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ABSTRACT - This study evaluates an integrated forecasting framework that combines Capacitance-

Resistance Models (CRMP and CRMIP) with ensemble machine learning algorithms (Random Forest and 

XGBoost) to predict CO₂-Enhanced Oil Recovery performance in the heterogeneous Volve Field. Reservoir 

simulation is performed using tNavigator with CO₂ injection at 941 tons/day (35 MMSCF/day) over 20 

years. The results demonstrate the critical influence of CO₂-specific characteristics, with a determined 

Minimum Miscibility Pressure of 3299.68 psi and a corresponding oil Swelling Factor of 1.19. Machine 

learning models, particularly XGBoost, significantly outperformed conventional CRM methods, achieving 

exceptional accuracy (R² = 0.99-1.00, MAPE = 0.44 - 2.24%) compared to CRMP/CRMIP (R² = 0.55 - 

0.72, MAPE = 16-23%). The CO₂ injection scenario substantially enhanced oil recovery, achieving a 

cumulative production of 15.73 MMSTB (RF 20.45%) compared to 9.38 MMSTB (RF 12.19%) for 

waterflooding, representing a 67.7% improvement and incremental recovery of 6.35 MMSTB. Interwell 

connectivity analysis reveales dynamic reservoir responses with time constants ranging from 916 to 927 

days. The integration of physics-based models with non-linear machine learning algorithms significantly 

improves prediction accuracy while providing comprehensive insights into reservoir dynamics, allowing for 

optimal CCUS implementation in heterogeneous reservoir systems. 
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INTRODUCTION 

The global energy transition has compelled 

nations to formulate strategies that can 

substantially reduce greenhouse gas emissions 

while maintaining long-term energy security. 

Within the oil and gas sector, carbon capture, 

utilization, and storage (CCUS) has emerged as a 

pivotal technological pathway in addressing these 

dual imperatives (Núñez-lópez & Moskal, 2019 

(Qiao & Zhang 2025). The deployment of CO₂ as 

an injection agent in enhanced oil recovery (CO₂-

EOR) offers a particularly compelling dual 

advantage: it enables the geological sequestration 

of anthropogenic CO₂ while simultaneously 

enhancing hydrocarbon recovery in mature 

reservoirs (Alam et al., 2022) (Núñez-lópez & 

Moskal 2019). The physicochemical properties of 

CO₂, including its high solubility in hydrocarbons 

and its ability to reduce oil viscosity, represent 

significant potential for improving displacement 

efficiency and mobilizing residual oil (Alam et al., 

2022; Qiao & Zhang, 2025 and make CO₂-EOR a 

strategically important component of low-carbon 

reservoir management. 

Despite these advantages, the performance of 

CO₂-EOR is profoundly influenced by reservoir 

heterogeneity (Jiashun Luo et al., 2022). Features 

such as preferential flow pathways, strong 

permeability contrasts, and non-uniform fluid 

distributions frequently lead to inefficient sweep 

and premature CO₂ breakthrough, reducing 

recovery performance (Alam et al., 2022 (Jiashun 

Luo, 2022. A substantial body of research has 

attempted to understand these behaviors through 

numerical reservoir simulations and waterflood 

performance analyses, including the use of 

capacitance-resistance models (CRM) to infer 

interwell connectivity.  

Although CRM has demonstrated considerable 

utility during waterflooding operations, its prediction 

accuracy declines markedly under complex 

displacement regimes such as CO₂ flooding. In these 

environments, nonlinear system interactions and 

multiphase flow dynamics dominate and cannot be 

adequately captured by simplified analytical 

formulations. In contrast, machine learning methods 

have demonstrated strong capability in modeling 

nonlinear and high-dimensional behaviors (Du et al., 

2024; Gao et al., 2023), but many existing studies 

have applied these techniques in isolation, thus 

sacrificing the physical interpretability that remains a 

critical strength of CRM-based approaches. 

During the waterflooding phase, the present 

study employs a hybrid methodology that 

integrates CRM with decline curve analysis (DCA) 

to capitalize on the strengths of both approaches. 

CRM contributes insights into interwell 

connectivity and reservoir time constants, whereas 

DCA provides robust long-term production trend 

estimation. However, in transitioning to the CO₂ 

injection forecasting scenario, this hybrid 

configuration is no longer adopted. The 

fundamentally different flow behavior associated 

with CO₂ injection, characterized by miscibility 

effects, saturation evolution, and increased flow-

path complexity, renders conventional decline 

behavior invalid and diminishes the relevance of 

DCA. Consequently, CRM is applied without 

hybridization, and machine learning models are 

introduced as complementary tools to capture the 

nonlinear and dynamic nature of CO₂-induced 

reservoir response (Gao et al., 2023). 

To address these challenges, this study develops 

an integrated predictive framework that combines 

CRM, specifically, CRMP and CRMIP, with 

ensemble-based machine learning algorithms, 

namely Random Forest and XGBoost (Gao et al., 

2023. CRM provides an interpretable, physics-

informed representation of pressure propagation 

patterns and interwell connectivity, whereas 

machine learning contributes the capability to learn 

nonlinear dependencies inherent in CO₂ flooding 

processes (Du et al., 2024).  

The use of long-term reservoir simulation data 

further enables rigorous calibration and validation of 

the predictive models (Emera & Kalantari Dahaghi, 

2025, facilitating a detailed assessment of reservoir 

dynamic behavior, connectivity evolution, and 

incremental oil recovery potential under CO₂ 

injection. In summary, this study aims to establish a 

CO₂-EOR forecasting framework that delivers high 

predictive accuracy while preserving the physical 

interpretability essential for operational decision-

making. Furthermore, the findings are expected to 

provide greater insights into the evolution of 

interwell connectivity, reservoir pressure response, 
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and recovery performance during CO₂ injection. 

