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ABSTRACT - Oil measured volume discrepancies in custody transfer systems is becoming a persistent 

challenge, which is often caused by complex thermal, hydraulic, and compositional interactions. Therefore, 

this study aimed to introduce a data-driven framework incorporating Principal Component Analysis (PCA) 

and machine learning (ML) to identify as well as predict discrepancies at a representative onshore gathering 

station (GS) in Indonesia (Field-X). Major operational parameters, including gross volume, unallocated net 

oil, pressure, temperature, and basic sediment & Water (BS&W), were analyzed to assess the impact on 

volumetric imbalance. During the analysis, PCA reduced 64 correlated variables to five principal 

components, explaining 95% of the total variance and showing gross volume, pressure, and temperature as 

dominant factors. Four ML models, namely XGBoost, Random Forest, Support Vector Regression, and 

ElasticNet, were trained as well as validated with three-fold time series cross-validation for temporal 

robustness. Incorporating PCA significantly improved predictive performance, with Support Vector 

Regression showing the largest R² increase (from –0.0082 to 0.82). Results signified that discrepancies were 

primarily governed by thermodynamic shrinkage, temperature changes, and BS&W-related metering errors. 

In addition, the proposed PCA–ML framework offered an interpretable, reliable method for early detection 

and mitigation of oil volume discrepancies in complex production environments. 
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INTRODUCTION 

Both onshore and offshore operations are 

frequently encountering oil measured volume 

discrepancies (OMVD) in oil and gas industry. 

OMVD is defined as the difference between the 

measured volume of crude oil received and 

delivered through shared transportation systems 

(Hermawan et al., 2021). Typical oil mixing 

phenomena in these systems are shown in Figure1. 

OMVD often occur when the total volume 

measured at the receiving terminal or storage tank 

does not match the total volume recorded at the 

delivery points. These inconsistencies may arise 

from various factors, including differences in 

pipeline configuration, operational pressures and 

temperatures, production rate fluctuations, or 

measurement inaccuracies in flow as well as 

sampling systems. The use of shared pipeline 

networks further causes difficulties in the issue.  

When crude oil from multiple shippers is 

transported through a common pipeline and blended 

in storage facilities, determining the exact 

contribution and loss for each shipper becomes 

challenging (Badings & van Putten 2020). 

Consequently, the allocation process aims to fairly 

and accurately assign the produced as well as 

transported oil volumes to each shipper by 

correcting for parameters such as shrinkage, 

emulsion, and evaporation (Kanshio 2020). The 

challenges show the importance of developing 

reliable predictive systems capable of identifying 

anomalies in oil allocation processes. 

Advancements in machine learning (ML) have 

enabled data-driven solutions to complex 

prediction problems in petroleum systems. ML 

algorithms are capable of handling large, nonlinear, 

and multivariate datasets (Masini et al., 2023; 

Suwono & Utama 2025). In oil and gas 

applications, several studies have shown the 

potential of ML in forecasting production rates, 

detecting anomalies, and estimating reservoir or 

system parameters (Alharbi et al., 2022; Hidayat et 

al., 2025; Mai-Cao & Truong-Khac 2022; 

Rhamadhani & Saputra 2023; Song et al., 2023; 

Ulil et al., 2025). 

 

Figure 1. Mixing phenomena in shared oil transportation system. 
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High-dimensional operational data, such as 

pressure, temperature, flow rate, and basic 

sediment & water (BS&W) from multiple 

gathering station (GS), often contain redundant as 

well as correlated features, which reduce model 

generalization and lead to overfitting. To address 

this issue, principal component analysis (PCA) can 

be applied to transform correlated variables into a 

smaller number of uncorrelated principal 

components, improving model interpretability and 

computational efficiency (Li et al., 2021; Rangga 

et al., 2022; Sherif et al., 2019; Tian et al., 2024; 

Zhang et al., 2024). Since oil allocation data are time

-dependent, model evaluation should respect the 

temporal structure of the data. Therefore, time series 

cross-validation (TSCV) is used to ensure consistent 

performance assessment (Bikmukhametov & Jäschke 

2019; Sulandari et al., 2024; Vien et al., 2021). 

