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ABSTRACT - The objective of this study was to evaluate the performance of polymer injection in the
Volve Field by validating full-physics Navigator simulation results. This process was performed using two
independent data-driven approaches: the Capacitance resistance model (CRM) and machine-learning
algorithms Random Forest and XGBoost. This validation framework addresses uncertainty in flow-
parameter and ensures that simulated production responses align with data-driven injection—production
behavior. The simulation model was constructed using 20 years of historical field data, consisted of five
years of polymer injection at 1000-3000 ppm, followed by 15 years of chase water flooding. The simulation
results showed that polymer injection increased the oil recovery factor from 21.12% to 21.30% in the best-
case scenario, indicating a modest improvement in sweep efficiency. CRM, applied through CRM-P and
CRM-IP configurations, successfully reconstructed production profiles and quantified interwell connectivity
(R? = 0.94; MAPE < 10%). Machine-learning validation further confirmed these results, with Random
Forest achieving R? = 0.92 (MAPE < 1%) and XGBoost achieving R? = 0.99 (MAPE < 1%).
Overall, CRM and machine learning provide effective and independent validation pathways,
enhancing confidence in simulation outcomes and allowing for reliable assessment of polymer-

injection performance in field applications.
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INTRODUCTION

Polymer flooding is one of the most widely
applied chemical enhanced oil recovery (EOR)
methods due to its ability to improve mobility ratio,
reduce water cut, and increase macroscopic sweep
efficiency in mature fields (Alvarado & Manrique
2010). Despite its potential, predicting polymer-
injection performance remains highly challenging.
Reservoir  heterogeneity,  polymer  thermal
degradation, salinity effects, and uncertainties in
interwell flow behavior often cause polymer floods
to perform below expectations (Khalbia, 2021; M.
H. Nugroho et al., 2021).

These challenges complicate the interpretation
of observed production trends and limit the ability
of operators to determine whether polymer
injection is genuinely effective or simply behaving
like a conventional waterflood. In practice, full-
physics reservoir simulation is commonly used to
model polymer flooding performance; however,

the simulation results must be wvalidated.
Numerical models may suffer from parameter
uncertainty, non-unique history matching, and
simplifications in representing polymer rheology,
adsorption, and retention. For these reasons, data-
driven diagnostic tools are increasingly required to
independently verify whether production responses
predicted by simulation align with actual interwell
dynamics. Without such validation, decision-
making for polymer optimization are uncertain and
prone to error.

The capacitance resistance model (CRM) has
emerged as an efficient analytical method for
characterizing injector—producer connectivity and
reservoir response time using only historical rate
fluctuations (Sayarpour et al., 2008; Weber 2009).
CRM enables rapid screening of interwell
communication patterns and provides insights into
whether the injected polymer is influencing
production wells as intended.

However, CRM is also sensitive to assumptions
and data sparsity, making independent validation
necessary, particularly in reservoirs with strong

heterogeneity. Machine learning provides a
complementary, independent validation approach.
Random Forest and XGBoost are Algorithms that
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can learn nonlinear relationships between injection
and production variables without relying on
predefined physical assumptions (Imankulov et al.,
2022; Shang et al., 2023). In this research, machine
learning is neither integrated or coupled with CRM.
Instead, these methods are used independently to
benchmark and validate the production responses
generated by the tNavigator polymer simulation
model. By comparing CRM outputs, machine-
learning predictions, and simulation results, a more
reliable interpretation of polymer performance can
be achieved.

Therefore, the purpose of this study is to
evaluate polymer injection performance in the
Volve Field by using two independent data-driven
diagnostic methods, the Capacitance Resistance

Model and machine learning, to validate reservoir

simulation results. This approach addresses the gap
commonly found between simulated and actual
reservoir  behavior, reduces interpretational
uncertainty, and provides a more robust framework
for assessing the true effectiveness of polymer
flooding in heterogeneous reservoirs.

METHODOLOGY

This research began with reservoir simulation
using Tnavigator to display historical production
data and injection flow rates from polymer
injection in a real field model. This data was
used to understand the impact of polymer
injection on fluid flow in the reservoir. This was
followed by the development of the capacitance

resistance model (CRMP) and (CRMIP)
algorithms using the Python programming
language. This process included history

matching to compare CRM model predictions
with actual field data, where accuracy was
assessed using R? and Mean absolute percentage
error (MAPE) metrics. To improve the analysis,
this study utilized machine learning methods,
specifically Random Forest and XGBoost, to
execute historical matching predictions using
data from the Volve Field. By comparing the
results from CRM models and machine learning
techniques, which one provides more accurate
predictions is identified.
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Capacitance resistance model

The capacitance resistance model (CRM) is a
technique commonly used to model the dynamic
relationship between the injection and production
rates of wells. This model applies an electrical
resistor-capacitor circuit analogy to represent the
delay and connectivity behavior between
production and injection wells based on historical
data. The main advantage of CRM is its ability to
predict reservoir performance with simpler
calculations compared to complex numerical
simulation approaches (Sayarpour et al., 2009).