The resulting contributions serve as a scientifically 

grounded reference for designing and optimizing 

CCUS implementation strategies in highly 

heterogeneous reservoirs, as well as advancing 

methodological development in contemporary 

reservoir forecasting. 

 

METHODOLOGY 

All data in this study were processed and 

analyzed using the tNavigator reservoir simulator 

to determine the injection flow rate and production 

flow rate. We used the Python programming 

language to create CRM and Machine Learning 

models, and evaluated the performance of these 

models using theR2and MAPE. 

Capacitance resistance model (CRM) 

The mathematical model is known as the 

Capacitance Resistance Model (CRM) employs the 

principles of reservoir flow equations and material 

balance to predict the quantity of oil that will be 

released from the reservoir (De Holanda et al., 2018). 

CRMP: producer-based representation 

CRMP is a model that places producers at the 

center or focus of the model control system. In this 

scheme, production wells will be analyzed 

separately to achieve greater resolution (De 

Holanda et al., 2018. CRMP establishes a singular 

time constant (  ) for the drainage volume of each 

producer and a unique connectivity (f_ij) for each 

injection (i) and producer (j). Therefore, the 

continuity equation for producer j is expressed as 

follows: 

 

 

 

CRMIP: injector-producer based 

representation 

CRMIP is the most recent CRM model to 

consider reservoir heterogeneity. Heterogeneity in 

this model means different individual/pair 

parameters, assuming a single value for all 

(1) 

producers or reservoirs is unreliable (De Holanda 

et al., 2018). The Ordinary Differential Equation 

(ODE) for this pair-based volume control is written 

as follows:        

 

 

 

Decline curve analysis (DCA) 

The two fundamental difficulties in appraisal 

work are determining a well’s most probable future 

life and estimating its future production. The 

simplest and most readily available variable 

characteristic of a producing well is its production 

rate. Furthermore, the logical way to find an 

answer to the two problems mentioned above, by 

extrapolation, is to plot this variable production 

rate either against time or against cumulative 

production, extending the curves thus obtained to 

the economic limit (Arps, n.d.). 

The CRM results for predicting this volatility 

model are not very good. To aid in better predicting 

how the flow rate would behave, CRM will be 

integrated with DCA. The model utilized in DCA 

is Exponential ARPs, which is as follows:  

 

 

Machine Learning  

Two ensemble learning algorithms are used as 

the main prediction. Random Forest is an advanced 

decision tree technique that can be applied for 

classification or regression. It also belongs to the 

ensemble learning family. A decision tree is an 

easy-to-use method because of its clear structure 

(Hidayat & Astsauri, 2021. XGBoost is considered 

the most powerful algorithm for building 

prediction models (Erfando & Khariszma, 2023. 

The data set is split into two parts: 80% for 

training and 20% for testing. The hyperparameters 

for both models are determined using techniques 

such as Grid Search and Random Search. 

Integrated CCUS simulation 

The sandstone reservoir selected for CO₂ 

injection has significant water content and a decline 

(2) 

(2) 
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 Parameters Value Unit  

 Original Oil in Place 76.9942 MMSTB  

 Original Water in Place 697.7655 MMSTB  

 Original Gas in Place 55.2871 MMSCF  

 Pore Volume 794.7169 Million RB  

 

in oil production rate during the water injection 

period in the secondary recovery phase. Therefore, 

tertiary recovery is required to increase the RF 

value with CO₂ injection. CO₂ injection selection is 

determined by fracture gradient, specifically 

utilizing an injection rate of 941 tons/day (35 

MMSCF). 

Reservoir simulations using tNavigator reveal 

MMP values in the field. This means that the 

injection rate remains constant and does not 

make the reservoir pressure similar to the BHP 

of the injection well. If the reservoir pressure 

equals the injection well's BHP, the injection 

rate decreases. 

RESULTS AND DISCUSSION 

In this study, the Volve field model was 

initialized and simulated using tNavigator, with the 

history matching process taking place between 

early 2015 and 2024. The water injection paradigm 

was modified to carbon dioxide (CO₂) injection, 

which was carried out for 20 years. Injection was 

continuous, and the flow rate was kept consistent 

by maintaining reservoir pressure, which differed 

from the pressure inside the well. 

 

 

 

 

Figure 1 shows how the permeability 

distribution is represented. In general, the model's 

permeability distribution is very uneven.  

The permeability values range from less than 1 

mD (blue) to more than 1500 mD (bright red). The 

orange and red colors indicate that most of the 

reservoir region has good to very good permeability. 

Table 1. Initialization of the volve field model 

 

Figure 1. Permeability distribution on the volve field 
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The reservoir model was validated by 

modifying eight years of historical production 

data, with the results shown in Figure 2. There is 

a great visual match between the simulation 

results (solid line) and the historical data 

(markers), indicating that the model accurately 

depicts how the reservoir works. 

Analysis History Matching and Validation 

Models, Hybrid CRM-DCA vs Machine 

Learning for Waterflooding. 

To verify the accuracy of the model at each 

level, we compared the hybrid model predictions 

to actual production data from three main wells, 

as shown in Figure 3. In general, the model 

performed well in replicating complex and 

variable production behavior. This aligns with 

 
Figure 2. Liquid rate vs oil rate plot 

the research conducted by (Saraiva et al., 2014, 

which employed a multi-Hubbert model to 

forecast crude oil production in Brazil, 

effectively capturing production changes with 

considerable precision. The model's validity was 

quantitatively assessed using the Coefficient of 

Determination (R²), which attained a value of 

0.79, along with a low Mean Absolute 

Percentage Error (MAPE), signifying a robust 

correlation between the anticipated and actual 

data.  

