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ABSTRACT - This study evaluates an integrated forecasting framework that combines Capacitance-
Resistance Models (CRMP and CRMIP) with ensemble machine learning algorithms (Random Forest and
XGBoost) to predict CO2-Enhanced Oil Recovery performance in the heterogeneous Volve Field. Reservoir
simulation is performed using tNavigator with CO: injection at 941 tons/day (35 MMSCF/day) over 20
years. The results demonstrate the critical influence of CO2-specific characteristics, with a determined
Minimum Miscibility Pressure of 3299.68 psi and a corresponding oil Swelling Factor of 1.19. Machine
learning models, particularly XGBoost, significantly outperformed conventional CRM methods, achieving
exceptional accuracy (R? = 0.99-1.00, MAPE = 0.44 - 2.24%) compared to CRMP/CRMIP (R? = 0.55 -
0.72, MAPE = 16-23%). The CO: injection scenario substantially enhanced oil recovery, achieving a
cumulative production of 15.73 MMSTB (RF 20.45%) compared to 9.38 MMSTB (RF 12.19%) for
waterflooding, representing a 67.7% improvement and incremental recovery of 6.35 MMSTB. Interwell
connectivity analysis reveales dynamic reservoir responses with time constants ranging from 916 to 927
days. The integration of physics-based models with non-linear machine learning algorithms significantly
improves prediction accuracy while providing comprehensive insights into reservoir dynamics, allowing for

optimal CCUS implementation in heterogeneous reservoir systems.
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INTRODUCTION

The global energy transition has compelled
nations to formulate strategies that can
substantially reduce greenhouse gas emissions
while maintaining long-term energy security.
Within the oil and gas sector, carbon capture,
utilization, and storage (CCUS) has emerged as a
pivotal technological pathway in addressing these
dual imperatives (Nufiez-lopez & Moskal, 2019
(Qiao & Zhang 2025). The deployment of CO: as
an injection agent in enhanced oil recovery (COa-
EOR) offers a particularly compelling dual
advantage: it enables the geological sequestration
of anthropogenic CO: while simultaneously
enhancing hydrocarbon recovery in mature
reservoirs (Alam et al.,, 2022) (Nuhez-lopez &
Moskal 2019). The physicochemical properties of
COz, including its high solubility in hydrocarbons
and its ability to reduce oil viscosity, represent
significant potential for improving displacement
efficiency and mobilizing residual oil (Alam et al.,
2022; Qiao & Zhang, 2025 and make CO:-EOR a
strategically important component of low-carbon
reservoir management.

Despite these advantages, the performance of
CO2-EOR is profoundly influenced by reservoir
heterogeneity (Jiashun Luo et al., 2022). Features
such as preferential flow pathways, strong
permeability contrasts, and non-uniform fluid
distributions frequently lead to inefficient sweep
and premature CO: breakthrough, reducing
recovery performance (Alam et al., 2022 (Jiashun
Luo, 2022. A substantial body of research has
attempted to understand these behaviors through
numerical reservoir simulations and waterflood
performance analyses, including the use of
capacitance-resistance models (CRM) to infer
interwell connectivity.

Although CRM has demonstrated considerable
utility during waterflooding operations, its prediction
accuracy declines markedly wunder complex
displacement regimes such as CO: flooding. In these
environments, nonlinear system interactions and
multiphase flow dynamics dominate and cannot be
adequately captured by simplified analytical
formulations. In contrast, machine learning methods
have demonstrated strong capability in modeling
nonlinear and high-dimensional behaviors (Du et al.,
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2024; Gao et al., 2023), but many existing studies
have applied these techniques in isolation, thus
sacrificing the physical interpretability that remains a
critical strength of CRM-based approaches.

During the waterflooding phase, the present
study employs a hybrid methodology that
integrates CRM with decline curve analysis (DCA)
to capitalize on the strengths of both approaches.
CRM  contributes insights into interwell
connectivity and reservoir time constants, whereas
DCA provides robust long-term production trend
estimation. However, in transitioning to the CO:
injection forecasting scenario, this  hybrid
configuration is no longer adopted. The
fundamentally different flow behavior associated
with CO: injection, characterized by miscibility
effects, saturation evolution, and increased flow-
path complexity, renders conventional decline
behavior invalid and diminishes the relevance of
DCA. Consequently, CRM is applied without
hybridization, and machine learning models are
introduced as complementary tools to capture the
nonlinear and dynamic nature of CO:-induced
reservoir response (Gao et al., 2023).

To address these challenges, this study develops
an integrated predictive framework that combines
CRM, specifically, CRMP and CRMIP, with
ensemble-based machine learning algorithms,
namely Random Forest and XGBoost (Gao et al.,
2023. CRM provides an interpretable, physics-
informed representation of pressure propagation
patterns and interwell connectivity, whereas
machine learning contributes the capability to learn
nonlinear dependencies inherent in CO: flooding
processes (Du et al., 2024).