CRMP : producer-based representation

The CRMP is a model built with producers as
the center or focus of the model control system. In
this scheme, each production well is analyzed
individually to achieve higher resolution (de
Holanda et al., 2018). The CRMP (producer-based
representation) considers one time constant (z;) and
one productivity index (J;) for each producer and
one interwell connectivity for each pair of injector
wells (i) — producer wells (j). Accordingly, the
governing equation can be represented as follows:

wi ()

ini ()]
dg; L ap,)
T ta®=) fu©-g—gt

CRMIP : injector-producer
based representation

CRMIP is the most recent CRM model to
consider reservoir heterogeneity. Heterogeneity in
this model referes to different individual/pair
parameters, hence assuming a single value for all
producers or reservoirs is not reliable. Therefore,
the continuity equation of in CRMIP will be
written based on a representation based on injector
well-producer well pairs and their control systems.

Each pair has a single time constant (7)),
productivity index (Ji), and interwell connectivity
(fij) for each injector (i) -producer (j) pair. The
ODE for this pair-based control volume can be
written as follows (de Holanda et al., 2018).

)
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Figure 1. CRMP — Producer-based Representation
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Where qij represents the production rate (bpd)
at the producer relative to the control volume of the
injector (i)-producer (j) pair. Thus, the total
production flow rate of producer j is obtained by
summing all production flow rates contributed by
its respective control volumes.

In this study, the Capacitance resistance model
(CRM) was employed to validate the tNavigator
simulation results through two main configurations,
CRM-P and CRM-IP. CRM-P models the
production rate of each producer well by linking
production fluctuations to the combined effects of
injection support and the internal decline dynamics
of the well, allowing the reservoir response
characteristics to be quantified through the time
constant (0). Meanwhile, CRM-IP computes the
interwell connectivity (fij) for each injector—
producer pair to identify the flow pathways and the
influence of individual injectors on production.
When combined, these configurations enable an
assessment of whether the connectivity patterns
and production responses predicted by the
tNavigator simulation are consistent with the data-
driven reservoir behavior reconstructed by CRM,
providing a more comprehensive validation of
polymer-injection performance.

Decline curve analysis

Decline curve analysis (DCA) is a simple and
easy-to-use method that is widely used to predict
future production rates and oil reserves. This
method requires the availability of production data,
which is then used to identify decline trends using

wy (1)

—=pwf(t)

wy (1)

empirical equations. Using these trends, we may
predict future production (Maurenza et al., 2023).

q= ql.e(_DiAt) 3)

Machine learning

Machine learning methods, such as Random
Forest and XGBoost, have been proven to be
effective in analyzing large and complex data sets
found in reservoirs. As demonstrated by (Zhao &
Liu 2023), this algorithm is capable of capturing
complex and nonlinear patterns in data, which is
often difficult to achieve using traditional methods.

Random Forest uses an ensemble of many
decision trees (Hidayat & Astsauri 2021), resulting
in more accurate decision-making and reduces
overfitting, while XGBoost provides an advanced
optimization approach that can further improve
prediction accuracy (Yan et al., 2023). These two
machine learning algorithms use past production
and injection data, as well as other reservoir
parameter variables, to provide robust predictions
and anticipate potential production uncertainty.

Integrated polymer simulation tnavigator

The objective of this research is to evaluate the
performance of polymer injection in the Volve Field
by validating reservoir simulation results through two
independent data-driven approaches: the capacitance
resistance model (CRM) and machine-learning
prediction. Both CRM and machine-learning models
are applied separately to assess whether the
production responses generated by the tNavigator

w3 (6)

Figure 2. CRMIP: Injector-Producer Based Representation
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Figure 3. 2D Visualization of the permeability distribution in the volve field

simulation are consistent with the data-driven
behavior inferred from historical injection—production
dynamics. The workflow begins with constructing a
3D reservoir simulation model in tNavigator,
followed by history matching of the waterflood phase
with an error below 0.5%. The polymer injection
stage is then simulated using the POLYMER
keyword with concentrations of 1000-3000 ppm for 5
years, followed by 15 years of chase water, totaling
20 years of simulation.

Two injection wells were operated at a constant
rate of 1,500 bbl/day. The optimal scenario was
selected based on the highest recovery factor, after
which the simulation results were exported for CRM
and machine-learning analysis. For the CRM
workflow, the tNavigator production data were used
to estimate interwell connectivity (fij) and time
constants (0), which were subsequently used to
generate CRM-based production forecasts.

In parallel, machine-learning models Random
Forest and XGBoost were trained using the same
injection—production dataset utilizing a well-based
split evaluation. These models were not used to
validate CRM history matching; instead, they
served as independent predictive benchmarks to
compare directly against both CRM forecasts and
the original simulation results. By applying CRM
and Machine learning as two independent
validation pathways, this methodology provides a

robust assessment of whether the tNavigator
polymer-flood simulation realistically captures the
underlying injection - production behavior of
the Volve Field.