A high R2 value is a crucial measure of 

model reliability. This result is consistent with 

the forecasting model evaluation standards used 

in the oil and gas business, as applied by 

(Chavez-Rodriguez et al., 2015 in their analysis 

of Peruvian oil production. 
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Figure 3 (c)                                                                                                                 
Figure 3. Plot comparison hybrid for well production (P1, P2, and P3) 

Figure 3 (a) 

Figure 3 (b) 
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 Production 

well 

Injection Well  

 I1 I2  

 P1 32 30.55  

 P2 30.86 30.54  

 P3 30 30  

 

 

 

 

 

 
Production 

well 

Injection well Time 

constant 

(τ) days 

 

 I1 I2  

 P1 0.0066 0.0098 30  

 P2 0.019 0.011 30  

 P3 0.0066 0.0098 30  

 

 Production 

well 

Injection well  

 I1 I2  

 P1 0.0094 0.0064  

 P2 0.0191 0.0109  

 P3 0.0067 0.0099  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 shows the quantitative parameters of the 

CRMP model, offering a comprehensive understanding 

of the connection across wells in water injection 

operations (De Holanda et al., 2018. These results reveal 

that Injector_I1 has the biggest effect on production well 

P2 (f_ij 0.019), making it the injector-producer pair with 

the best connectivity (Shabani et al., 2020). 

Table 4. Time constant for CRMIP 

Table 2. Interwell connectivity and time constant CRMP 

Table 3. Interwell connectivity for CRMIP 

In contrast, Injector I2 offers higher pressure support 

for wells P1 and P3, highlighting reservoir variability 

and the intricacies of subsurface flow pathways 

(Salehian & Çýnar, 2019).  

Table 3 shows all the parameters from the CRMIP 

model that can be used to find the unique time constants 

for each pair of injectors and producers. This method is 

consistent with the capacitance-resistance model 

methodology, which is effective in examining inter-well 

connections (Moreno & Lake, 2014). 

Table 4 demonstrates substantial results, indicating 

that despite fluctuations, the time constant remained 

consistently within the range of 30-32 days. This 

relatively consistent time constant means that the 

reservoir's transmissibility and compressibility qualities 

are nearly identical throughout the research area (D. 

Wang et al., 2019). 

Figure 4 shows that Injector_I1 is the most 

important injection well in this area, since it is closely 

connected to all three production wells (P1, P2, and 

P3). This means that Injector_I1 provides the highest 

pressure support in this area. In contrast, the majority 

of Injector_I2's connections go to well P1, giving it a 

more localized effect. 

This connectivity map is a key part of making an 

effective injection plan and getting the most out of the 

sweep. According to (Ahmed 2007), the several ways 

that wells are connected directly affect the sweep pattern; 

hence, it is very important to understand this in 

order to optimize. 

Figure 4. Interwell connectivity with 3D map  
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Comparison Regression Plot for Well P1 

The results in Figure 5 show that both model 

variants (CRMP+DCA and CRMIP+DCA) function 

very well and are almost identical. This is evidenced 

by the consistently high Coefficient of Determination 

(R²) values, ranging from 0.72 to 0.79, which means 

that the model is able to explain more than 72% of 

the variation in production data. In addition, the 

relatively low Mean Absolute Percentage Error 

(MAPE) value (below 23%) confirms that the 

model's prediction error rate is acceptable. 

Figure 5 (a)                                                                                        

Figure 5 (b)                                                                                        

Comparison Regression Plot for Well P2 

CRMP+DCA 

R2=0.72,  MAPE=22.21% 

CRMP+DCA 

R2=0.72,  MAPE=22.30% 

https://doi.org/10.29017/scog.v48i4.404
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Figure 5 (c)                                                                                                                 
Figure 5. Comparison Regression Plot for Well Production (P1, P2, and P3) 

 

In general, this regression graph provides strong 

statistical evidence that the hybrid model developed 

can accurately predict things at the level of single 

wells. This result corroborates the studies conducted 

by Chicco et al (2021) which underscores that R² is a 

more relevant and dependable metric than MAPE for 

assessing regression model performance, particularly 

in scientific and industrial settings. 

Figure 6 displays the results of the performance study 

of the Random Forest model based on machine learning. 

The model accurately predicts production rates, with an 

R² value of 0.98 and an MAPE of approximately 6%. 

This performance is similar to other studies 

demonstrating the efficacy of Random Forest in 

predicting reservoir parameters, as evidenced by 

(Rhamadhani et al., 2023, who attained an R² of 0.974 

for oil production forecasting. 

Figure 6 (a) 

CRMP+DCA 

R2=0.79,  MAPE=18.87% 

CRMP+DCA 

R2=0.79,  MAPE=18.82% 

Comparison Regression Plot for Well P3 

Analysis performance for Well P1 

History Matching : Well Training P1   
R2 = 0.98 | MAPE = 6.17% 

Regression Plot                                        
R2 = 0.98 | MAPE = 6.17% 
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 Figure 6 (c)                                                                                                                 
Figure 6. Analysis Random Forest for Well Production (P1, P2, and P3) 

Figure 6 (b) 

The most important part of this analysis is how well 

the model works on both the training data (Wells P1 and 

P2) and validation data (Well P3). The model's ability to 

produce accurate predictions on previously unseen data 

suggests that it is not overfit and has good 

generalizability. According to the author, machine 

learning methods can improve predictions with an R² 

close to 0.80. 

