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ABSTRACT - The objective of this study was to evaluate the performance of polymer injection in the 

Volve Field by validating full-physics Navigator simulation results. This process was performed using two 

independent data-driven approaches: the Capacitance resistance model (CRM) and machine-learning 

algorithms Random Forest and XGBoost. This validation framework addresses uncertainty in flow-

parameter and ensures that simulated production responses align with data-driven injection–production 

behavior. The simulation model was constructed using 20 years of historical field data, consisted of five 

years of polymer injection at 1000–3000 ppm, followed by 15 years of chase water flooding. The simulation 

results showed that polymer injection increased the oil recovery factor from 21.12% to 21.30% in the best-

case scenario, indicating a modest improvement in sweep efficiency. CRM, applied through CRM-P and 

CRM-IP configurations, successfully reconstructed production profiles and quantified interwell connectivity 

(R² = 0.94; MAPE < 10%). Machine-learning validation further confirmed these results, with Random 

Forest achieving R² = 0.92 (MAPE < 1%) and XGBoost achieving R² = 0.99 (MAPE < 1%). 

Overall, CRM and machine learning provide effective and independent validation pathways, 

enhancing confidence in simulation outcomes and allowing for reliable assessment of polymer-

injection performance in field applications. 
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INTRODUCTION 

Polymer flooding is one of the most widely 

applied chemical enhanced oil recovery (EOR) 

methods due to its ability to improve mobility ratio, 

reduce water cut, and increase macroscopic sweep 

efficiency in mature fields (Alvarado & Manrique 

2010). Despite its potential, predicting polymer-

injection performance remains highly challenging. 

Reservoir heterogeneity, polymer thermal 

degradation, salinity effects, and uncertainties in 

interwell flow behavior often cause polymer floods 

to perform below expectations (Khalbia, 2021; M. 

H. Nugroho et al., 2021).  

These challenges complicate the interpretation 

of observed production trends and limit the ability 

of operators to determine whether polymer 

injection is genuinely effective or simply behaving 

like a conventional waterflood. In practice, full-

physics reservoir simulation is commonly used to 

model polymer flooding performance; however, 

the simulation results must be validated. 

Numerical models may suffer from parameter 

uncertainty, non-unique history matching, and 

simplifications in representing polymer rheology, 

adsorption, and retention. For these reasons, data-

driven diagnostic tools are increasingly required to 

independently verify whether production responses 

predicted by simulation align with actual interwell 

dynamics. Without such validation, decision-

making for polymer optimization are uncertain and 

prone to error.  

The capacitance resistance model (CRM) has 

emerged as an efficient analytical method for 

characterizing injector–producer connectivity and 

reservoir response time using only historical rate 

fluctuations (Sayarpour et al., 2008; Weber 2009). 

CRM enables rapid screening of interwell 

communication patterns and provides insights into 

whether the injected polymer is influencing 

production wells as intended.  

However, CRM is also sensitive to assumptions 

and data sparsity, making independent validation 

necessary, particularly in reservoirs with strong 

heterogeneity. Machine learning provides a 

complementary, independent validation approach. 

Random Forest and XGBoost are Algorithms that 

can learn nonlinear relationships between injection 

and production variables without relying on 

predefined physical assumptions (Imankulov et al., 

2022; Shang et al., 2023). In this research, machine 

learning is neither integrated or coupled with CRM. 

Instead, these methods are used independently to 

benchmark and validate the production responses 

generated by the tNavigator polymer simulation 

model. By comparing CRM outputs, machine-

learning predictions, and simulation results, a more 

reliable interpretation of polymer performance can 

be achieved.  

Therefore, the purpose of this study is to 

evaluate polymer injection performance in the 

Volve Field by using two independent data-driven 

diagnostic methods, the Capacitance Resistance 

Model and machine learning, to validate reservoir 

simulation results. This approach addresses the gap 

commonly found between simulated and actual 

reservoir behavior, reduces interpretational 

uncertainty, and provides a more robust framework 

for assessing the true effectiveness of polymer 

flooding in heterogeneous reservoirs. 