RESULT AND DISCUSSION

In this study, the initialization and simulation of
the Volve field model were carried out using
tNavigator, with history matching or matching of
actual production history was performed between
early 2015 and 2024. The Volve field has
undergone water injection since 2015. After that,
the simulation model was forecasted for 20 years as
a base case for waterflood injection starting from
2024 to 2044 and then continued with a polymer
slug injection scenario for 5 years and followed by
chase water injection for 15 years.

To accurately characterize fluid flow behavior
in reservoirs, it is essential to model the
permeability distribution. As illustrated in Figure 3,
the permeability map of the Volve field highlights
the reservoir’s heterogeneity, characterized by
variations in permeability values.

Most of the reservoir has good permeability. A clear
contrast can be observed between the highly productive
main flow zones, where permeability reaches up to 2000
mD (represented by red and orange colors), and the low-
permeability or barrier zones, where permeability
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Table 1. Initialization of the 3D volve field model

Parameter Nilai Satuan
Original Oil in Place 76.9942 MMSTB
Original Water in Place 697.7655 MMSTB
Original Gas in Place 55.2871 MMSCF
Pore Volume 794.7169 Million RB
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Figure 4. History matching the volve field production
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Figure 5. History matching and validation of waterflood injection using CRM method in the volve
field (a)Well P1 (b) Well P2 (c) Well P3
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approaches zero (depicted in blue). Reservoir
model initialization began with a history match of
actual field production data. The results are shown
in Figure 4. This history matching shows excellent
agreement between the simulation data (solid line)
and historical field data (markers). The model
accurately replicated the production decline trend
for both oil and liquid rates. This indicates that the
model has been well validated and is capable of
accurately representing reservoir behavior.

Analysis, history matching, and validation CRM
for water injection

The history matching process conducted to
estimate CRM parameters (interwell connectivity
and time constant) showed very satisfactory results
in curve fitting for the independent variable of
injection water flow rate (Salehian & Cynar 2019).
The CRMP model (black line) and the CRMIP model
(red line) show excellent agreement with actual data

from tNavigator simulations, as confirmed by
research which shows that CRM can predict future oil
recovery with less than 2% difference compared to
simulation results (Davudov et al., 2020). Overall, the
history-matching results from the three wells (P1, P2,
and P3) indicate that the capacitance-resistive model
(CRM) is highly effective in replicating historical
production data (M. H. Nugroho et al., 2021).

With R? values ranging from 0.72 to 0.79, this
model demonstrates a strong ability to explain most
of the wvariability in production. The model
successfully separates two main phenomena: the
natural decline in reservoir production and the
significant, fluctuating increase in output in
response to injection activity (modeled by CRM)
(Lesan et al., 2018. Wells P1 and P3 show a very
high degree of accuracy, indicating that the
behavior of the surrounding reservoir can be
predicted well by the model, while the slightly
lower but still acceptable fit for well P2 indicates

Comparison Regression Plot for Well P1
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Comparison Regression Plot for Well P2
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Comparison Regression Plot for Well P3
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Figure 6. Comparison of the regression plot CRMP, and CRMIP for well production (a) well P1 (b) well P2 (c) well P3

higher geological complexity or fluid dynamics
(Nwogu et al., 2019). As shown in Figure 6, the
regression plots collectively provide strong visual
validation of the performance of the CRMP and
CRMIP models. It is clear that both models
successfully demonstrate a  strong linear
correlation, marked by data distribution
concentrated along the “Perfect Prediction” line.
This confirms that there is no significant systematic
bias (consistent over-prediction or under-
prediction) in the model results. It is also
confirmed that R? provides a high score only when
the majority of elements have been predicted
correctly (Chicco et al., 2021). The high of R?
value, ranging from 0.72 to 0.79, indicates that the
model is able to explain more than 72% of the
variation in production data. In addition, the
relatively small MAPE value (less than 23%)
proves that the margin of error in the model's
predictions is still acceptable.

Table 2. Interwell connectivity dan time constant CRMP

Table 4. Time constant CRMIP

Well injection

‘Well production

1 12
P1 32 30.55
p2 30.86 30.54
P3 30 30

Well Well injection co’ll“llsr::lent
production 11 12 * (days)
P1 0.006679  0.009858 30
P2 0.019587 0.011147 30
P3 0.006679  0.009858 30

Table 3. Interwell connectivity CRMIP

Well production

Well injection

11 12
P1 0.0094 0.0064
P2 0.0191 0.0109
P3 0.0067 0.0099

Tables 2, 3, and 4 summarize the capacitance
resistance model (CRM) parameters during the
water injection phase at the Volve Field. This
comparison provides an overview of the
relationship between wells (interwell connectivity)
and the reservoir response time (time constant).