Figure 7 shows the data used for training (Wells 

P1 and P2). The XGBoost model fit quite flawlessly, 

with a Coefficient of Determination (R²) = 1.00 and a 

Mean Absolute Percentage Error (MAPE) of less than 

0.6%. This excellent result is consistent with what other 

studies’ findings about XGBoost's potential to be very 

accurate. However, the true validation lies in the model's 

performance on previously unseen data. On the 

validation data (Well P3), the model was able to 

maintain its outstanding performance with R² = 0.99 and 

MAPE = 0.86%. This very high consistency in 

performance between the training and validation data 

https://doi.org/10.29017/scog.v48i4.404
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Figure 7 (c)                                                                                                                 

Figure 7. Analysis XGBoost for Well Production (P1, P2, dan P3) 

Figure 7 (a) 

Figure 7 (b) 
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convincingly proves that the model is not overfit and has 

very strong generalization capabilities. This finding is 

corroborated by (Fajrul Haqqi et al., 2023, who found 

that variations in XGBoost training and testing exhibited 

no signs of overfitting, and by (Asnawi et al., 2024, who 

validated that the XGBoost model showed no systematic 

bias, with prediction errors evenly distributed. The 

regression graph displays data points grouped in an 

almost perfect straight line, indicating that this XGBoost 

model is accurate and reliable enough to predict 

production. This advantage is in line with the many 

successful applications of XGBoost in various situations. 

Forecast for CO₂ injection 

The liquid-volume versus pressure plot, Figure 

8, provides direct quantification of a key CO₂-EOR 

mechanism: oil swelling due to CO₂ dissolution. At 

the constant reservoir temperature of 224.6°F, the 

curve exhibits a characteristic hump. The initial oil 

volume at high pressure (~4000 psi) is 

approximately 1.05 RB. As pressure decreases into 

the miscible region near the defined MMP of 

3299.68 psi, the volume swells to a maximum of 

1.25 RB. The ratio of these volumes defines 

the Swelling Factor = 1.19, confirming that the oil 

undergoes a 19% volumetric expansion. This 

physical swelling exerts an internal driving force 

that helps mobilize residual oil by reducing 

capillary trapping and lowering residual oil 

saturation (Sugihardjo 2009). 

This quantified mechanism has important field 

implications: while it underpins the substantial 

incremental recovery (6.35 MMSTB), its pressure-

dependent nature also explains the uneven sweep 

efficiency observed in the simulation. Optimal 

swelling and recovery occur only in areas where 

pressure remains above the MMP, inherently 

amplifying the effects of reservoir heterogeneity and 

resulting in the channeling and early breakthrough 

patterns visualized in Figures 14 and 15. 

 

Figure 8.  CO₂ induced oil swelling behavior at reservoir temperature (224.6°F) 

https://doi.org/10.29017/scog.v48i4.404
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Figure 9 shows the concentration of CO₂ in the 

oil phase as a function of pressure for the Volve 

Field fluid composition. The inflection point (or 

sharp increase) in the curve, indicated by the 

vertical dashed line, defines the MMP at 3299.68 

psi. Pressures above this threshold enable first-

contact or multi-contact miscibility, leading to a 

significant reduction in interfacial tension and oil 

saturation residual—the core mechanism driving 

the enhanced recovery in the forecasted CO₂-EOR 

scenario (Sugihardjo 2009). 

The physical and chemical characteristics of 

CO₂ differ from those of water, influencing 

displacement mechanisms and sweep efficiency 

during EOR operations. Unlike water, CO₂ exhibits 

 

Figure 9. Determination of minimum miscibility pressure (MMP) 

miscibility with crude oil above the Minimum 

Miscibility Pressure (MMP), reducing interfacial 

tension and oil viscosity and enhancing 

microscopic displacement efficiency. Furthermore, 

CO₂ dissolution induces oil swelling, as quantified 

by the Swelling Factor of 1.19, which further 

mobilizes residual oil. However, the higher 

mobility of CO₂ relative to oil and water typically 

leads to unfavorable mobility ratios, promoting 

viscous fingering and early breakthrough—

phenomena not observed in waterflooding. These 

characteristics necessitate different operational 

strategies, such as WAG (Water-Alternating-Gas) 

injection or mobility control agents, to mitigate 

channeling and improve volumetric sweep in 

heterogeneous formations (Sugihardjo 2009). 
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Figure 10 shows the gas injection scenario for 

reservoir performance forecasting. Waterflooding 

before 2025, followed by a constant rate of 941 

tons/day (35 MMSCF) beginning in early 2025 and 

lasting 20 years until 2044.  

This stable rate control scenario simulates gas 

flooding impacts on oil production enhancement 

and reservoir pressure maintenance (Orin et al., 

2025). The approach enables comprehensive 

evaluation of enhanced oil recovery through 

controlled, long-term gas injection simulation 

(Khurshid & Afgan 2021). 

 

Figure 10. Injection rates of CO₂ for 2 wells of injection 

The forecasting results demonstrate the 

effectiveness of gas injection EOR initiated in early 

2025. Total field production was successfully 

stabilized at high levels, proving the gas injection 

scenario's success (Kristanto et al., 2025). Well P-F

-12 (P2) shows significant improvement with stable 

production at 550 STB/day, while wells P-F-11B 

(P1) and P-F-14 (P3) continue declining. This 

contrasted response confirms reservoir heterogeneity 

and uneven gas sweep efficiency (Ramadhan et al., 

2023). The injected gas flows through preferential 

pathways to P-F-12, while other well areas lack 

adequate pressure support (Shafiei et al., 2024). 

https://doi.org/10.29017/scog.v48i4.404
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Figure 12 effectively quantifies the benefits of 
implementing CO2 injection projects compared to 
continuing existing Waterflooding scenarios. This 
approach is supported by research demonstrating 
that CO2 injection significantly enhances oil 
recovery compared to conventional Waterflooding 
methods (Alam et al., 2022). The graph indicates 
that after 2025, the CO2 injection scenario (orange) 
results in significantly higher daily production 
rates, as evidenced by the steeper slope of its curve.  

This improvement aligns with studies demonstrating 
that CO2 injection can achieve oil recovery rates of 68-
73% of original oil-in-place, substantially 
outperforming conventional Waterflooding (Alam et al., 
2022). While the continued Waterflooding scenario 
(red) would only reach a total cumulative production 
of approximately 9.38 MMstb, the CO2 injection 
scenario is projected to reach 15.73 MMstb over the 
same period. 