This study aims to evaluate and compare the 

performance of several ML algorithms, such as 

Random Forest, XGBoost, support vector 

regression (SVR), Linear Regression, ElasticNet, 

and Bayesian Ridge in predicting OMVD values at 

Field-X GS. The analysis also investigates how 

dimensionality reduction using PCA and validation 

through TSCV can improve model accuracy, 

reduce overfitting, and improve generalization. The 

proposed framework offers a systematic data-

driven method for predicting and mitigating 

OMVD, supporting operational decision-making in 

crude oil transportation systems. 

 

METHODHOLGY 

Dataset description 

OMVD analyzed in this study for Field-X arose 

from the difference between the net oil volume 

calculated by the shippers (VΣsh, in barrels) and 

the volume recorded at Primary Meter (PM, in 

barrels). This discrepancy occurred because oil 

flow from each shipper was combined into a single 

stream before passing through Primary Meter at the 

main terminal. 

 

 

 

Before preprocessing, the dataset was 

thoroughly assessed for quality during the analysis. 

No missing values or outliers were detected, 

ensuring a clean dataset suitable for time-series 

modeling without the need for additional 

imputation or anomaly handling procedures. 

Principal component analysis 

PCA was implemented as a dimensionality 

reduction method to address multicollinearity and 

improve the generalization ability of ML models. 

The analysis identified directions (principal 

components) that captured the maximum variance 

in the dataset and transformed correlated features 

into a set of linearly uncorrelated components 

(Salem & Hussein 2019; Vahabi & Selviah 2019). 

During this study, the minimum number of PCs 

used was generally determined by a threshold of 

85% or greater of the cumulative contribution rate 

(Han & Kwon 2021). Data collection was 

conducted from June 6 to August 15, 2023, during 

this study. Observations at each GS provided 

several major data points, including BS&W, fluid 

pressure and temperature in the pipeline, 

unallocated net volume (gross volume with 

blending factor correction), allocated volume (gross 

volume from the main terminal), metering factor 

data, as well as gross volume data. 

PCA–ML incorporation process. Operational 

variables collected from multiple GS (GS1–GS7) 

were first passed through PCA, where the features 

were transformed into a reduced set of uncorrelated 

principal components (PC1, PC2, …, n-PC). 

These components then served as inputs to ML 

algorithms used for OMVD prediction. 

The system used a control parameter that 

customized the selection process for each original 

tree, improving its flexibility in adapting to specific 

data sets rather than to other sets of trees (Chen & 

Guestrin 2016; Wood 2023).  

Model construction 

Several ML models were used to identify which 

model performed best in predicting OMVD values. 

This section reviewed the specific characteristics 

and algorithmic configurations of each model, as 

shown in Table 1. 

(1) 

𝑂𝑖𝑙 𝑙𝑜𝑠𝑠  % =
𝑉𝑃𝑀 − 𝑉∑𝑠ℎ

𝑉𝑃𝑀
    (2) 

𝑂𝑖𝑙 𝑙𝑜𝑠𝑠  𝑏𝑏𝑙 = 𝑉𝑃𝑀 − 𝑉∑𝑠ℎ    
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Figure 2. PCA–ML workflow for OMVD prediction. 

Table 1. Review of ML models used. 

 

Model Description Algorithm Parameters 

 

XGB 
The system used a control parameter that 

customized the selection process for each 

original tree, improving its flexibility in 

adapting to specific data sets rather than to 

other sets of trees (Chen & Guestrin, 2016; 

Wood, 2023). 

• The number of estimators was 

1000 

• Max depth was 6 

• Learning rate was 0.1 

• Alpha is 0.8 

 

RF 

An ensemble tree-based model using bootstrap 

aggregation (bagging) for improved variance 

reduction and interpretability (Ilic et al., 2021; 

Nemer, 2024). 

• Number of estimators was 1000 

• Max depth was 10 

• Min sample leaf was 3 

 

SVR 
A kernel-based regression model that discover 

the optimal hyperplane minimizing prediction 

error (Dsouza, 2024; Pisner & Schnyer, 2020; 

Wardhana et al., 2021). 

• Kernel type was RBF 

• SVR cost was 1 

• Gamma was 0.0001 

• Epsilon was 0.005 

 

MLR 
A linear model assuming a direct relationship 

between predictors and the target variable 

(Alharbi et al., 2022). 