The results of the capacitance resistance model
(CRM) indicate a consistent pattern of connectivity
between wells, along with notable variations in
time constants. Connectivity analysis shows that
production well P2 has the strongest connection
with injector 11, while wells P1 and P3 show more
dominant connectivity with injector 12 (Fu et al.,
2022). The main difference lies in the approach to
the time constant 6. The CRMP model uses a
simplified approach with a single value of 30 days
for the entire system, while the CRMIP model
provides a more detailed representation by
calculating variable time constants for each well
pair, ranging from 30 to 32 days (Abbasov et al.,
2023). The CRMIP approach is physically more
realistic since it considers reservoir heterogeneity,
which is an important characteristic in complex
waterflooding systems. The CRM method has
proven effective in understanding the dynamic
interaction between injection and production wells
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without requiring complex numerical modeling, so
it can be used for optimization of operating
parameters and production forecasting (Fu et al.,
2022; Pyatibratov & Zammam 2023).

Figure 7 presents a 3D visualization of the
interwell connectivity parameters derived from the
CRM Model. This map illustrates the spatial
distribution of injection and production wells, as well
as the strength of the hydraulic relationship between
them. The thickness of the arrows represents the
magnitude of the connectivity values.

From this image, the main flow patterns can be
clearly identified. The strongest connection is
observed between Injector 11 and Producer P2,
marked by the thickest arrow. In contrast, Injector
12 exerts a more dominant influence on Producers
P1 and P3, while the impact of Injector I1 on these
producers is minimal. This visualization effectively
summarizes the quantitative results of the model

3D Interwell connectivity map (CRMIP)

Injector
Producers

and provides an intuitive understanding of the
reservoir depletion pattern.

Analysis of machine learning, random forest,
and gradient boosting for water injection

Figure 8 shows the results of the Random forest
prediction evaluation on the training data,
demonstrating a very high level of accuracy. The
model achieved a coefficient of determination R* of
0.98 and a very low MAPE of 6.17% for well P1
and 5.81% for well P2. These metrics
quantitatively prove that the model is capable of
replicating more than 98% of historical data
variability with a minimal average error. On a
previously unseen validation dataset (P3), the
model maintained a very high level of accuracy
with R> = 098 and MAPE = 6.17%. These
validation results show that the model successfully
learned the underlying production patterns without
overfitting. On the regression plot, the distribution
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Figure 7. 3D Interwell Connectivity Map in Volve Field Model
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of data points (which compares predicted values
with actual values) is concentrated very tightly
along the perfect prediction line (red dotted line).
This visually confirms the near-perfect correlation
and the absence of significant bias in the
predictions. An XGBoost machine learning model
was created as a benchmark for further validation,
using an approach that has been proven effective in
the oil and gas industry (Fajrul Haqqi et al., 2023;
Simanjuntak & Irawan 2021). In Figure 9, this
model is trained on P1 and P2 well data, then tested
on P3 well data as validation data, in accordance
with the data division methodology commonly
used in machine learning applications for reservoir
prediction (I. D. R. Nugroho et al., 2024).

The performance analysis results show that on
the training data (P1 and P2), the model achieved a
near-perfect fit with R? = 1.00 and MAPE < 1%,
which is consistent with the XGBoost performance
reported in similar studies (Hafidz & Fauzi, 2025).
More importantly, on the previously unseen
validation data (P3), the model maintained very
high accuracy with R? = 0.86 and MAPE = 0.86%.

The outstanding performance on this validation
set indicates that the model effectively captured the
underlying production patterns without overfitting,
consistent with findings from XGBoost-based
research for reservoir property estimation (Fajrul
Haqqi et al., 2023). These results provide strong
evidence that production reinforces the
effectiveness of the machine learning approach for
production forecasting (Noshi et al., 2019), thereby
validating the trends identified by previous models.

Hydrolyzed polyacrylamide (HPAM)

HPAM is the most used polymer in EOR
applications. It gives significantly greater recovery
of oil as it exhibits greater visco-elasticity than
Xanthan solutions. The polyacrylamide adsorbs
strongly on the mineral surface and makes the
polymer partially hydrolyzed, and hence reduces
adsorption by reacting the polyacrylamide with
base. The EOR process is time-consuming, which
increases the need for polymer stability. In general,
hydrolysis should not exceed 40% in a period of
three months, although acidic or basic conditions
tend to speed up the process. HPAM also lacks
tolerance when exposed to high temperatures or
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high salinity (Mbise 2019). The effectiveness of
synthetic polymer flooding in improving
sweep efficiency has been well documented in
laboratory studies. It has been demonstrated
that HPAM-based polymers can significantly
enhance mobility control, although their
performance is heavily influenced by
reservoir temperature and salinity, which may
reduce viscosity stability. This highlights the
importance of rigorously validation of
polymer performance under complex reservoir
conditions, as addressed in this study using
CRM and machine-learning—based diagnostic
approaches. (Auni et al., 2023).