 

 

Figure 11. Oil rates for the field and 3-well Producers 

Figure 12. Oil Total during CO₂ Injection and Waterflooding 
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Figure 13  shows the field average pressure 
profile, which clearly illustrates three phases: 
initial depletion until 2024, followed by very rapid 
re-pressurization due to injection, and ending 
with a new long-term decline phase. This profile 
demonstrates that while the intervention 
scenario successfully and significantly increased 
reservoir energy initially, it was insufficient to 
maintain pressure permanently over the course 
of production time. 

This three-phase pressure behavior is supported 
by research findings, which revealed that injection 
strategies can effectively restore reservoir pressure 

in the short term (S. Lee et al., 2023), and rapid 
pressure restoration can occur following hydraulic 
stimulation (S. Lee et al., 2023). 

Figure 14 shows the final oil saturation map that 
visually demonstrates the presence of uneven 
sweep efficiency. Zones with low oil saturation 
(blue/green) indicate areas successfully swept by 
gas injection, particularly around the injector and 
toward well P-F-12. However, extensive areas with 
high oil saturation (yellow/orange) show 
significant bypassed oil volumes, highlighting the 
impact of reservoir heterogeneity on EOR project 
performance (Ramadhan et al., 2023) 

 

 

Figure 13. Reservoir pressure of the end CO₂ injection 

Figure 14. Oil saturation of the end simulation CO₂ injection 
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Scenario 

Oil cumulative 

(MMSTB) 
RF % 

 

 Waterflooding 9.38 12.19  

 CO₂ Injection 15.73 20.45  

 

 

 

 

 

This visualization effectively illustrates how 

reservoir heterogeneity causes preferential flow paths 

during gas injection, resulting in incomplete oil 

displacement (Fang et al., 2024. The heterogeneous 

reservoir with different permeability zones leads to 

varying sweep efficiency, where some areas 

experience effective fluid displacement while others 

remain largely untouched, demonstrating the 

fundamental challenge of achieving uniform oil 

recovery in complex geological formations 

(Telmadarreie & Trivedi 2020). 

Figure 15 illustrates highly non-uniform CO₂ 

breakthrough profiles among production wells, 

indicating reservoir heterogeneity. Wells P-F-14 

(green) and P-F-12 (orange) exhibit very rapid and 

large breakthroughs, indicating the presence of 

thief zones that reduce injection efficiency. 

Meanwhile, well P-F-11B (red) remains mostly 

unchanged, indicating very poor connectivity. This 

data is crucial for evaluating uneven CO₂ sweep 

efficiency (Fang et al., 2024).  

High reservoir heterogeneity can lead to early 

CO₂ breakout and flooding, particularly as the 

standard deviation increases, resulting in small 

sweep regions. Gas channeling and low sweep 

efficiency are common challenges in highly 

heterogeneous reservoirs (Fang et al., 2024). 

 

 

 

Table 5 concisely compares the final results of 

the two development scenarios. The results 

definitively demonstrate that the CO2 injection 

scenario is far superior, with total cumulative oil 

production reaching MMSTB (RF 20.45%) 

compared to Waterflooding, which only achieved 

9.38 MMSTB (RF 12.19%). The implementation 

of this EOR project successfully provided an 

incremental oil recovery of 6.35 MMSTB. 

Table 5. Compare Waterflooding vs CO₂ Injection 

 

Figure 15. Production CO₂ mass rate  
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Analysis history matching and validation 

models, CRM vs machine learning after forecast 

CO₂ injection 

Figure 16 shows the production rate prediction 

results for wells P1, P2, and P3 using the Capacitance 

Resistance Model (CRMP) and Capacitance 

Resistance Model with Injection Producers (CRMIP) 

methods for the 2024-2045 time periods.  

Well, P1 demonstrates the best prediction 

performance with R² values of 0.722 and MAPE of 

16.1% for both models, indicating good accuracy in 

capturing the production decline trend from ~2000 

bbl/day to ~600 bbl/day. Meanwhile, wells P2 and 

P3 exhibit lower prediction performance with R² 

around 0.55 and MAPE ~23%, showing challenges 

in modeling more complex production fluctuations 

in both wells (Fu et al., 2022). 

 

 

Figure 16 (a) 

Figure 16 (b) 
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Figure 16 (c)                                                                                                                
Figure 16. Prediction CRM after CO₂ injection 

 

Both models (CRMP and CRMIP) show nearly 

identical performance across all three wells, with 

very small metric differences. The step-wise 

patterns in actual production data indicate 

operational changes or well interventions that 

affected production rates throughout the 

observation period (Fu et al., 2022). These results 

align with the established understanding that 

capacitance-resistance models are semi-analytical 

methods designed to estimate production rates 

based on historical production and injection data 

using material balance and signal correlations 

between injectors and producers (Fu et al., 2022. 

The interwell connectivity coefficients and time 

constants presented in Tables 2-4 were derived 

from historical waterflooding data using CRM. 

These parameters define the baseline geological 

connectivity for the reservoir, representing the 

preferential flow paths established by the static 

permeability field and reservoir architecture. 

Although the absolute values of connectivity may 

evolve during CO₂ injection due to changes in fluid 

mobility and potential geochemical reactions, 

the relative connectivity hierarchy between well 

pairs is expected to remain stable. The most 

conductive pathways identified during 

waterflooding (I1→P2) are likely to become the 

dominant conduits for CO₂ flow, resulting in early 

breakthrough in the same wells. Furthermore, the 

relatively uniform time constants observed during 

waterflooding indicate a well-connected reservoir 

compartment, providing a calibrated reference for 

pressure transmission dynamics. This baseline 

connectivity is essential for initializing and 

interpreting the more complex CO₂ injection 

forecast, as it grounds the predictive models in the 

historically validated flow geometry of the field. 