 

METHODOLOGY 

This research began with reservoir simulation 

using Tnavigator to display historical production 

data and injection flow rates from polymer 

injection in a real field model. This data was 

used to understand the impact of polymer 

injection on fluid flow in the reservoir. This was 

followed by the development of the capacitance 

resistance model (CRMP) and (CRMIP) 

algorithms using the Python programming 

language. This process included history 

matching to compare CRM model predictions 

with actual field data, where accuracy was 

assessed using R² and Mean absolute percentage 

error (MAPE) metrics. To improve the analysis, 

this study utilized machine learning methods, 

specifically Random Forest and XGBoost, to 

execute historical matching predictions using 

data from the Volve Field. By comparing the 

results from CRM models and machine learning 

techniques, which one provides more accurate 

predictions is identified. 
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Capacitance resistance model 

The capacitance resistance model (CRM) is a 

technique commonly used to model the dynamic 

relationship between the injection and production 

rates of wells. This model applies an electrical 

resistor-capacitor circuit analogy to represent the 

delay and connectivity behavior between 

production and injection wells based on historical 

data. The main advantage of CRM is its ability to 

predict reservoir performance with simpler 

calculations compared to complex numerical 

simulation approaches (Sayarpour et al., 2009). 

CRMP : producer-based representation 

The CRMP is a model built with producers as 

the center or focus of the model control system. In 

this scheme, each production well is analyzed 

individually to achieve higher resolution (de 

Holanda et al., 2018). The CRMP (producer-based 

representation) considers one time constant (  ) and 

one productivity index (  ) for each producer and 

one interwell connectivity for each pair of injector 

wells (i) – producer wells (j). Accordingly, the 

governing equation can be represented as follows:       

 

 

 

CRMIP : injector-producer                           

based representation 

CRMIP is the most recent CRM model to 

consider reservoir heterogeneity. Heterogeneity in 

this model referes to different individual/pair 

parameters, hence assuming a single value for all 

producers or reservoirs is not reliable. Therefore, 

the continuity equation of in CRMIP will be 

written based on a representation based on injector 

well-producer well pairs and their control systems. 

Each pair has a single time constant (   ), 

productivity index (   ), and interwell connectivity 

(   ) for each injector ( ) -producer ( ) pair. The 

ODE for this pair-based control volume can be 

written as follows (de Holanda et al., 2018).  

 

 

 

 

Figure 1. CRMP – Producer-based Representation 

(1)  
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𝑞 = 𝑞𝑖𝑒
(−𝐷𝑖Δ𝑡) 

Where     represents the production rate (bpd) 

at the producer relative to the control volume of the 

injector ( )-producer ( ) pair. Thus, the total 

production flow rate of producer   is obtained by 

summing all production flow rates contributed by 

its respective control volumes. 

In this study, the Capacitance resistance model 

(CRM) was employed to validate the tNavigator 

simulation results through two main configurations, 

CRM-P and CRM-IP. CRM-P models the 

production rate of each producer well by linking 

production fluctuations to the combined effects of 

injection support and the internal decline dynamics 

of the well, allowing the reservoir response 

characteristics to be quantified through the time 

constant (ô). Meanwhile, CRM-IP computes the 

interwell connectivity (fᵢⱼ) for each injector–

producer pair to identify the flow pathways and the 

influence of individual injectors on production. 

When combined, these configurations enable an 

assessment of whether the connectivity patterns 

and production responses predicted by the 

tNavigator simulation are consistent with the data-

driven reservoir behavior reconstructed by CRM, 

providing a more comprehensive validation of 

polymer-injection performance. 

Decline curve analysis 

Decline curve analysis (DCA) is a simple and 

easy-to-use method that is widely used to predict 

future production rates and oil reserves. This 

method requires the availability of production data, 

which is then used to identify decline trends using 

empirical equations. Using these trends, we may 

predict future production (Maurenza et al., 2023). 

                      

 

Machine learning 

Machine learning methods, such as Random 

Forest and XGBoost, have been proven to be 

effective in analyzing large and complex data sets 

found in reservoirs. As demonstrated by (Zhao & 

Liu 2023), this algorithm is capable of capturing 

complex and nonlinear patterns in data, which is 

often difficult to achieve using traditional methods. 

Random Forest uses an ensemble of many 

decision trees (Hidayat & Astsauri 2021), resulting 

in more accurate decision-making and reduces 

overfitting, while XGBoost provides an advanced 

optimization approach that can further improve 

prediction accuracy (Yan et al., 2023). These two 

machine learning algorithms use past production 

and injection data, as well as other reservoir 

parameter variables, to provide robust predictions 

and anticipate potential production uncertainty. 