 

None 

 

EN 

A hybrid regularization model combining 

Lasso (L1) and Ridge (L2) penalties to 

improve model stability and feature selection 

(Al-Jawarneh et al., 2022). 

• Alpha was 0.01 

• L1 rasio was 0.1 

• Maxium iteration was 500 

 

BR A probabilistic linear regression model that 

estimated weight distributions under Gaussian 

priors (Effrosynidis et al., 2023). 

 

• Alpha 1 was 0.1 

• Alpha 2 was 0.1 

• Lambda was 0.001 

• Cost was 0.000001 
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Model validation and evaluation 

TSCV was used to ensure model robustness in 

temporal prediction, rather than conventional 

random k-fold validation. Traditional cross-

validation assumed independent and identically 

distributed samples, which was not suitable for 

time-dependent data (Botache et al., 2023). 

TSCV method divided the dataset sequentially, 

allowing the training data to often precede the 

validation data in time (Bikmukhametov & Jäschke 

2019). In this study, the dataset was divided into 

80% training and 20% testing, with three folds 

applied for model validation, as shown in Figure 3. 

The method prevented data leakage and provided a 

realistic assessment of predictive performance on 

unobserved future data. 

Model evaluation was conducted using three 

standard forecasting performance metrics, namely 

mean absolute error (MAE), root mean square error 

(RMSE), and coefficient of determination (R²). 

These metrics were selected to measure both 

absolute deviation and predictive goodness-of-fit. 

 

 

 

Figure 3. Schematic representation of validation scheme. 

𝑀𝐴𝐸 =
1

𝑛
  𝑦𝑖 − 𝑦 𝑖 

𝑛

𝑖=1

     

𝑅𝑀𝑆𝐸 =  
1

𝑛
  𝑦𝑖 − 𝑦 𝑖 2

𝑛

𝑖=1

     

𝑅2 = 1 −
∑  𝑦𝑖 − 𝑦 𝑖 

2𝑛
𝑖=1

∑  𝑦 𝑖 − 𝑦 𝑖 2𝑛
𝑖=1

     

(3) 

(4) 

(5) 

 where n was the number of test data, yi, 𝑦 𝑖  and 𝑦 𝑖  

signified the actual value, predicted value, and 

average of discrepancy values, respectively. 
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RESULT AND DISCUSSION 

Result  

This study evaluated several ML algorithms to 

predict OMVD in Field-X GS network. The 

application of PCA provided a more compact yet 

highly informative representation of the operational 

dataset. Concerning the original 64 correlated 

variables, the first five principal components captured 

approximately 95% of the total variance. 

Furthermore, loading values were examined to 

identify the most influential variables in each 

principal component (Parhizkar et al., 2021). 

Examination of the loading values showed that 

major operational parameters, particularly gross 

volume, unallocated net oil, average pressure, and 

average temperature, dominated the principal 

component structure. This signified that volumetric 

fluctuations and thermohydraulic conditions 

across GS were the primary drivers 

influencing OMVD behavior. 

PCA outcomes were shown in Figure 3 and Table 

2. PC1 and PC2 were primarily associated with gross 

volume and unallocated net oil from multiple GS, 

reflecting the variability in transported volume as well 

as inter-station imbalances. Consequently, PC3 

through PC5 were characterized by pressure and 

temperature variables, capturing the physical 

dynamics of fluid conditions along the pipeline 

system. These patterns confirmed that PCA reduced 

dimensionality and also signified latent structures, 

physically following the mechanisms behind 

measured volume discrepancies, and served as 

compact yet informative inputs for ML models. 

Model evaluation using three-fold TSCV without 

PCA was shown in Table 3 and 4. The analysis 

also showed the time series plot for the model with 

and without PCA in Figure 4. 

After applying PCA, model stability and 

accuracy improved significantly during the 

analysis. SVR model showed the greatest 

improvement, with R2 rising from -0.0082 to 0.82 

and RMSE reduced by 62%. Ensemble models also 

improved, with XGBoost achieving R2 0.86 and 

Random Forest R2 0.84, while maintaining error 

consistency across folds. Linear models showed 

smaller and consistent improvements, with RMSE 

reductions between 8-15%. Across all models, 

PCA decreased overfitting and improved cross-

validation reproducibility.  