It is important to note that this baseline 

connectivity assumes no significant alteration of 

the pore structure during CO₂ injection. In 

reality, dynamic processes such as CO₂-induced 

wettability alteration and mineral dissolution/

precipitation could modify the effective 

permeability along flow paths over time. The 

simulation results in Figure 12, the oil saturation 

map indicates uneven sweep, which may be a 

consequence of both this static baseline 

heterogeneity and is amplified by these dynamic 

effects. Therefore, the waterflooding-based 

connectivity should be interpreted as the initial 

condition for the CO₂ flood. The forecasted 

production profiles and the updated connectivity 

analysis after the CO₂ injection period, as shown in 

Tables 6 - 8, reflect how these initial pathways 
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Table 7. Interwell Connectivity after                              
CO₂ Injection CRMIP 

 Production 

well 

Injection well  

 I1 I2  

 P1 915.83 915.66  

 P2 927.17 926.26  

 P3 921.60 921.52  

 

 

 

 

 

 Production 

well 

Injection well  

 I1 I2  

 P1 0.000038 0.000046  

 P2 0.000063 0.000004  

 P3 0.000054 0.000066  

 

 

 

 

 

 
Production 

Well 

Injection Well Time 

Constant 

(τ) Days 

 

 I1 I2  

 P1 0.000036 0.000030 1358.83  

 P2 0.000228 0.000030 1464.74  

 P3 0.000063 0.000052 1554.69  

 

 

 

 

 

influence the eventual CO₂ sweep pattern and 

where dynamic effects might have played a role. 

The interwell connectivity parameters derived 

from waterflooding history (Tables 2 – 4) serve as 

a geologically grounded baseline for initializing 

CO₂ injection forecasts. This approach is justified 

because connectivity during waterflooding reflects 

the static permeability field and reservoir 

architecture, which remain unchanged at the onset 

of CO₂ injection. While fluid mobility and relative 

permeability alter during CO₂ flooding, the 

preferential flow paths identified during 

waterflooding are expected to dominate early CO₂ 

migration. This assumption is supported by the 

consistent time constants observed (≈30 days), 

indicating a stable pressure transmission 

framework. Consequently, waterflooding 

connectivity provides a physically interpretable 

starting point for forecasting, from which dynamic 

effects such as miscibility, swelling, and mobility 

contrasts can be superimposed to predict CO₂-

specific responses (Fu et al., 2022. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The interwell connectivity analysis, Tables 6 - 

7, shows distinct communication patterns between 

injection and production wells after CO₂ injection 

in both CRMP and CRMIP models. In the CRMP 

model in Table 6, interwell connectivity values 

range from 0.000030 to 0.000063, with P3 having 

the highest connectivity (0.000063 for I1 and 

0.000052 for I2). The CRMIP model (Table 7) 

demonstrates similar magnitudes but different 

distribution patterns, with P2 exhibiting the 

strongest response to I1 (0.000063), while P1 

shows higher connectivity to I2 (0.000046).  

Table 6. Interwell Connectivity and Time Constant after 
CO₂ Injection CRMP 

Table 8. Time Constant after CO₂ Injection CRMIP 

 

Figure 17. Comparison regression plot after CO₂ injection for Well Production (P1, P2, and P3) 
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Time constant analysis shown in Table 8 

indicates relatively consistent reservoir response 

times across all wells, ranging from 915.66 to 

927.17 days. The uniformity of time constants 

(approximately 920 days) suggests homogeneous 

reservoir properties and similar fluid flow 

characteristics between injection and production 

wells. P2 exhibits the longest time constant (927.17 

days for I1), indicating a slightly slower pressure 

response, whereas P1 shows the fastest response 

(915.66 days for I2). These time constants reflect 

the reservoir's capacity to transmit pressure signals 

and provide insights into CO₂ migration patterns 

and sweep efficiency in the enhanced oil recovery 

process. This analysis aligns with established 

 

 

research on interwell connectivity modeling (W. 

Wang et al., 2017 and CO₂ injection dynamics for 

enhanced oil recovery. 

Figure 17 presents the regression analysis 

comparing CRMP and CRMIP model predictions 

against actual production data for wells P1, P2, and 

P3 after CO₂ injection. Well, P1 exhibits superior 

predictive performance with R² = 0.7217 (CRMP) 

and R² = 0.7219 (CRMIP), both achieving MAPE 

of approximately 16%. The data points 

demonstrate strong alignment with the perfect 

match line across the entire production range (600 - 

2000 bbl/day), indicating reliable model calibration 

and accurate capture of production dynamics under 

CO₂-EOR conditions (Emera & Kalantari Dahaghi, 
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2025. Wells P2 and P3 show moderate predictive 

accuracy with lower R² values around 0.55 and 

higher MAPE values of approximately 23%. Both 

wells display similar scatter patterns with notable 

deviations from the perfect match line, particularly 

in the intermediate production range (1000 - 1600 

bbl/day). This increased scatter suggests more 

complex reservoir responses to CO₂ injection, 

potentially due to heterogeneous fluid displacement 

patterns, variable CO₂ breakthrough timing, or 

localized reservoir compartmentalization (H. S. 

Lee et al., 2021). 

Figure 18 illustrates the three-dimensional 

interwell connectivity map after CO₂ injection, 

revealing the spatial relationships and flow 

communication between injection and production 

wells (Ye et al., 2025). The visualization 

demonstrates distinct connectivity patterns, with P1 

centrally positioned and receiving strong 

contributions from both I1 and I2, consistent with 

its superior regression performance (R² > 0.72) (Ye 

et al., 2025). Production wells P2 and P3, located 

in the western and northern regions, respectively, 

exhibit preferential connectivity to specific 

injectors based on spatial proximity and reservoir 

geometry (Sheng et al., 2021). 