Integrated polymer simulation tnavigator  

The objective of this research is to evaluate the 

performance of polymer injection in the Volve Field 

by validating reservoir simulation results through two 

independent data-driven approaches: the capacitance 

resistance model (CRM) and machine-learning 

prediction. Both CRM and machine-learning models 

are applied separately to assess whether the 

production responses generated by the tNavigator 

(3)  

 

Figure 2. CRMIP: Injector-Producer Based Representation 
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simulation are consistent with the data-driven 

behavior inferred from historical injection–production 

dynamics. The workflow begins with constructing a 

3D reservoir simulation model in tNavigator, 

followed by history matching of the waterflood phase 

with an error below 0.5%. The polymer injection 

stage is then simulated using the POLYMER 

keyword with concentrations of 1000–3000 ppm for 5 

years, followed by 15 years of chase water, totaling 

20 years of simulation.  

Two injection wells were operated at a constant 

rate of 1,500 bbl/day. The optimal scenario was 

selected based on the highest recovery factor, after 

which the simulation results were exported for CRM 

and machine-learning analysis. For the CRM 

workflow, the tNavigator production data were used 

to estimate interwell connectivity (fᵢⱼ) and time 

constants (ô), which were subsequently used to 

generate CRM-based production forecasts.  

In parallel, machine-learning models Random 

Forest and XGBoost were trained using the same 

injection–production dataset utilizing a well-based 

split evaluation. These models were not used to 

validate CRM history matching; instead, they 

served as independent predictive benchmarks to 

compare directly against both CRM forecasts and 

the original simulation results. By applying CRM 

and Machine learning as two independent 

validation pathways, this methodology provides a 

robust assessment of whether the tNavigator 

polymer-flood simulation realistically captures the 

underlying injection - production behavior of 

the Volve Field. 

 

RESULT AND DISCUSSION 

In this study, the initialization and simulation of 

the Volve field model were carried out using 

tNavigator, with history matching or matching of 

actual production history was performed between 

early 2015 and 2024. The Volve field has 

undergone water injection since 2015. After that, 

the simulation model was forecasted for 20 years as 

a base case for waterflood injection starting from 

2024 to 2044 and then continued with a polymer 

slug injection scenario for 5 years and followed by 

chase water injection for 15 years. 

To accurately characterize fluid flow behavior 

in reservoirs, it is essential to model the 

permeability distribution. As illustrated in Figure 3, 

the permeability map of the Volve field highlights 

the reservoir’s heterogeneity, characterized by 

variations in permeability values.  

Most of the reservoir has good permeability. A clear 

contrast can be observed between the highly productive 

main flow zones, where permeability reaches up to 2000 

mD (represented by red and orange colors), and the low-

permeability or barrier zones, where permeability 

Figure 3. 2D Visualization of the permeability distribution in the volve field  
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 Parameter Nilai Satuan  

 Original Oil in Place 76.9942 MMSTB  

 Original Water in Place 697.7655 MMSTB  

 Original Gas in Place 55.2871 MMSCF  

 Pore Volume 794.7169 Million RB  

 

 

Figure 4. History matching the volve field production 

Table 1. Initialization of the 3D volve field model 
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Figure 5. History matching and validation of waterflood injection using CRM method in the volve                                 
field (a)Well P1 (b) Well P2 (c) Well P3 

Figure 5 (b) 

Figure 5 (a) 

Figure 5 (c) 
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approaches zero (depicted in blue). Reservoir 

model initialization began with a history match of 

actual field production data. The results are shown 

in Figure 4. This history matching shows excellent 

agreement between the simulation data (solid line) 

and historical field data (markers). The model 

accurately replicated the production decline trend 

for both oil and liquid rates. This indicates that the 

model has been well validated and is capable of 

accurately representing reservoir behavior.  

Analysis, history matching, and validation CRM 

for water injection 

The history matching process conducted to 

estimate CRM parameters (interwell connectivity 

and time constant) showed very satisfactory results 

in curve fitting for the independent variable of 

injection water flow rate (Salehian & Çýnar 2019). 