The use of long-term reservoir simulation data
further enables rigorous calibration and validation of
the predictive models (Emera & Kalantari Dahaghi,
2025, facilitating a detailed assessment of reservoir
dynamic behavior, connectivity evolution, and
incremental oil recovery potential under CO:
injection. In summary, this study aims to establish a
CO2-EOR forecasting framework that delivers high
predictive accuracy while preserving the physical
interpretability essential for operational decision
making. Furthermore, the findings are expected to
provide greater insights into the evolution of
interwell connectivity, reservoir pressure response,
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and recovery performance during CO: injection.
The resulting contributions serve as a scientifically
grounded reference for designing and optimizing
CCUS implementation strategies in highly
heterogeneous reservoirs, as well as advancing
methodological development in contemporary
reservoir forecasting.

METHODOLOGY

All data in this study were processed and
analyzed using the tNavigator reservoir simulator
to determine the injection flow rate and production
flow rate. We used the Python programming
language to create CRM and Machine Learning
models, and evaluated the performance of these
models using theR?and MAPE.

Capacitance resistance model (CRM)

The mathematical model is known as the
Capacitance Resistance Model (CRM) employs the
principles of reservoir flow equations and material
balance to predict the quantity of oil that will be
released from the reservoir (De Holanda et al., 2018).

CRMP: producer-based representation

CRMP is a model that places producers at the
center or focus of the model control system. In this
scheme, production wells will be analyzed
separately to achieve greater resolution (De
Holanda et al., 2018. CRMP establishes a singular
time constant (tj) for the drainage volume of each
producer and a unique connectivity (f ij) for each
injection (i) and producer (j). Therefore, the
continuity equation for producer j is expressed as
follows:

dq; Ninj- dp,
Tjd_£+ q;(t) = Zz=1 fi i) — 7J; d—tf (1)

CRMIP: injector-producer based
representation

CRMIP is the most recent CRM model to
consider reservoir heterogeneity. Heterogeneity in
this model means different individual/pair
parameters, assuming a single value for all

producers or reservoirs is unreliable (De Holanda
et al., 2018). The Ordinary Differential Equation
(ODE) for this pair-based volume control is written
as follows:

dp,,)

dq; .
ty a4y (©) = f () = Jy—

dt @

Decline curve analysis (DCA)

The two fundamental difficulties in appraisal
work are determining a well’s most probable future
life and estimating its future production. The
simplest and most readily available variable
characteristic of a producing well is its production
rate. Furthermore, the logical way to find an
answer to the two problems mentioned above, by
extrapolation, is to plot this variable production
rate either against time or against cumulative
production, extending the curves thus obtained to
the economic limit (Arps, n.d.).

The CRM results for predicting this volatility
model are not very good. To aid in better predicting
how the flow rate would behave, CRM will be
integrated with DCA. The model utilized in DCA
is Exponential ARPs, which is as follows:

q = q;eCPit) @)

Machine Learning

Two ensemble learning algorithms are used as
the main prediction. Random Forest is an advanced
decision tree technique that can be applied for
classification or regression. It also belongs to the
ensemble learning family. A decision tree is an
easy-to-use method because of its clear structure
(Hidayat & Astsauri, 2021. XGBoost is considered
the most powerful algorithm for building
prediction models (Erfando & Khariszma, 2023.
The data set is split into two parts: 80% for
training and 20% for testing. The hyperparameters
for both models are determined using techniques
such as Grid Search and Random Search.

Integrated CCUS simulation

The sandstone reservoir selected for CO2
injection has significant water content and a decline
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Figure 1. Permeability distribution on the volve field

in oil production rate during the water injection
period in the secondary recovery phase. Therefore,
tertiary recovery is required to increase the RF
value with CO: injection. CO: injection selection is
determined by fracture gradient, specifically
utilizing an injection rate of 941 tons/day (35
MMSCEF).

Reservoir simulations using tNavigator reveal
MMP values in the field. This means that the
injection rate remains constant and does not
make the reservoir pressure similar to the BHP
of the injection well. If the reservoir pressure
equals the injection well's BHP, the injection
rate decreases.

RESULTS AND DISCUSSION

In this study, the Volve field model was
initialized and simulated using tNavigator, with the
history matching process taking place between
early 2015 and 2024. The water injection paradigm
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was modified to carbon dioxide (CO:) injection,
which was carried out for 20 years. Injection was
continuous, and the flow rate was kept consistent
by maintaining reservoir pressure, which differed
from the pressure inside the well.

Table 1. Initialization of the volve field model

Parameters Value Unit

Original Oil in Place 76.9942 MMSTB
Original Water in Place 697.7655 MMSTB
Original Gas in Place 55.2871 MMSCF

Pore Volume 794.7169 Million RB

Figure 1 shows how the

distribution is represented. In general, the model's

permeability

permeability distribution is very uneven.

The permeability values range from less than 1
mD (blue) to more than 1500 mD (bright red). The
orange and red colors indicate that most of the
reservoir region has good to very good permeability.
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Figure 2. Liquid rate vs oil rate plot

The reservoir model was validated by
modifying eight years of historical production
data, with the results shown in Figure 2. There is
a great visual match between the simulation
(solid line) and the historical data

(markers), indicating that the model accurately

results

depicts how the reservoir works.

Analysis History Matching and Validation
Models, Hybrid CRM-DCA vs Machine
Learning for Waterflooding.