Connectivity pathways, indicated by directional 

arrows, show that I1 has a stronger influence over 

the western production zone (P2-P3), while I2 has 

more distributed connectivity across the field (Wei 

et al., 2025). The three-dimensional representation 

incorporates depth variations, suggesting potential 

gravitational segregation effects on CO₂ 

distribution (Wei et al., 2025).  

This spatial connectivity analysis corroborates 

the interwell connectivity coefficients presented in 

Tables 6-7, providing geometric context for the 

observed flow patterns (Ye et al., 2025). The 

network topology confirms effective reservoir 

sweep by CO₂ injection. However, varied 

connectivity strengths explain the differential 

production responses observed in the regression 

analysis (Wei et al., 2025). 

Figure 18. 3D interwell connectivity after CO₂ Injection 

https://doi.org/10.29017/scog.v48i4.404


Comparative Analysis of Capacitance-Resistance Models and Machine Learning for CO2-Eor Production Forecasting:   

A Case Study of Dynamic Connectivity in Heterogeneous Reservoir (Rafsanjani et al.) 

 

DOI org/10.29017/scog.v48i4.1930 .I 455 

Figure 19 shows the Random Forest algorithm 

performance for production forecasting across all 

three wells following CO₂ injection (D. Fan et al., 

2025). The machine learning approach demonstrates 

superior predictive accuracy compared to 

conventional CRM methods, with R² values ranging 

from 0.91 to 1.00 and MAPE below 2.5%. Well, P1 

achieves near-perfect prediction (R² = 1.00, MAPE = 

0.93%), with history matching showing excellent 

alignment between actual and predicted production 

throughout the 20-year forecast period. Well P2 

exhibits similarly strong performance (R² = 0.99, 

MAPE = 1.88%), successfully capturing production 

variability and decline trends (Z. Fan et al., 2024). 

Well, P3 shows slightly reduced but still robust 

accuracy (R² = 0.91, MAPE = 2.50%), with minor 

deviations during production transition phases (D. 

Fan et al., 2025). The regression plots confirm a tight 

correlation between predicted and actual values 

across the entire production range (600-2000 bbl/

day), with minimal scatter compared to CRMP/

CRMIP models (Z. Fan et al., 2024). 

 

 

Figure 19 (a) 

Figure 19 (b) 



Scientific Contributions Oil & Gas, Vol. 48. No. 4, December 2025: 433 -  462 

 

456 I DOI org/10.29017/scog.v48i4.1930 . 

 Figure 19 (c)                                                                                                                
Analysis Random Forest for Well Production after CO₂ injection (P1, P2, and P3) 

Figure 20 shows that the XGBoost algorithm 

performance for production forecasting following 

CO₂ injection, demonstrating exceptional predictive 

accuracy across all production wells (D. Fan et al., 

2025). The model achieves near-perfect predictions 

with R² values of 0.99-1.00 and remarkably low 

MAPE ranging from 0.44% to 2.24%, representing 

the best performance among all evaluated methods 

(Xie et al., 2021). Well P1 exhibits the highest 

accuracy (R² = 1.00, MAPE = 0.44%), with history 

matching showing precise alignment between actual 

and predicted production throughout the 20-year 

forecast horizon, accurately capturing stepwise 

decline patterns (D. Fan et al., 2025). 

Well, P2 demonstrates similarly outstanding 

performance (R² = 1.00, MAPE = 0.60%), 

successfully modeling complex production 

fluctuations and transitions. Well, P3 shows robust 

accuracy (R² = 0.99, MAPE = 2.24%), though with 

marginally higher prediction errors during specific 

operational phases. The regression plots confirm tight 

correlations over the entire production range (600-

2000 bbl/day), with minimal scatter compared to both 

Random Forest and conventional CRM approaches. 

 Figure 20 (a) 
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Figure 20 (b) 

 Figure 20 (c) 

Model performance during waterflooding : 

establishing the baseline 

During the waterflooding phase, the 

Capacitance-Resistance models (CRMP and 

CRMIP) demonstrated adequate performance in 

matching historical data, with R² values ranging 

from 0.72 to 0.79 and Mean Absolute Percentage 

Error (MAPE) below 23%. This performance 

indicates that this simplified physics-based 

approach is capable of capturing basic linear 

production trends and providing valuable 

qualitative insights into inter-well connectivity and 

reservoir time constants (Gumiere et al., 2020). 

 However, the still significant error rate reveals the 

limitations of CRM in modeling more complex 

production fluctuations. In contrast, machine learning 

models show a dramatic leap in accuracy (Makhotin & 

Orlov, 2022). The Random Forest algorithm achieved 

an R² of approximately 0.98 with a MAPE of 6%, 

while XGBoost demonstrated exceptional performance 

with near-perfect accuracy (R² between 0.99 and 1.00, 

MAPE 0.44 – 2.24%) on both training and validation 

data (Khanal, 2022). The absolute superiority of ML at 

this stage proves its superior ability to learn the non-

linear patterns inherent in waterflooding dynamics (D. 