The CRMP model (black line) and the CRMIP model 

(red line) show excellent agreement with actual data 

from tNavigator simulations, as confirmed by 

research which shows that CRM can predict future oil 

recovery with less than 2% difference compared to 

simulation results (Davudov et al., 2020). Overall, the 

history-matching results from the three wells (P1, P2, 

and P3) indicate that the capacitance-resistive model 

(CRM) is highly effective in replicating historical 

production data (M. H. Nugroho et al., 2021).  

With R² values ranging from 0.72 to 0.79, this 

model demonstrates a strong ability to explain most 

of the variability in production. The model 

successfully separates two main phenomena: the 

natural decline in reservoir production and the 

significant, fluctuating increase in output in 

response to injection activity (modeled by CRM) 

(Lesan et al., 2018. Wells P1 and P3 show a very 

high degree of accuracy, indicating that the 

behavior of the surrounding reservoir can be 

predicted well by the model, while the slightly 

lower but still acceptable fit for well P2 indicates 

 

 

Figure 6 (a) 

Figure 6 (b) 
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Well production 

Well injection  

 I1 I2  

 P1 32 30.55  

 P2 30.86 30.54  

 P3 30 30  

 

 
Well 

production 

Well injection Time 

constant 

τ (days) 

 

 
I1 I2 

 

 P1 0.006679 0.009858 30  

 P2 0.019587 0.011147 30  

 P3 0.006679 0.009858 30  

 

higher geological complexity or fluid dynamics 

(Nwogu et al., 2019). As shown in Figure 6, the 

regression plots collectively provide strong visual 

validation of the performance of the CRMP and 

CRMIP models. It is clear that both models 

successfully demonstrate a strong linear 

correlation, marked by data distribution 

concentrated along the “Perfect Prediction” line.  

This confirms that there is no significant systematic 

bias (consistent over-prediction or under-

prediction) in the model results. It is also 

confirmed that R² provides a high score only when 

the majority of elements have been predicted 

correctly (Chicco et al., 2021). The high of R² 

value, ranging from 0.72 to 0.79, indicates that the 

model is able to explain more than 72% of the 

variation in production data. In addition, the 

relatively small MAPE value (less than 23%) 

proves that the margin of error in the model's 

predictions is still acceptable. 

 

 

 

 

 

 

Tables 2, 3, and 4 summarize the capacitance 

resistance model (CRM) parameters during the 

water injection phase at the Volve Field. This 

comparison provides an overview of the 

relationship between wells (interwell connectivity) 

and the reservoir response time (time constant).  

The results of the capacitance resistance model 

(CRM) indicate a consistent pattern of connectivity 

between wells, along with notable variations in 

time constants. Connectivity analysis shows that 

production well P2 has the strongest connection 

with injector I1, while wells P1 and P3 show more 

dominant connectivity with injector I2 (Fu et al., 

2022). The main difference lies in the approach to 

the time constant ô. The CRMP model uses a 

simplified approach with a single value of 30 days 

for the entire system, while the CRMIP model 

provides a more detailed representation by 

calculating variable time constants for each well 

pair, ranging from 30 to 32 days (Abbasov et al., 

2023). The CRMIP approach is physically more 

realistic since it considers reservoir heterogeneity, 

which is an important characteristic in complex 

waterflooding systems. The CRM method has 

proven effective in understanding the dynamic 

interaction between injection and production wells 

\

 Figure 6 (c) 

Table 2. Interwell connectivity dan time constant CRMP 

Table 4. Time constant CRMIP 

Figure 6. Comparison of the regression plot CRMP, and CRMIP for well production (a) well P1 (b) well P2 (c) well P3 

 
Well production 

Well injection  

 I1 I2  

 P1 0.0094 0.0064  

 P2 0.0191 0.0109  

 P3 0.0067 0.0099  

 

Table 3. Interwell connectivity CRMIP 
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without requiring complex numerical modeling, so 

it can be used for optimization of operating 

parameters and production forecasting (Fu et al., 

2022; Pyatibratov & Zammam 2023). 

Figure 7 presents a 3D visualization of the 

interwell connectivity parameters derived from the 

CRM Model. This map illustrates the spatial 

distribution of injection and production wells, as well 

as the strength of the hydraulic relationship between 

them. The thickness of the arrows represents the 

magnitude of the connectivity values. 