To verify the accuracy of the model at each
level, we compared the hybrid model predictions
to actual production data from three main wells,
as shown in Figure 3. In general, the model
performed well in replicating complex and
variable production behavior. This aligns with

the research conducted by (Saraiva et al., 2014,
which employed a multi-Hubbert model to
forecast crude oil production in Brazil,
effectively capturing production changes with
considerable precision. The model's validity was
quantitatively assessed using the Coefficient of
Determination (R?), which attained a value of
0.79, along with a

Percentage Error (MAPE), signifying a robust

low Mean Absolute

correlation between the anticipated and actual
data.

A high R2 value is a crucial measure of
model reliability. This result is consistent with
the forecasting model evaluation standards used
in the oil and gas business, as applied by
(Chavez-Rodriguez et al., 2015 in their analysis
of Peruvian oil production.
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Comparison Hybrid Model for Well P1
CRMP+DCA: R?=0.79, MAPE=18.87%
CRMIP+DCA: R?2=0.76, MAPE=21.26%
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Figure 3. Plot comparison hybrid for well production (P1, P2, and P3)
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Table 2. Interwell connectivity and time constant CRMP

Production Injection well Time
well ” 7 constant

(1) days
P1 0.0066  0.0098 30
P2 0.019 0.011 30
P3 0.0066  0.0098 30

Table 3. Interwell connectivity for CRMIP

Production Injection well

well 11 12
P1 0.0094 0.0064
P2 0.0191 0.0109
P3 0.0067  0.0099

Table 4. Time constant for CRMIP

Production  Injection Well
well I 12
P1 32 30.55
P2 30.86  30.54
P3 30 30

Table 2 shows the quantitative parameters of the
CRMP model, offering a comprehensive understanding
of the connection across wells in water injection
operations (De Holanda et al., 2018. These results reveal
that Injector 11 has the biggest effect on production well
P2 (f ij 0.019), making it the injector-producer pair with
the best connectivity (Shabani et al., 2020).

In contrast, Injector 12 offers higher pressure support
for wells P1 and P3, highlighting reservoir variability
and the intricacies of subsurface flow pathways
(Salehian & Cynar, 2019).

Table 3 shows all the parameters from the CRMIP
model that can be used to find the unique time constants
for each pair of injectors and producers. This method is
consistent with the capacitance-resistance model
methodology, which is effective in examining interwell
connections (Moreno & Lake, 2014).

Table 4 demonstrates substantial results, indicating
that despite fluctuations, the time constant remained
consistently within the range of 30-32 days. This
relatively consistent time constant means that the
reservoir's transmissibility and compressibility qualities
are nearly identical throughout the research area (D.
Wang et al., 2019).

Figure 4 shows that Injector I1 is the most
important injection well in this area, since it is closely
connected to all three production wells (P1, P2, and
P3). This means that Injector I1 provides the highest
pressure support in this area. In contrast, the majority
of Injector 12's connections go to well P1, giving it a
more localized effect.

This connectivity map is a key part of making an
effective injection plan and getting the most out of the
sweep. According to (Ahmed 2007), the several ways
that wells are connected directly affect the sweep pattern;
hence, it is very important to understand this in
order to optimize.

3D Interwell Connectivity Map

Figure 4. Interwell connectivity with 3D map
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The results in Figure 5 show that both model
variants (CRMP+DCA and CRMIP+DCA) function
very well and are almost identical. This is evidenced
by the consistently high Coefficient of Determination
(R?) values, ranging from 0.72 to 0.79, which means
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Comparison Regression Plot for Well P1

CRMP+DCA
R2=0.79, MAPE=18.87%

CRMIP+DCA
R2=0.76, MAPE=21.26%

that the model is able to explain more than 72% of
the variation in production data. In addition, the
relatively low Mean Absolute Percentage Error
(MAPE) value (below 23%) confirms that the
model's prediction error rate is acceptable.
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In general, this regression graph provides strong
statistical evidence that the hybrid model developed
can accurately predict things at the level of single
wells. This result corroborates the studies conducted
by Chicco et al (2021) which underscores that R? is a
more relevant and dependable metric than MAPE for
assessing regression model performance, particularly
in scientific and industrial settings.

Figure 6 displays the results of the performance study
of the Random Forest model based on machine learning.
The model accurately predicts production rates, with an
R? value of 0.98 and an MAPE of approximately 6%.
This performance is similar to other studies
demonstrating the efficacy of Random Forest in
predicting reservoir parameters, as evidenced by
(Rhamadhani et al., 2023, who attained an R? of 0.974
for oil production forecasting.

Comparison Regression Plot for Well P3
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R?=0.79, MAPE=18.82%

2250 A — 27 1 - g
——=- Perfect Prediction JRe —=—= Perfect Prediction ‘
2000 - e 4
e (5] ® RS (¢) °
1750 A © 77 @ | 7 (] < 1
o 90 o84 o 6 o8¢
1500 T .. 7@ 1 .. 7 Q
Q0 @@ e AN o)
1250 - 0968° @ . 983 Cd
Og® o Og@ <
& o & P R 8% 3@
L) e © e ‘e
750 ~ < © . 2C—©
@ | /{ e @,
500 - e, ’ ] e0,”
/, /,
4 4
250 A ’/ b ,'/
500 1000 1500 2000 500 1000 1500 2000
Actual Production (bbl) Actual Production (bbl)
Figure 5 (c)
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Analysis Performance for Well P2
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Figure 6. Analysis Random Forest for Well Production (P1, P2, and P3)

The most important part of this analysis is how well
the model works on both the training data (Wells P1 and
P2) and validation data (Well P3). The model's ability to
produce accurate predictions on previously unseen data
suggests that it is not overfit and has good
generalizability. According to the author, machine
learning methods can improve predictions with an R?
close to 0.80.