Fan et al., 2025) while also setting a high-performance 

baseline for evaluation in more complex scenarios. 
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 Scenario Model Target Phase R² MAPE  

 

Waterflooding 

CRMP/CRMIP History Matching 0.72 – 0.79 < 23%  

 Random Forest History Matching ~0.98 ~6%  

 
XGBoost History Matching 0.99 – 1.00 

0.44% - 

2.24% 

 

 

CO2 Injection 

CRMP/CRMIP 20-Year Forecast 0.55 – 0.72 16% - 23%  

 
Random Forest 20-Year Forecast 0.91 – 1.00 

0.93% - 

2.50% 

 

 
XGBoost 20-Year Forecast 0.99 – 1.00 

0.44% - 

2.24% 

 

 

 

 

 

 

The predictive challenge of CO₂ enhanced oil 

recovery 

The transition to the CO₂ injection scenario tests 

the resilience of each model in dealing with non-

linear multi-phase flow dynamics (D. Fan et al., 

2025). Here, the fundamental limitations of the 

CRM approach become very apparent. The 

predictive performance of CRMP and CRMIP 

declined significantly, with R² falling to the range 

of 0.55 – 0.72 and MAPE remaining high at 16–

23%. This decline directly reflects the inability of 

the linear assumptions and fixed parameters in 

CRM to represent complex processes such as CO₂-

oil miscibility, dynamic saturation changes, and 

fluid mobility alterations (Hamadi et al., 2023). 

The "step-wise" production patterns resulting from 

the simulations, which reflect CO₂ breakthrough 

and operational responses, fail to be captured by 

these continuous analytical formulations. 

Meanwhile, machine learning models showed 

impressive robustness (Du et al., 2024). Both 

Random Forest and XGBoost maintained high 

accuracy in 20-year long-term forecasting (Gao et 

al., 2023). Random Forest achieved R² between 

0.91 and 1.00 with MAPE below 2.5%, while 

XGBoost again recorded the best performance with 

near-perfect consistency (R² 0.99 – 1.00, MAPE 

0.44 – 2.24%) (Gao et al., 2023).  

The ability of these ensemble algorithms to 

maintain high precision - even when trained on 

waterflooding data and predicted on CO₂-induced 

reservoir response - confirms that they are not 

merely memorizing data, but have learned a 

fundamental representation that can be generalized 

from reservoir behavior, including complex fluid 

interactions (Li et al., 2022). 

Synthesis and implications for                    

forecasting practice 

This comparative analysis leads to obvious 

conclusions regarding the suitability of each 

model’s application. CRM is a crucial technique 

for physically interpretable initial connectivity 

analysis in flood control, whereas ML provides 

unmatched predictive precision for operational 

optimization. However, for forecasting CO₂-EOR 

performance, the superiority of machine learning is 

absolute (Gao et al., 2023). The degradation of 

CRM performance under complex non-linear flow 

conditions limits its usefulness as a standalone 

forecasting tool. In contrast, the robustness and high 

accuracy of ML models, particularly XGBoost, make 

them the preferred methodology for reliable planning 

and decision-making in CCUS projects (Gao et al., 

2023). As a result, the integrated framework 

proposed in this study, where CRM provides an 

initial physical understanding of reservoir 

connectivity that is then enriched and operationalized 

by the predictive capabilities of machine learning, 

represents a comprehensive and robust approach to 

optimizing EOR implementation in heterogeneous 

reservoirs (Li et al., 2022). 

 

CONCLUSION 

This study successfully establishes a robust 

predictive framework for CO₂-EOR performance 

forecasting in heterogeneous reservoirs. The 

analysis demonstrates that while Capacitance-

Resistance Models provide valuable, physically 

interpretable insights into baseline interwell 

connectivity, their predictive accuracy is 

fundamentally limited under the complex, non-

linear dynamics of CO₂ flooding. In contrast, 

Table 9. Comparative performance of CRM and machine learning models for production forecasting 
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 I_1, I_2 Injection Wells 

1 and 2 

  

 MAPE Mean Absolute 

Percentage Error 

%  

 P1, P2, P3 Production 

Wells 1,2, and 3 

  

 XGBOOST eXtreme 

Gradient 

Boosting 

  

 R2 Coefficient 

Determination 

  

 RF Recovery Factor %  

 CCUS Carbon, 

Capture, 

Utilization, and 

Storage 

  

 EOR Enhanced Oil 

Recovery 

  

 CO₂ Carbon Dioxide Ton/Day  

 MMSCF Million 

Standard Cubic 

Feet 

  

 MMSTB Million Stock 

Tank Barrels 

  

 MMP Minimum 

Miscibility 

Pressure 

  

 f_ij 

 

 

 

Coefficient 

Connevtivity 

injection 

Producer 

  

 τ Time Constant Day  

 

 Unit Definition Symbol  

 CRM Capacitance 

Resistance 

Model 

  

 DCA Decline Curve 

Analysis 

  

 

 

 

 

 

ensemble machine learning algorithms, particularly 

XGBoost, demonstrate remarkable capability in 

capturing these complex interactions, achieving 

exceptional predictive accuracy (R² up to 1.00, 

MAPE as low as 0.44%) that far surpasses 

conventional CRM methods. The research 

quantitatively establishes the critical fluid-

mechanistic parameters governing CO₂-EOR 

success in the Volve Field, including a Minimum 

Miscibility Pressure of 3299.68 psi and an oil 

Swelling Factor of 1.19.  

These parameters provide the physical foundation for 

the substantial incremental recovery of 6.35 MMSTB 

achieved in the 20-year CO₂ injection forecast, 

representing a 67.7% improvement over conventional 

waterflooding. However, the analysis also reveals 

that the very mechanisms enabling this enhanced 

recovery—miscibility and swelling—are 

inherently pressure-dependent, which amplifies the 

effects of reservoir heterogeneity and leads to 

uneven sweep efficiency and early CO₂ 

breakthrough. The integrated framework combines 

physics-based models with machine learning to provide 

a comprehensive approach to CO₂-EOR forecasting. It 

provides not only accurate production predictions but 

also deeper insights into evolving connectivity patterns 

and displacement mechanisms. This dual capability 

enables better-informed operational decision-making 

and strategy optimization for CCUS implementation in 

complex, heterogeneous reservoirs, ultimately 

contributing to both enhanced hydrocarbon recovery and 

effective carbon management. 
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