 

Figure 4. Cumulative explained variance Vs. number of principal components. 
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Model Error metric 

Fold 
Average 

 

 1th 2th 3th  

  

XGB 
MAE 0.0156 0.444 0.040 0.033  

 RMSE 0.0185 0.053 0.117 0.063  

 R2 0.81 -0.09 -2.5 -0.60  

  

RF 
MAE 0.009 0.05 0.03 0.034  

 RMSE 0.012 0.063 0.087 0.054  

 R2 0.92 -0.53 -0.98 -0.19  

  

MLR 
MAE 0.009 0.058 0.025 0.031  

 RMSE 0.011 0.082 0.037 0.043  

 R2 0.92 -1.5 0.6 -0.007  

  

SVR 
MAE 0.032 0.038 0.037 0.035  

 RMSE 0.042 0.051 0.062 0.052  

 R2 -0.008 -0.014 -0.002 -0.008  

  

BR 
MAE 0.010 0.021 0.017 0.016  

 RMSE 0.012 0.028 0.029 0.023  

 R2 0.9 0.69 0.77 0.79  

  

EN 

MAE 0.009 0.022 0.017 0.016  

 RMSE 0.012 0.028 0.027 0.022  

 R2 0.91 0.69 0.8 0.8  

 

Table 3. Error metrics from each model without PCA. 

Table 2. Most influential variables in each principal component based on PCA loading values. 

 Principal Components Key Variable 
 

  
PC 1 

• Allocated GS 5  

 • Gross Volume GS 5  

 • Unallocated Net GS 5  

  
PC 2 

• Allocated GS 8  

 • Gross Volume GS 8  

 • Unallocated Net GS 8  

  
PC 3 

• Gross Volume GS 7  

 • Unallocated Net GS 7  

 • Gross Volume GS 4  

  
PC 4 

• Average Pressure GS 7  

 • Average Pressure GS 4   

 • Average Pressure GS 2  

 • Average Pressure GS 3  

  
PC 5 

• Gross Volume GS 6  

 • Average Temperature GS 6  

 • Average Temperature GS 7  

 • Average Temperature GS 3  
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Discussion 

The incorporated analysis of model results and 

principal component patterns provided a deeper 

understanding of the physical drivers of OMVD and 

the behavior of ML algorithms under different data 

structures. OMVD in petroleum pipeline systems 

originated from a combination of thermal, hydraulic, 

and compositional effects that altered the measured 

volume during transportation (Emeke 2019; 

Vakilinejad et al., 2017).  

The dominance of gross volume, unallocated net 

oil, temperature, and pressure variables in the first 

five principal components signified that these 

operational conditions were the main contributors 

to OMVD. As crude oil traveled from multiple GS 

to the central metering point, pressure reduction 

along the flowline led to gas liberation and 

volumetric shrinkage, while temperature 

fluctuation promoted phase instability as well as 

emulsion formation. The presence of BS&W 

compounded this effect by introducing emulsified 

layers that distorted metering accuracy, further 

widening the observed difference between sent and 

received volumes (Nengkoda 2011). 

PCA–ML framework showed potential as a 

practical diagnostic tool for OMVD monitoring 

from an operational perspective. The identification 

of pressure and temperature as dominant 

 

Figure 5. Model performance comparison 

contributors reinforced the importance of 

maintaining stable flowline conditions through 

insulation, backpressure regulation, and continuous 

temperature compensation (Hermawan et al., 

2021). The contribution of unallocated net oil also 

showed the need for better reconciliation and 

calibration among GS to minimize metering bias 

(Badings & van Putten 2020; Kanshio 2020). 

Moreover, PCA-derived components served as 

early indicators of anomalies, which included 

sensor drift, blending mismatch, or pipeline 

imbalance, supporting proactive maintenance and 

allocation transparency. Some models were 

unable to learn the pattern of the actual oil loss 

value without PCA, which occurred when the 

amount of training data was less. High fluctuation 

in the dataset caused an overfitting effect on the 

performance of the models (Bikmukhametov & 

Jäschke 2019; Nugroho & Husin 2022; 

Rhamadhani & Saputra 2023; Song et al., 2023). 