Figure 7 shows the data used for training (Wells
P1 and P2). The XGBoost model fit quite flawlessly,

4421 DOI org/10.29017/scog.v48i4.1930 .

with a Coefficient of Determination (R?) = 1.00 and a
Mean Absolute Percentage Error (MAPE) of less than
0.6%. This excellent result is consistent with what other
studies’ findings about XGBoost's potential to be very
accurate. However, the true validation lies in the model's
performance on previously unseen data. On the
validation data (Well P3), the model was able to
maintain its outstanding performance with R* = 0.99 and
MAPE = 0.86%. This very high consistency in
performance between the training and validation data
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Figure 7. Analysis XGBoost for Well Production (P1, P2, dan P3)
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convincingly proves that the model is not overfit and has
very strong generalization capabilities. This finding is
corroborated by (Fajrul Haqqi et al., 2023, who found
that variations in XGBoost training and testing exhibited
no signs of overfitting, and by (Asnawi et al., 2024, who
validated that the XGBoost model showed no systematic
bias, with prediction errors evenly distributed. The
regression graph displays data points grouped in an
almost perfect straight line, indicating that this XGBoost
model is accurate and reliable enough to predict
production. This advantage is in line with the many
successful applications of XGBoost in various situations.

Forecast for CO: injection

The liquid-volume versus pressure plot, Figure
8, provides direct quantification of a key CO2-EOR
mechanism: oil swelling due to CO: dissolution. At
the constant reservoir temperature of 224.6°F, the
curve exhibits a characteristic hump. The initial oil
volume at high pressure (~4000 psi) is

1.40

1.35

1.30

1.25

Liquid Volume, RB
o
(=1

1.05

1.00

0.0 0.2 0.4

approximately 1.05 RB. As pressure decreases into
the miscible region near the defined MMP of
3299.68 psi, the volume swells to a maximum of
1.25 RB. The ratio of these volumes defines
the Swelling Factor = 1.19, confirming that the oil
undergoes a 19% volumetric expansion. This
physical swelling exerts an internal driving force
that helps mobilize residual oil by reducing
capillary trapping and lowering residual oil
saturation (Sugihardjo 2009).

This quantified mechanism has important field
implications: while it underpins the substantial
incremental recovery (6.35 MMSTB), its pressure-
dependent nature also explains the uneven sweep
efficiency observed in the simulation. Optimal
swelling and recovery occur only in areas where
pressure remains above the MMP, inherently
amplifying the effects of reservoir heterogeneity and
resulting in the channeling and early breakthrough
patterns visualized in Figures 14 and 15.

0.6 0.8 1.0

Injected Gas Molar Fraction

| — Variant 1 - Composition 1 : Oil Volume at Pbub for T=2246 F |

Figure 8. CO, induced oil swelling behavior at reservoir temperature (224.6°F)
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Figure 9 shows the concentration of CO- in the
oil phase as a function of pressure for the Volve
Field fluid composition. The inflection point (or
sharp increase) in the curve, indicated by the
vertical dashed line, defines the MMP at 3299.68
psi. Pressures above this threshold enable first-
contact or multi-contact miscibility, leading to a
significant reduction in interfacial tension and oil
saturation residual—the core mechanism driving
the enhanced recovery in the forecasted CO2-EOR
scenario (Sugihardjo 2009).

The physical and chemical characteristics of
CO. differ from those of water, influencing
displacement mechanisms and sweep efficiency
during EOR operations. Unlike water, CO- exhibits
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04

0.3

0.2

0.1

0.0

0 1000

miscibility with crude oil above the Minimum
Miscibility Pressure (MMP), reducing interfacial
tension and oil viscosity and enhancing
microscopic displacement efficiency. Furthermore,
CO: dissolution induces oil swelling, as quantified
by the Swelling Factor of 1.19, which further
mobilizes residual oil. However, the higher
mobility of CO: relative to oil and water typically
leads to unfavorable mobility ratios, promoting
viscous fingering and early breakthrough—
phenomena not observed in waterflooding. These
characteristics necessitate different operational
strategies, such as WAG (Water-Alternating-Gas)
injection or mobility control agents, to mitigate
channeling and improve volumetric sweep in
heterogeneous formations (Sugihardjo 2009).

2000 3000
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Figure 9. Determination of minimum miscibility pressure (MMP)
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Figure 10. Injection rates of CO[ for 2 wells of injection

Figure 10 shows the gas injection scenario for
reservoir performance forecasting. Waterflooding
before 2025, followed by a constant rate of 941
tons/day (35 MMSCF) beginning in early 2025 and
lasting 20 years until 2044.