Forecast for polymer injection

Figure 10 presents the historical and
forecasted water injection rates for wells I-F-4
and I[-F-5. The historical period (up to 2024)
shows fluctuations in the actual injection data.
For the forecast period (starting in 2025), the
injection rate for both wells is maintained at a
constant level of 1,500 STB/day.

Figure 11 presents the oil production rate
forecast for the 3,000 ppm polymer injection
scenario across the three main production
wells. After a period of fluctuating history
matching (before 2025), the implementation
of polymer injection resulted in a flatter and
more sustainable production decline
curve.This demonstrates the effectiveness of
polymers in improving sweep efficiency and
reducing the rate of decline. Well P-F-14
(blue) shows the most stable production
profile, while P-F-11B (red) experiences the
fastest decline. This combined profile
represents the optimal EOR scenario that
produces the highest Recovery Factor.

Figure 12 presents a comparison of water cut
between the base case and the 3,000 ppm
polymer injection scenarios. During the forecast
period (after 2025), the polymer scenario clearly
produces a lower water cut in all three wells.
This shows that the polymer does improve the
mobility ratio, delay water breakthrough, and
boost sweep efficiency, thereby contributing to
the observed increase in oil production rate
(Palyanitsina et al., 2022).
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Figure 13 presents the cumulative oil production
for both the base waterflood case and the polymer
injection scenario. During the history matching
period, both curves overlap, indicating identical
reservoir performance prior to polymer injection.
After the onset of polymer injection, the polymer
scenario exhibits a higher cumulative oil production,

Table 5. Polymer injection scenario

Oil

Scenario Cumulative RF%
Scenario 0 ppm 16,25 21,12
Scenario 1000 ppm 16,32 21,20
Scenario 1500 ppm 16,34 21,23
Scenario 2000 ppm 16,36 21,26
Scenario 3000 ppm 16,39 21,30

resulting in an incremental oil gain of
approximately 0.138 MMSTB. Although this
increase confirms the effectiveness of polymer
flooding, the relatively small magnitude highlights
the limited improvement in sweep efficiency
caused by reservoir heterogeneity and polymer
retention effects.

The results of polymer injection simulations
in the Volve field, as presented in Table 5,
indicate that there is no significant improvement
in the recovery factor (RF). The RF value only
increased from 21.12% in the base scenario to
21.30% at a concentration of 3000 ppm,
corresponding to a cumulative oil production
increase from 16.25 MMSTB to 16.39 MMSTB.
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Figure 10. Historical and forecasted water injection rates for well injectors I-F-4 and I-F-5
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Figure 11. Forecasted oil production rates for production wells P-F-11B, P-F-12, and P-F-14 under the
3,000 ppm polymer injection scenario.
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Figure 14. Water viscosity distribution after polymer injection.
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This relatively small increase indicates that the
performance of the polymer injection mechanism
in the Volve field is limited due to reservoir
characteristics that constrain the effectiveness of
polymer fluids.

Figure 14 utilizes the 'Minimum' aggregation method
to visualize the reservoir layer exhibiting the highest
fluid viscosity. It is evident that the polymer successfully
increased the viscosity to 1.29 cP (blue zone) compared
to the baseline formation water viscosity of 0.3 cP (red
zone). However, the polymer distribution is severely
restricted, and it fails to reach the primary production
wells. Given that this map represents the 'best-case' layer,
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it strongly suggests a channeling issue in which the
polymer flows primarily through thin, high-permeability
streaks while leaving the remaining oil in adjacent
layers. This process explains why the total incremental
oil recovery remains low, at 0.18%."

Figure 15 illustrates the distribution of polymer
concentration at the end of the simulation. The
visualization reveals that the polymer is primarily
concentrated around the injection wells (I-F-4 and I-F
-5) and the production well P-F-11B. Conversely, the
remaining production wells (P-F-12 and P-F-14) and
the majority of the inter-well area remain in the blue
zone (0 1b/stb). The presence of polymer at producer
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Figure 17. Oil saturation distribution after waterflooding

P-F-11B indicates a channeling issue or early
polymer breakthrough, where the injected fluid
followed a high-permeability path directly from the
injector to this specific producer. Regarding the
unswept areas, this observation indicates that a
significant portion of the injected polymer was likely
adsorbed by the formation rock, thereby impeding its
transport to a wider area. Since the polymer was
unable to sweep the inter-well zones effectively
between the injectors and the remaining producers,
significant oil displacement toward the production
wells was not achieved. These combined factors-
channeling and high retention-constitute the primary
reasons for the minimal incremental recovery
observed (0.18%)."