Ensemble models such as XGBoost and 

Random Forest showed the strongest predictive 

stability when trained on PCA-transformed data in 

terms of algorithmic behavior. The reduced 

dimensionality helped the models focus on 

representative features (Zhang et al., 2024), 

improving the ability to generalize across 

https://doi.org/10.29017/scog.v48i4.404
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Model Error metric 

Fold 
Average 

 

 1th 2th 3th  

  

XGB 
MAE 0.009 0.015 0.014 0.013  

 RMSE 0.012 0.022 0.022 0.019  

 R2 0.91 0.8 0.86 0.86  

  

RF 
MAE 0.009 0.014 0.015 0.013  

 RMSE 0.011 0.020 0.029 0.02  

 R2 0.92 0.83 0.77 0.84  

  

MLR 
MAE 0.013 0.020 0.017 0.017  

 RMSE 0.015 0.027 0.032 0.025  

 R2 0.86 0.71 0.72 0.77  

  

SVR 
MAE 0.010 0.018 0.016 0.015  

 RMSE 0.012 0.024 0.027 0.021  

 R2 0.9 0.76 0.8 0.82  

  

BR 
MAE 0.013 0.020 0.017 0.017  

 RMSE 0.015 0.027 0.032 0.025  

 R2 0.86 0.71 0.72 0.77  

  

EN 
MAE 0.012 0.020 0.017 0.016  

 RMSE 0.015 0.027 0.032 0.024  

 R2 0.86 0.72 0.72 0.77  

 

operational periods without overfitting to transient 

anomalies. SVR model benefited the most from 

PCA since the kernel-based method relied heavily 

on orthogonal feature spaces by eliminating 

correlated variance (Li et al., 2021; Osah & Howell 

2023). PCA allowed SVR to better capture the 

nonlinear interplay between thermal and 

volumetric parameters that governed OMVD. 

However, regularized linear models such as 

ElasticNet and Bayesian Ridge showed that 

excessive dimensional compression caused over-

regularization (Naufal & Metra 2021; OKON et al., 

2024; Sola-Aremu 2019). The results showed that 

dimensionality reduction clarified the fundamental 

structure of oil transport data, improved model 

interpretability, and supported more reliable 

forecasting of OMVD trends.  Therefore, PCA–

ML framework represented a physically 

grounded, data-driven method for managing 

OMVD in shared pipeline networks, providing 

both predictive accuracy and operational 

understanding for improved production 

accountability. 

Table 4: Error metrics from each model using PCA. 

CONCLUSION 

In conclusion, the application of PCA combined 

with TSCV effectively improved the predictive 

performance and stability of all tested models. 

SVR model showed the greatest improvement, 

with its R2 value increasing from –0.0082 to 0.82, 

while ensemble models such as XGBoost and 

Random Forest achieved accuracies of more than 

0.88 under temporal validation. PCA successfully 

reduced 64 correlated variables into five principal 

components that captured approximately 95% of 

the total data variance, dominated by gross volume, 

unallocated net oil, pressure, and temperature. 

These results showed that OMVD were a 

physically driven phenomenon governed by 

pressure decline, temperature fluctuation, and 

BS&W variation rather than random measurement 

noise. The incorporation of PCA and TSCV 

enabled models to generalize more effectively 

across time-dependent operational data, while 

improving interpretability by isolating major 

thermohydraulic relationships and filtering noise. 

The developed PCA–ML framework provided a 

reliable and explainable tool for OMVD diagnosis, 

supporting early detection as well as mitigation of 

discrepancies in multi-station gathering systems. 
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GLOSSARY OF TERMS  

Symbol Definition Unit  

RF Random Forest   

XGB 
Extreme Gradient 

Boosting 
  

OMVD 
Oil Measured Volume 

Discrepancy 
[barrel]  

TSCV 
Time Series Cross-

Validation 
  

SVR 
Support Vector 

Regression 
  

GS Gathering Station   

BR Bayesian Ridge   

EN Elastic Net   

ML Machine Learning   

PC Principal Component   

MLR 
Multiple Linear 

Regression 
  

BS&W 
Basic Sediment and 

Water 
[%]  

TSCV 
Time Series Cross-

Validation 
  

PCA 
Principal Component 

Analysis 
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