This stable rate control scenario simulates gas
flooding impacts on oil production enhancement
and reservoir pressure maintenance (Orin et al.,
2025). The approach enables comprehensive
evaluation of enhanced oil recovery through
controlled, long-term gas injection simulation
(Khurshid & Afgan 2021).
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The forecasting results demonstrate the
effectiveness of gas injection EOR initiated in early
2025. Total field production was successfully
stabilized at high levels, proving the gas injection
scenario's success (Kristanto et al., 2025). Well P-F
-12 (P2) shows significant improvement with stable
production at 550 STB/day, while wells P-F-11B
(P1) and P-F-14 (P3) continue declining. This
contrasted response confirms reservoir heterogeneity
and uneven gas sweep efficiency (Ramadhan et al.,
2023). The injected gas flows through preferential
pathways to P-F-12, while other well areas lack
adequate pressure support (Shafiei et al., 2024).
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Figure 12 effectively quantifies the benefits of
implementing CO, injection projects compared to
continuing existing Waterflooding scenarios. This
approach is supported by research demonstrating
that CO, injection significantly enhances oil
recovery compared to conventional Waterflooding
methods (Alam et al., 2022). The graph indicates
that after 2025, the CO, injection scenario (orange)
results in significantly higher daily production
rates, as evidenced by the steeper slope of its curve.

il Rate, Msthday

This improvement aligns with studies demonstrating
that CO, injection can achieve oil recovery rates of 68-
73%  of original oil-in-place,  substantially

outperforming conventional Waterflooding (Alam et al.,
2022). While the continued Waterflooding scenario
(red) would only reach a total cumulative production
of approximately 9.38 MMstb, the CO, injection
scenario is projected to reach 15.73 MMstb over the
same period.
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Figure 11. Oil rates for the field and 3-well Producers
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Figure 12. Oil Total during CO, Injection and Waterflooding
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Figure 13 shows the field average pressure
profile, which clearly illustrates three phases:
initial depletion until 2024, followed by very rapid
re-pressurization due to injection, and ending
with a new long-term decline phase. This profile
demonstrates that while the intervention
scenario successfully and significantly increased
reservoir energy initially, it was insufficient to
maintain pressure permanently over the course
of production time.

This three-phase pressure behavior is supported
by research findings, which revealed that injection
strategies can effectively restore reservoir pressure

4800
4600
4400

4200

Avg. Pressure, psd

4000

in the short term (S. Lee et al., 2023), and rapid
pressure restoration can occur following hydraulic
stimulation (S. Lee et al., 2023).

Figure 14 shows the final oil saturation map that
visually demonstrates the presence of uneven
sweep efficiency. Zones with low oil saturation
(blue/green) indicate areas successfully swept by
gas injection, particularly around the injector and
toward well P-F-12. However, extensive areas with
high oil saturation (yellow/orange) show
significant bypassed oil volumes, highlighting the
impact of reservoir heterogeneity on EOR project
performance (Ramadhan et al., 2023)

it

217 2020 2023 2026 2009 2032 2035 2038 2041 2044

—— FIELD Awg. Prassure
Figure 13. Reservoir pressure of the end CO, injection
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Figure 14. Oil saturation of the end simulation CO, injection
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This visualization effectively illustrates how
reservoir heterogeneity causes preferential flow paths
during gas injection, resulting in incomplete oil
displacement (Fang et al., 2024. The heterogeneous
reservoir with different permeability zones leads to
varying sweep efficiency, where some areas
experience effective fluid displacement while others
remain largely untouched, demonstrating the
fundamental challenge of achieving uniform oil
recovery in complex geological formations
(Telmadarreie & Trivedi 2020).

Figure 15 illustrates highly non-uniform CO:
breakthrough profiles among production wells,
indicating reservoir heterogeneity. Wells P-F-14
(green) and P-F-12 (orange) exhibit very rapid and
large breakthroughs, indicating the presence of
thief zones that reduce injection efficiency.
Meanwhile, well P-F-11B (red) remains mostly
unchanged, indicating very poor connectivity. This
data is crucial for evaluating uneven CO: sweep
efficiency (Fang et al., 2024).
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High reservoir heterogeneity can lead to early
CO: breakout and flooding, particularly as the
standard deviation increases, resulting in small
sweep regions. Gas channeling and low sweep
efficiency are common challenges in highly
heterogeneous reservoirs (Fang et al., 2024).

Table 5. Compare Waterflooding vs CO, Injection

Qil cumulative

i o,
Scenario (MMSTB) RF %
Waterflooding 9.38 12.19
CO: Injection 15.73 20.45

Table 5 concisely compares the final results of
the two development scenarios. The results
definitively demonstrate that the CO2 injection
scenario is far superior, with total cumulative oil
production reaching MMSTB (RF 20.45%)
compared to Waterflooding, which only achieved
9.38 MMSTB (RF 12.19%). The implementation
of this EOR project successfully provided an
incremental oil recovery of 6.35 MMSTB.
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Figure 15. Production CO, mass rate
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Analysis history matching and validation
models, CRM vs machine learning after forecast
CO: injection

Figure 16 shows the production rate prediction
results for wells P1, P2, and P3 using the Capacitance
Resistance Model (CRMP) and Capacitance
Resistance Model with Injection Producers (CRMIP)
methods for the 2024-2045 time periods.

Well, P1 demonstrates the best prediction
performance with R? values of 0.722 and MAPE of
16.1% for both models, indicating good accuracy in
capturing the production decline trend from ~2000
bbl/day to ~600 bbl/day. Meanwhile, wells P2 and
P3 exhibit lower prediction performance with R?
around 0.55 and MAPE ~23%, showing challenges
in modeling more complex production fluctuations
in both wells (Fu et al., 2022).