Figure 16 visualizes the distribution of adsorbed
polymer concentration retained on the reservoir rock
surface. The map exhibits high adsorption values
(indicated by green and yellow zones) concentrated

heavily in the immediate vicinity of the injection wells
(I-F-4 and I-F-5). In contrast, the regions further into
the reservoir and surrounding the production wells (P-F
-12 and P-F-14) show negligible adsorption (blue
zones), indicating that the polymer front never reached
these areas. This visual evidence confirms that high
polymer retention is a critical factor limiting the
project's success. The injected polymer is rapidly
consumed by the rock matrix due to adsorption
near the  wellbore, causing a  severe
'chromatographic retardation' effect. This prevents
the polymer bank from propagating deep into the
inter-well zones to mobilize bypassed oil
Consequently, the effective viscosity within the
reservoir remains low, directly explaining the
marginal incremental oil recovery of 0.18%."

Figures 17 and 18 present the comparison of
areal oil saturation maps at the end of the
simulation period for the base case (waterflooding)
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Figure 18. Oil saturation distribution after polymer flooding

and the polymer injection scenario, respectively.
Visual observation reveals that the saturation
profiles between the two scenarios are strikingly
similar. Significant zones of by passed oil
(indicated by red areas with S,> 0.60) persist in the
inter-well regions in both cases, indicating that the
injected fluid followed similar preferential flow
paths regardless of the injection type. This lack of
visual contrast in the saturation maps suggests that
the polymer injection did not significantly improve
the macroscopic sweep efficiency. The expected
mechanism of flow diversion—where the viscous
polymer diverts flow from high-permeability swept
zones into low-permeability unswept zones—did
not occur effectively. This could be attributed to
high polymer adsorption on the rock surface or
insufficient viscosity contrast to overcome the
reservoir heterogeneity. Consequently, this visual
evidence strongly corroborates the production
performance results, which showed a marginal
incremental oil recovery of only 0.18%.

The inability of the polymer to expand the
swept volume (as shown in Figure 18) physically
explains the insignificant gain in cumulative oil
production compared to the waterflood baseline.
Based on the permeability distribution in Figure 3,
the Volve field exhibits a relatively high degree of
heterogeneity. Permeability values vary significantly,
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with red-orange areas indicating high-permeability
zones (up to £2000 mD), while yellow to green areas
indicate zones with low permeability approaching zero.
This condition leads to an imbalance in fluid flow
during the injection process, where the polymer
tends to flow through high-permeability streaks and
bypass low-permeability regions without being
effectively swept. As a result, sweep efficiency
does not increase significantly, even though the
viscosity of the injection fluid has been enhanced
by the addition of polymer (Erfando et al., 2019).
The high temperature of the reservoir, which is
about 224.6°F (107°C), also breaks down the
molecular chains of the hydrolyzed polyacrylamide
(HPAM) polymer utilized in this simulation.

HPAM is known to have limited thermal
stability, as at temperatures above 90-100°C the
polymer chain structure begins to experience chain
scission and excessive hydrolysis (Saputra et al.,
2022), resulting in a decrease in molecular weight
and a loss of ability to maintain solution viscosity.
The polymer's efficacy in reducing the mobility
ratio between water and oil is significantly reduced
when viscosity decreases. The injected polymer
fluid behaves almost like ordinary water in porous
media and is unable to inhibit water fingering and
channeling in high-permeability zones effectively.
High salinity conditions and the presence of
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Figure 19. CRM prediction after polymer injection in volve field (a) Well P1 (b) Well P2 (c) Well P3
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divalent ions (Ca** and Mg?*) in the Volve
formation water further impair the polymer's
performance. These ions interact with the polymer
chains, leading to precipitation or coiling that
diminishes the solution's hydrodynamic efficiency.
In addition, polymer adsorption onto the surface of
sand grains causes most of the polymer to remain
around the injection zone, allowing only a limited
amount to reach the production zone.
Consequently, the improvement in sweep
efficiency becomes localized and restricted to
certain areas of the reservoir.

Analysis of the water cut trends in Figure 12
supports these findings. In the base scenario
without polymer (0 ppm), the water cut increases
rapidly after the initial production period and
reaches more than 80% in 2035, indicating the
dominance of water production in the production
well. Conversely, in the 3000 ppm polymer
injection scenario, the rate of increase in water cut
is slower and tends to stabilize in the range of 70—
75% in the same period. This shows that even
though the increase in RF is not significant,
polymers nonetheless have an important function in
controlling the rate of injection water movement by
increasing fluid viscosity and decreasing the
mobility ratio (Pramadika et al., 2019).

Thus, polymer injection still contributes to
delaying water breakthrough and mitigating the
rate of water cut increase in some wells, especially
in zones with high permeability. However, the
water control effect is temporary and local, as
reservoir heterogeneity causes uneven polymer
distribution. In high-permeability pathways, the
polymer is rapidly transported toward the
production well, providing limited improvement in
low-permeability zones. As a result, although the
water cut improved slightly at the beginning of the
injection period, the effect decreased over time,
and water production increased again.

Overall, the simulation results show that
polymer injection in the Volve Field has a positive
effect on water control and production stability, but
does not result in a significant increase in oil
recovery. This phenomenon illustrates the diminishing
return effect of polymer injection, where increasing
polymer concentration is no longer proportional to the
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increase in recovery factor. The combination of high
permeability heterogeneity, thermal degradation of
polymers at 107°C, high formation salinity, and high
adsorption is the main factor limiting the effectiveness
of the mobility control mechanism in the Volve
TeServoir.

