i _ 5i)2
RMSE "Z(y yb) (4)
SN2
p2 =g 2= =9 o
?:1(?1 _}71)2

where n was the number of test data, y', § and '
signified the actual value, predicted value, and
average of discrepancy values, respectively.
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RESULT AND DISCUSSION

Result

This study evaluated several ML algorithms to
predict OMVD in Field-X GS network. The
application of PCA provided a more compact yet
highly informative representation of the operational
dataset. Concerning the original 64 correlated
variables, the first five principal components captured
approximately 95% of the total wvariance.
Furthermore, loading values were examined to
identify the most influential variables in each
principal component (Parhizkar et al., 2021).

Examination of the loading values showed that
major operational parameters, particularly gross
volume, unallocated net oil, average pressure, and
average temperature, dominated the principal
component structure. This signified that volumetric
fluctuations and thermohydraulic conditions
across GS were the primary drivers
influencing OMVD behavior.

PCA outcomes were shown in Figure 3 and Table
2. PC1 and PC2 were primarily associated with gross
volume and unallocated net oil from multiple GS,
reflecting the variability in transported volume as well

as inter-station imbalances. Consequently, PC3
through PC5 were characterized by pressure and
temperature  variables, capturing the physical
dynamics of fluid conditions along the pipeline
system. These patterns confirmed that PCA reduced
dimensionality and also signified latent structures,
physically following the mechanisms behind
measured volume discrepancies, and served as
compact yet informative inputs for ML models.
Model evaluation using three-fold TSCV without
PCA was shown in Table 3 and 4. The analysis
also showed the time series plot for the model with
and without PCA in Figure 4.

After applying PCA, model stability and
accuracy improved significantly during the
analysis. SVR model showed the greatest
improvement, with R” rising from -0.0082 to 0.82
and RMSE reduced by 62%. Ensemble models also
improved, with XGBoost achieving R* 0.86 and
Random Forest R? 0.84, while maintaining error
consistency across folds. Linear models showed
smaller and consistent improvements, with RMSE
reductions between 8-15%. Across all models,
PCA decreased overfitting and improved cross-
validation reproducibility.
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Figure 4. Cumulative explained variance Vs. number of principal components.
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Table 2. Most influential variables in each principal component based on PCA loading values.

Principal Components Key Variable
e Allocated GS 5
PC1 e Gross Volume GS 5
e Unallocated Net GS 5
o Allocated GS 8
PC2 e Gross Volume GS 8
e Unallocated Net GS 8
e Gross Volume GS 7
PC3 e Unallocated Net GS 7
e Gross Volume GS 4
e Average Pressure GS 7
PC4 e Average Pressure GS 4
e Average Pressure GS 2
e Average Pressure GS 3
e Gross Volume GS 6
PC5 e Average Temperature GS 6
e Average Temperature GS 7
e Average Temperature GS 3
Table 3. Error metrics from each model without PCA.
Fold
Model Error metric - - — Average
1 2 3
MAE 0.0156 0.444 0.040 0.033
XGB RMSE 0.0185 0.053 0.117 0.063
R? 0.81 -0.09 -2.5 -0.60
MAE 0.009 0.05 0.03 0.034
RF RMSE 0.012 0.063 0.087 0.054
R? 0.92 -0.53 -0.98 -0.19
MAE 0.009 0.058 0.025 0.031
MLR RMSE 0.011 0.082 0.037 0.043
R? 0.92 -1.5 0.6 -0.007
MAE 0.032 0.038 0.037 0.035
SVR RMSE 0.042 0.051 0.062 0.052
R? -0.008 -0.014 -0.002 -0.008
MAE 0.010 0.021 0.017 0.016
BR RMSE 0.012 0.028 0.029 0.023
R? 0.9 0.69 0.77 0.79
MAE 0.009 0.022 0.017 0.016
EN RMSE 0.012 0.028 0.027 0.022
R? 0.91 0.69 0.8 0.8
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Figure 5. Model performance comparison

Discussion

The incorporated analysis of model results and
principal component patterns provided a deeper
understanding of the physical drivers of OMVD and
the behavior of ML algorithms under different data
structures. OMVD in petroleum pipeline systems
originated from a combination of thermal, hydraulic,
and compositional effects that altered the measured
volume during transportation (Emeke 2019;
Vakilinejad et al., 2017).

The dominance of gross volume, unallocated net
oil, temperature, and pressure variables in the first
five principal components signified that these
operational conditions were the main contributors
to OMVD. As crude oil traveled from multiple GS
to the central metering point, pressure reduction
along the flowline led to gas liberation and
volumetric ~ shrinkage,  while  temperature
fluctuation promoted phase instability as well as
emulsion formation. The presence of BS&W
compounded this effect by introducing emulsified
layers that distorted metering accuracy, further
widening the observed difference between sent and
received volumes (Nengkoda 2011).