Model for Well - P1
CRMP: R?=0.722, MAPE=16.1% | CRMIP: R*=0.722, MAPE=16.1%
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Model for Well - P2
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Model for Well - P3
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Figure 16. Prediction CRM after CO, injection

Both models (CRMP and CRMIP) show nearly
identical performance across all three wells, with
very small metric differences. The step-wise
patterns in actual production data indicate
operational changes or well interventions that
affected production rates throughout the
observation period (Fu et al., 2022). These results
align with the established understanding that
capacitance-resistance models are semi-analytical
methods designed to estimate production rates
based on historical production and injection data
using material balance and signal correlations
between injectors and producers (Fu et al., 2022.

The interwell connectivity coefficients and time
constants presented in Tables 2-4 were derived
from historical waterflooding data using CRM.
These parameters define the baseline geological
connectivity for the reservoir, representing the
preferential flow paths established by the static
permeability field and reservoir architecture.
Although the absolute values of connectivity may
evolve during CO: injection due to changes in fluid
mobility and potential geochemical reactions,
the relative connectivity hierarchy between well
pairs is expected to remain stable. The most
conductive pathways identified during
waterflooding (I11—P2) are likely to become the

dominant conduits for CO: flow, resulting in early
breakthrough in the same wells. Furthermore, the
relatively uniform time constants observed during
waterflooding indicate a well-connected reservoir
compartment, providing a calibrated reference for
pressure transmission dynamics. This baseline
connectivity is essential for initializing and
interpreting the more complex CO: injection
forecast, as it grounds the predictive models in the
historically validated flow geometry of the field.

It is important to note that this baseline
connectivity assumes no significant alteration of
the pore structure during CO: injection. In
reality, dynamic processes such as CO:-induced
wettability alteration and mineral dissolution/
precipitation could modify the effective
permeability along flow paths over time. The
simulation results in Figure 12, the oil saturation
map indicates uneven sweep, which may be a
consequence of both this static baseline
heterogeneity and is amplified by these dynamic
effects.  Therefore, the waterflooding-based
connectivity should be interpreted as the initial
condition for the CO: flood. The forecasted
production profiles and the updated connectivity
analysis after the CO: injection period, as shown in
Tables 6 - 8, reflect how these initial pathways
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influence the eventual CO: sweep pattern and
where dynamic effects might have played a role.

The interwell connectivity parameters derived
from waterflooding history (Tables 2 — 4) serve as
a geologically grounded baseline for initializing
CO:s: injection forecasts. This approach is justified
because connectivity during waterflooding reflects
the static permeability field and reservoir
architecture, which remain unchanged at the onset
of CO: injection. While fluid mobility and relative
permeability alter during CO: flooding, the
preferential  flow  paths identified during
waterflooding are expected to dominate early CO-
migration. This assumption is supported by the
consistent time constants observed (=30 days),
indicating a stable pressure transmission
framework. Consequently, waterflooding
connectivity provides a physically interpretable
starting point for forecasting, from which dynamic
effects such as miscibility, swelling, and mobility
contrasts can be superimposed to predict CO»-
specific responses (Fu et al., 2022.

Table 6. Interwell Connectivity and Time Constant after
CO, Injection CRMP

Production Injection Well COHI:::]?:
Well 11 2 (1) Days
P1 0.000036 0.000030 1358.83
P2 0.000228 0.000030 1464.74
P3 0.000063 0.000052 1554.69

Table 7. Interwell Connectivity after
CO; Injection CRMIP

Production Injection well

well 11 12
Pl 0.000038  0.000046
P2 0.000063  0.000004
P3 0.000054 0.000066

Table 8. Time Constant after CO, Injection CRMIP

Production  Injection well
well I1 12
P1 915.83 915.66
P2 927.17 926.26
P3 921.60 921.52

The interwell connectivity analysis, Tables 6 -
7, shows distinct communication patterns between
injection and production wells after CO: injection
in both CRMP and CRMIP models. In the CRMP
model in Table 6, interwell connectivity values
range from 0.000030 to 0.000063, with P3 having
the highest connectivity (0.000063 for Il and
0.000052 for 12). The CRMIP model (Table 7)
demonstrates similar magnitudes but different
distribution patterns, with P2 exhibiting the
strongest response to I1 (0.000063), while P1
shows higher connectivity to 12 (0.000046).

Regression Analysis - P1
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Figure 17. Comparison regression plot after CO, injection for Well Production (P1, P2, and P3)
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Regression Analysis - P3
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Time constant analysis shown in Table 8
indicates relatively consistent reservoir response
times across all wells, ranging from 915.66 to
927.17 days. The uniformity of time constants
(approximately 920 days) suggests homogeneous
reservoir properties and similar fluid flow
characteristics between injection and production
wells. P2 exhibits the longest time constant (927.17
days for I1), indicating a slightly slower pressure
response, whereas P1 shows the fastest response
(915.66 days for 12). These time constants reflect
the reservoir's capacity to transmit pressure signals
and provide insights into CO. migration patterns
and sweep efficiency in the enhanced oil recovery
process. This analysis aligns with established
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research on interwell connectivity modeling (W.
Wang et al., 2017 and CO: injection dynamics for
enhanced oil recovery.