Analysis, history matching, and validation CRM
for polymer injection

Figure 19 presents the final validation of the
models CRMP and CRMIP by testing them against
a predetermined polymer injection forecasting
scenario. The objective is to ensure that these
simplified analytical models can accurately
replicate the results of complex enhanced oil
recovery (EOR) scenarios at the individual well
level (Sayarpour et al., 2009), as the effectiveness
of the CRM approach in reservoir characterization
and performance prediction has also been well
documented in various previous studies (de
Holanda et al., 2018). For wells P2 and P3, which
represent injection-dominated plateau scenarios,
themodel showed very high accuracy, with MAPE
as low as 0.00% to 1.33%. Furthermore, the model
also proved reliable in predicting the more complex
decline scenario in Well P1, where the interaction
between injection supportand natural decline
occurs. In this case, the model remain produces
strong predictions withresults of R? = 0.94 and
MAPE = 9%.

Overall, the model's ability to accurately predict
these vastly different production profiles provides
high confidence that models can be used as an
efficient proxy for EOR scenario optimization
(Sayarpour et al., 2008). The regression plot
analysis in Figure 20 provides strong visual
validation for the polymer injection forecasting
scenario. For Well P1, which represents the
dynamic decline scenario, the data points are
distributed linearly andclosely along the perfect
prediction line, which is quantitatively confirmed
by R* = 0.94 and MAPE = 9%. Conversely, for
Wells P2 and P3, which represent the plateau (flat
production) scenario, the regression plot shows the
data clustered tightly at a single point (2000, 2000).
This exceptional accuracy is evidenced by a very
low MAPE (0.00% to 1.33%). It is important to
note that the low R? value for P2 (0.66) is not an
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Figure 21. 3D interwell connectivity map derived from the CRMIP model after polymer injection.

indication of model failure, but rather a statistical
deviation due to data validation with very low
variance. Collectively, these plots visually confirm
that both models have nearly identical performance
and are highly reliable in replicating various
forecasting profiles.

Table 6. Interwell connectivity and CRMP time constant
after polymer injection

Well Well injection Time
roduction constant
P 1 12 1(days)
P1 0.000015 0.000399 298.75

P2 0.023314 0.017766 32.25

P3 0.019998 0.023486 30.66

Table 7. Interwell connectivity of CRMIP after
polymer injection

Well injection
Well production Tl D
P1 0.0000 0.0018
P2 0.0442 0.0000
P3 0.0028 0.0414

Table 8. CRMIP time constant after polymer injection

Well injection
Well production T 2
P1 43.67 68.48
P2 30.00 83.95
P3 30.00 30.15
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Tables 6, 7, and 8 summarize the post-polymer
injection CRM parameters. This comparison
highlights the significant advantages of the CRMIP
model (Tables 7 and 8) in modeling EOR
scenarios. The CRMIP model distinctly captures
significant changes in reservoir flow patterns. The
emergence of zero connectivity (P1-11 and P2-12)
indicates the successful blocking of channeling
pathways. Along with this, there is a flow diversion
marked by a very high connectivity strengthening
in the P2-11 and P3-12 paths. This phenomenon is
consistent with research on the effects of
heterogeneity on sweep efficiency (Borovina et al.,
2022; Ramadhan et al.,, 2023). Conversely, the
CRMP model (Table 6) fails to capture this
dynamic behaviour, as evidenced by the physically
unrealistic time constant estimate for P1 (298.75
days). Therefore, CRMIP provides a more accurate
and reliable representation of post-polymer
reservoir conditions.

This finding aligns with previous studies
emphasizing  thatselecting  the  appropriate
simulation model is crucial for understanding flow
behavior in heterogeneous reservoirs after polymer
injection (Ramadhan et al., 2020). Figure 21 shows
a 3D visualization of inter-well connectivity after
polymer injection, where the thickness of the
arrows indicates flow strength (f ;). The dominant
pattern is seen from Injector I1 to Producer P2 as the
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Figure 22. Random Forest performance analysis for wells production after polymer injection
(a) Well P1 (b) Well P2 (c) Well P3
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strongest path, and from 12 to P1 and P3 as secondary
flows. This pattern confirms the occurrence of
effective flow diversion, with the polymer
successfully increasing resistance in weak pathways
and directing the fluid to the main production zones.
Overall, this map demonstrates the success of the
EOR intervention in modifying reservoir connectivity
and increasing sweep efficiency.