PCA-ML framework showed potential as a
practical diagnostic tool for OMVD monitoring
from an operational perspective. The identification
of pressure and temperature as dominant

198 1 DOI 0rg/10.29017/scog.v48i4.404.

contributors  reinforced the importance of
maintaining stable flowline conditions through
insulation, backpressure regulation, and continuous
temperature compensation (Hermawan et al.,
2021). The contribution of unallocated net oil also
showed the need for better reconciliation and
calibration among GS to minimize metering bias
(Badings & van Putten 2020; Kanshio 2020).

Moreover, PCA-derived components served as
early indicators of anomalies, which included
sensor drift, blending mismatch, or pipeline
imbalance, supporting proactive maintenance and
allocation transparency. Some models were
unable to learn the pattern of the actual oil loss
value without PCA, which occurred when the
amount of training data was less. High fluctuation
in the dataset caused an overfitting effect on the
performance of the models (Bikmukhametov &
Jaschke 2019; Nugroho & Husin 2022;

Rhamadhani & Saputra 2023; Song et al., 2023).

XGBoost and
Random Forest showed the strongest predictive

Ensemble models such as

stability when trained on PCA-transformed data in
The reduced
dimensionality helped the models

terms of algorithmic behavior.
focus on
(Zhang et al., 2024),

to generalize across

representative features

improving the ability
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Table 4: Error metrics from each model using PCA.

Fold
Model  Error metric m o ™ Average
MAE 0.009 0.015 0.014 0.013
XGB  RMSE 0.012 0.022 0.022 0.019
R? 091 08 0.6 0.86
MAE 0.009 0.014 0.015 0.013
RF RMSE 0.011 0.020 0.029 0.02
R? 092 083 0.77 0.84
MAE 0.013 0.020 0.017 0.017
MLR  rMSE 0.015 0.027 0.032 0.025
R? 086 071 0.72 0.77
MAE 0.010 0.018 0.016 0.015
SVR RMSE 0.012 0.024 0.027 0.021
R? 09 076 08 0.82
MAE 0.013 0.020 0.017 0.017
BR  RMSE 0.015 0.027 0.032 0.025
R? 086 071 0.72 0.77
MAE 0.012 0.020 0.017 0.016
EN" RMSE 0.015 0.027 0.032 0.024
R? 086 072 0.72 0.77
operational periods without overfitting to transient CONCLUSION

anomalies. SVR model benefited the most from
PCA since the kernel-based method relied heavily
on orthogonal feature spaces by eliminating
correlated variance (Li et al., 2021; Osah & Howell
2023). PCA allowed SVR to better capture the
nonlinear interplay  between thermal and
volumetric parameters that governed OMVD.
However, regularized linear models such as
showed that
excessive dimensional compression caused over-
regularization (Naufal & Metra 2021; OKON et al.,
2024; Sola-Aremu 2019). The results showed that

dimensionality reduction clarified the fundamental

ElasticNet and Bayesian Ridge

structure of oil transport data, improved model
interpretability, and supported more reliable
forecasting of OMVD trends. Therefore, PCA—
ML framework represented a physically
grounded, data-driven method for managing
OMVD in shared pipeline networks, providing
both predictive and

accuracy operational

understanding  for  improved production

accountability.

In conclusion, the application of PCA combined
with TSCV effectively improved the predictive
performance and stability of all tested models.
SVR model showed the greatest improvement,
with its R? value increasing from —0.0082 to 0.82,
while ensemble models such as XGBoost and
Random Forest achieved accuracies of more than
0.88 under temporal validation. PCA successfully
reduced 64 correlated variables into five principal
components that captured approximately 95% of
the total data variance, dominated by gross volume,
unallocated net oil, pressure, and temperature.
These results showed that OMVD were a
physically driven phenomenon governed by
pressure decline, temperature fluctuation, and
BS&W variation rather than random measurement
noise. The incorporation of PCA and TSCV
enabled models to generalize more effectively
across time-dependent operational data, while
improving interpretability by isolating major
thermohydraulic relationships and filtering noise.
The developed PCA-ML framework provided a
reliable and explainable tool for OMVD diagnosis,
supporting early detection as well as mitigation of
discrepancies in multi-station gathering systems.
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GLOSSARY OF TERMS
Symbol Definition Unit
RF Random Forest
XGB Extreme Gradient
Boosting
OMVD O%l Measured Volume [barrel]
Discrepancy
Time Series Cross-
Lt Validation
SVR Support.Vector
Regression
GS Gathering Station
BR Bayesian Ridge
EN Elastic Net
ML Machine Learning
PC Principal Component
MLR Multlple? Linear
Regression
Basic Sediment and o
BS&W Water [%]
Time Series Cross-
TSCcv Validation
PCA Prmmpgl Component
Analysis
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