Figure 17 presents the regression analysis
comparing CRMP and CRMIP model predictions
against actual production data for wells P1, P2, and
P3 after CO: injection. Well, P1 exhibits superior
predictive performance with R? = 0.7217 (CRMP)
and R? = 0.7219 (CRMIP), both achieving MAPE
of approximately 16%. The data points
demonstrate strong alignment with the perfect
match line across the entire production range (600 -
2000 bbl/day), indicating reliable model calibration
and accurate capture of production dynamics under
CO:-EOR conditions (Emera & Kalantari Dahaghi,
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2025. Wells P2 and P3 show moderate predictive
accuracy with lower R? values around 0.55 and
higher MAPE values of approximately 23%. Both
wells display similar scatter patterns with notable
deviations from the perfect match line, particularly
in the intermediate production range (1000 - 1600
bbl/day). This increased scatter suggests more
complex reservoir responses to CO: injection,
potentially due to heterogeneous fluid displacement
patterns, variable CO: breakthrough timing, or
localized reservoir compartmentalization (H. S.
Lee et al., 2021).

Figure 18 illustrates the three-dimensional
interwell connectivity map after CO-: injection,
revealing the spatial relationships and flow
communication between injection and production
wells (Ye et al, 2025). The visualization
demonstrates distinct connectivity patterns, with P1
centrally  positioned and receiving strong
contributions from both I1 and 12, consistent with
its superior regression performance (R > 0.72) (Ye
et al., 2025). Production wells P2 and P3, located

in the western and northern regions, respectively,
exhibit preferential connectivity to specific
injectors based on spatial proximity and reservoir
geometry (Sheng et al., 2021).

Connectivity pathways, indicated by directional
arrows, show that I1 has a stronger influence over
the western production zone (P2-P3), while 12 has
more distributed connectivity across the field (Wei
et al., 2025). The three-dimensional representation
incorporates depth variations, suggesting potential
gravitational  segregation effects on CO:
distribution (Wei et al., 2025).

This spatial connectivity analysis corroborates
the interwell connectivity coefficients presented in
Tables 6-7, providing geometric context for the
observed flow patterns (Ye et al., 2025). The
network topology confirms effective reservoir
sweep by CO: injection. However, varied
connectivity strengths explain the differential
production responses observed in the regression
analysis (Wei et al., 2025).
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Figure 18. 3D interwell connectivity after CO, Injection
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Figure 19 shows the Random Forest algorithm
performance for production forecasting across all
three wells following CO: injection (D. Fan et al.,
2025). The machine learning approach demonstrates
superior  predictive  accuracy compared to
conventional CRM methods, with R? values ranging
from 0.91 to 1.00 and MAPE below 2.5%. Well, P1
achieves near-perfect prediction (R?> = 1.00, MAPE =
0.93%), with history matching showing excellent
alignment between actual and predicted production

throughout the 20-year forecast period. Well P2

exhibits similarly strong performance (R* = 0.99,
MAPE = 1.88%), successfully capturing production
variability and decline trends (Z. Fan et al., 2024).
Well, P3 shows slightly reduced but still robust
accuracy (R? = 0.91, MAPE = 2.50%), with minor
deviations during production transition phases (D.
Fan et al., 2025). The regression plots confirm a tight
correlation between predicted and actual values
across the entire production range (600-2000 bbl/
day), with minimal scatter compared to CRMP/
CRMIP models (Z. Fan et al., 2024).
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Analysis Performance for Well P3

Evaluation: well Validation P3
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Figure 20 (a)

Figure 20 shows that the XGBoost algorithm
performance for production forecasting following
CO: injection, demonstrating exceptional predictive
accuracy across all production wells (D. Fan et al.,
2025). The model achieves near-perfect predictions
with R? values of 0.99-1.00 and remarkably low
MAPE ranging from 0.44% to 2.24%, representing
the best performance among all evaluated methods
(Xie et al., 2021). Well P1 exhibits the highest
accuracy (R? = 1.00, MAPE = 0.44%), with history
matching showing precise alignment between actual
and predicted production throughout the 20-year
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forecast horizon, accurately capturing
decline patterns (D. Fan et al., 2025).

stepwise

Well, P2 demonstrates similarly outstanding
performance (R* = 1.00, MAPE = 0.60%),
successfully ~ modeling  complex  production
fluctuations and transitions. Well, P3 shows robust
accuracy (R?* = 0.99, MAPE = 2.24%), though with
marginally higher prediction errors during specific
operational phases. The regression plots confirm tight
correlations over the entire production range (600-
2000 bbl/day), with minimal scatter compared to both
Random Forest and conventional CRM approaches.
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Model performance during waterflooding :
establishing the baseline

During the  waterflooding
Capacitance-Resistance

phase, the
models (CRMP and
CRMIP) demonstrated adequate performance in
matching historical data, with R? values ranging
from 0.72 to 0.79 and Mean Absolute Percentage
Error (MAPE) below 23%. This performance
that this simplified physics-based
approach is capable of capturing basic linear
production

indicates

valuable
qualitative insights into inter-well connectivity and
reservoir time constants (Gumiere et al., 2020).