Analysis machine learning random forest and
gradient boosting for polymer injection

Figure 22 shows the results of the Random
Forest model performance analysis on oil
production rate predictions for three wells (P1, P2,
and P3) after polymer injection. Each pair of
graphs illustrates two main aspects, namely the
history matching results between actual data and
model predictions, as well as regression plots
showing the level of conformity between actual
data and predictions. The results show that the
Random Forest model accurately represents
production trends with a high degree of precision.
R? value, which is close to 1, along with the low
MAPE, demonstrates the model's ability to reliably
predict changes in production due to the polymer
injection process. This indicates that ensemble tree-
based machine learning models, such as Random
Forest, are very effective in capturing the nonlinear
relationship between reservoir variables, injection
parameters, and production response.

These findings are consistent with previous
studies showing that combining the Random Forest
algorithm with optimization techniques can
improve the accuracy of oil and gas production
predictions. In addition, (Rahmanifard & Gates
2024) also confirm that machine learning-based
models, including Random Forest, can achieve
high R? values in production forecasting for various
reservoir types. Meanwhile, (Zhou et al., 2023)
confirmed the effectiveness of Random Forest in
predicting two-phase oil-water flow rates in
horizontal wells, which is relevant to the context of
predicting polymer injection performance in
production wells.

Figure 23 shows the results of the XGBoost
(Extreme Gradient Boosting) model performance
analysis in predicting oil production rates after
polymer injection for three wells: P1 and P2 as
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training data, and P3 as validation data. Each pair
of graphs shows the results of history matching
(left) and regression plots (right) between actual
data and model predictions. The XGBoost model
shows very high accuracy in reconstructing
production trends. In well P1 with a decline
pattern, the model achieved R? = 0.99 and MAPE <
3%, indicating its strong ability to capture
production decline dynamics. Well, P2, which
represents a plateau production pattern, also shows
near-perfect prediction results (R? = 0.97, MAPE <
2%). For well P3 (validation data), the model
remains  stable with minimal  deviation,
demonstrating good generalization capabilities for
unseen data and no evidence of overfitting.

The machine-learning models were validated
using a well-based split, ensuring that the training
and testing datasets originated from different wells
to prevent overfitting. This process was further
strengthened through 5-fold cross-validation,
which ensured stable and consistent predictive
performance. The very high R? value obtained by
XGBoost (0.99) remains reasonable because the
data used were derived from deterministic reservoir
simulation results with minimal noise. The strong
injection—production relationships in the dataset
enable the model to learn reservoir dynamics with
high accuracy. Residual analysis also showed no
systematic bias, confirming that the model’s strong
performance was not caused by overfitting.

These results are consistent with recent studies
demonstrating the effectiveness of the XGBoost
algorithm in predicting oil and gas production
performance based on field data.(A. Al Shabaan &
N. Nemer, 2024compared XGBoost with Decision
Tree and Random Forest and found that XGBoost
achieved the highest prediction accuracy for oil and
gas production data. Furthermore, (Hou et al.,
2024) developed an adaptive fusion-based
prediction method that integrates XGBoost to
capture nonlinear relationships in unconventional
well production data with highly accurate results.
The research conducted by (Zhu et al., 2024) also
reinforces these findings by showing that the
XGBoost model is capable of predicting production
trends with a very low error, even when applied to
data with high noise levels. In general, these results
confirm that XGBoost is a reliable and efficient
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machine learning approach for forecasting
enhanced oil recovery (EOR) performance based
on field data.

CONCLUSION

This study evaluated the performance of HPAM
polymer injection in the Volve Field by validating
tNavigator full-physics simulation results using the
Injector—Producer configuration of the capacitance
resistance model (CRM-IP) and machine-learning
algorithms. The simulation results indicate that
polymer injection increased the oil recovery factor
from 21.12% to 21.30%, reflecting a measurable
but modest improvement in sweep efficiency.
CRM-IP successfully reconstructed production
trends and quantified interwell connectivity (R?* =
0.94; MAPE < 10%), providing clear insights into
the influence of each injector on producer wells.
Additional validation using machine-learning
models demonstrated very high predictive accuracy
(XGBoost R? = 0.99; MAPE < 1%), reinforcing the
consistency and reliability of the simulation
outcomes. The modest recovery improvement is
primarily attributed to reservoir heterogeneity,
HPAM degradation at 107°C, and formation
salinity effects that reduce polymer viscosity
stability. Overall, CRM-IP and machine learning
serve as effective independent validation pathways
that enhance confidence in polymer-injection
evaluation and field planning.
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GLOSSARY OF TERMS
Unit Definition Symbol
Capacitance
CRM Resistance Model
DCA Decline Curve

Analysis
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fij Coefficient
Connectivity injection,
producer
T Time Constant days
Hydrolyzed
HPAM Polyacrylamide
RF Recovery Factor %
MAPE Mean Absolute %
Percentage Error
I, 12,ete Injection Well 1, 2, etc
MMSTB Million Stock Tank
Barrels
PPM Parts Per Million
P1, P2, et Production Well 1,2,
etc
XGBOOST eXtrerpe Gradient
Boosting
R? Coefficient
Determination
EOR Enhanced Oil
Recovery
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