trends and providing

However, the still significant error rate reveals the
limitations of CRM in modeling more complex
production fluctuations. In contrast, machine learning
models show a dramatic leap in accuracy (Makhotin &
Orlov, 2022). The Random Forest algorithm achieved
an R? of approximately 0.98 with a MAPE of 6%,
while XGBoost demonstrated exceptional performance
with near-perfect accuracy (R? between 0.99 and 1.00,
MAPE 0.44 — 2.24%) on both training and validation
data (Khanal, 2022). The absolute superiority of ML at
this stage proves its superior ability to learn the non
linear patterns inherent in waterflooding dynamics (D.
Fan et al., 2025) while also setting a high-performance
baseline for evaluation in more complex scenarios.
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Table 9. Comparative performance of CRM and machine learning models for production forecasting

Scenario Model Target Phase R? MAPE
CRMP/CRMIP History Matching 0.72-0.79 <23%

Waterflooding Random Forest History Matching ~0.98 ~6%
XGBoost History Matching 0.99 - 1.00 0-44% -

’ ) 2.24%

CRMP/CRMIP 20-Year Forecast 0.55-0.72 16% - 23%

0.93% -

CO: Injection Random Forest 20-Year Forecast 0.91-1.00 2.50%
0.44% -

XGBoost 20-Year Forecast 0.99 - 1.00 2.04%

The predictive challenge of CO: enhanced oil
recovery

The transition to the CO: injection scenario tests
the resilience of each model in dealing with non-
linear multi-phase flow dynamics (D. Fan et al.,
2025). Here, the fundamental limitations of the
CRM approach become very apparent. The
predictive performance of CRMP and CRMIP
declined significantly, with R? falling to the range
of 0.55 — 0.72 and MAPE remaining high at 16—
23%. This decline directly reflects the inability of
the linear assumptions and fixed parameters in
CRM to represent complex processes such as CO2-
oil miscibility, dynamic saturation changes, and
fluid mobility alterations (Hamadi et al., 2023).
The "step-wise" production patterns resulting from
the simulations, which reflect CO: breakthrough
and operational responses, fail to be captured by
these  continuous  analytical  formulations.
Meanwhile, machine learning models showed
impressive robustness (Du et al.,, 2024). Both
Random Forest and XGBoost maintained high
accuracy in 20-year long-term forecasting (Gao et
al., 2023). Random Forest achieved R? between
091 and 1.00 with MAPE below 2.5%, while
XGBoost again recorded the best performance with
near-perfect consistency (R? 0.99 — 1.00, MAPE
0.44 — 2.24%) (Gao et al., 2023).

The ability of these ensemble algorithms to
maintain high precision - even when trained on
waterflooding data and predicted on CO:-induced
reservoir response - confirms that they are not
merely memorizing data, but have learned a
fundamental representation that can be generalized
from reservoir behavior, including complex fluid
interactions (Li et al., 2022).
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Synthesis and implications for
forecasting practice

This comparative analysis leads to obvious
conclusions regarding the suitability of each
model’s application. CRM is a crucial technique
for physically interpretable initial connectivity
analysis in flood control, whereas ML provides
unmatched predictive precision for operational
optimization. However, for forecasting CO.-EOR
performance, the superiority of machine learning is
absolute (Gao et al., 2023). The degradation of
CRM performance under complex non-linear flow
conditions limits its usefulness as a standalone
forecasting tool. In contrast, the robustness and high
accuracy of ML models, particularly XGBoost, make
them the preferred methodology for reliable planning
and decision-making in CCUS projects (Gao et al.,
2023). As a result, the integrated framework
proposed in this study, where CRM provides an
initial  physical understanding of reservoir
connectivity that is then enriched and operationalized
by the predictive capabilities of machine learning,
represents a comprehensive and robust approach to
optimizing EOR implementation in heterogeneous
reservoirs (Li et al., 2022).

CONCLUSION

This study successfully establishes a robust
predictive framework for CO.-EOR performance
forecasting in heterogeneous reservoirs. The
analysis demonstrates that while Capacitance-
Resistance Models provide valuable, physically
interpretable insights into baseline interwell
connectivity, their predictive accuracy is
fundamentally limited under the complex, non-
linear dynamics of CO: flooding. In contrast,
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ensemble machine learning algorithms, particularly
XGBoost, demonstrate remarkable capability in
capturing these complex interactions, achieving
exceptional predictive accuracy (R* up to 1.00,
MAPE as low as 0.44%) that far surpasses

conventional CRM methods. The research
quantitatively  establishes the critical fluid-
mechanistic parameters governing CO2-EOR

success in the Volve Field, including a Minimum
Miscibility Pressure of 3299.68 psi and an oil
Swelling Factor of 1.19.

These parameters provide the physical foundation for
the substantial incremental recovery of 6.35 MMSTB
achieved in the 20-year CO: injection forecast,
representing a 67.7% improvement over conventional
waterflooding. However, the analysis also reveals
that the very mechanisms enabling this enhanced
recovery—miscibility and swelling—are
inherently pressure-dependent, which amplifies the
effects of reservoir heterogeneity and leads to
uneven sweep efficiency and early CO-
breakthrough. The integrated framework combines
physics-based models with machine learning to provide
a comprehensive approach to CO2-EOR forecasting. It
provides not only accurate production predictions but
also deeper insights into evolving connectivity patterns
and displacement mechanisms. This dual capability
enables better-informed operational decision-making
and strategy optimization for CCUS implementation in
complex, heterogeneous  reservoirs,  ultimately
contributing to both enhanced hydrocarbon recovery and
effective carbon management.
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