From this image, the main flow patterns can be 

clearly identified. The strongest connection is 

observed between Injector I1 and Producer P2, 

marked by the thickest arrow. In contrast, Injector 

I2 exerts a more dominant influence on Producers 

P1 and P3, while the impact of Injector I1 on these 

producers is minimal. This visualization effectively 

summarizes the quantitative results of the model 

and provides an intuitive understanding of the 

reservoir depletion pattern. 

Analysis of machine learning, random forest, 

and gradient boosting for water injection 

Figure 8 shows the results of the Random forest 

prediction evaluation on the training data, 

demonstrating a very high level of accuracy. The 

model achieved a coefficient of determination R2 of 

0.98 and a very low MAPE of 6.17% for well P1 

and 5.81% for well P2. These metrics 

quantitatively prove that the model is capable of 

replicating more than 98% of historical data 

variability with a minimal average error. On a 

previously unseen validation dataset (P3), the 

model maintained a very high level of accuracy 

with R2 = 0.98 and MAPE = 6.17%. These 

validation results show that the model successfully 

learned the underlying production patterns without 

overfitting. On the regression plot, the distribution 

Figure 7. 3D Interwell Connectivity Map in Volve Field Model 

\  

3D Interwell connectivity map (CRMIP) 
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\

 

Figure 8. Random forest prediction performance for wells production (a) Well P1 (b) Well P2 (c) Well P3 

Figure 8 (b) 

Figure 8 (a) 

Figure 8 (c) 
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of data points (which compares predicted values 

with actual values) is concentrated very tightly 

along the perfect prediction line (red dotted line). 

This visually confirms the near-perfect correlation 

and the absence of significant bias in the 

predictions. An XGBoost machine learning model 

was created as a benchmark for further validation, 

using an approach that has been proven effective in 

the oil and gas industry (Fajrul Haqqi et al., 2023; 

Simanjuntak & Irawan 2021). In Figure 9, this 

model is trained on P1 and P2 well data, then tested 

on P3 well data as validation data, in accordance 

with the data division methodology commonly 

used in machine learning applications for reservoir 

prediction (I. D. R. Nugroho et al., 2024). 

The performance analysis results show that on 

the training data (P1 and P2), the model achieved a 

near-perfect fit with R² = 1.00 and MAPE < 1%, 

which is consistent with the XGBoost performance 

reported in similar studies (Hafidz & Fauzi, 2025). 

More importantly, on the previously unseen 

validation data (P3), the model maintained very 

high accuracy with R² = 0.86 and MAPE = 0.86%.  

The outstanding performance on this validation 

set indicates that the model effectively captured the 

underlying production patterns without overfitting, 

consistent with findings from XGBoost-based 

research for reservoir property estimation (Fajrul 

Haqqi et al., 2023). These results provide strong 

evidence that production reinforces the 

effectiveness of the machine learning approach for 

production forecasting (Noshi et al., 2019), thereby 

validating the trends identified by previous models. 

Hydrolyzed polyacrylamide (HPAM) 

HPAM is the most used polymer in EOR 

applications. It gives significantly greater recovery 

of oil as it exhibits greater visco-elasticity than 

Xanthan solutions. The polyacrylamide adsorbs 

strongly on the mineral surface and makes the 

polymer partially hydrolyzed, and hence reduces 

adsorption by reacting the polyacrylamide with 

base. The EOR process is time-consuming, which 

increases the need for polymer stability. In general, 

hydrolysis should not exceed 40% in a period of 

three months, although acidic or basic conditions 

tend to speed up the process. HPAM also lacks 

tolerance when exposed to high temperatures or 

high salinity (Mbise 2019). The effectiveness of 

synthetic polymer flooding in improving 

sweep efficiency has been well documented in 

laboratory studies. It has been demonstrated 

that HPAM-based polymers can significantly 

enhance mobility control, although their 

performance is heavily influenced by 

reservoir temperature and salinity, which may 

reduce viscosity stability. This highlights the 

importance of rigorously validation of 

polymer performance under complex reservoir 

conditions, as addressed in this study using 

CRM and machine–learning–based diagnostic 

approaches. (Auni et al., 2023).  

Forecast for polymer injection 

Figure 10 presents the historical and 

forecasted water injection rates for wells I-F-4 

and I-F-5. The historical period (up to 2024) 

shows fluctuations in the actual injection data. 

For the forecast period (starting in 2025), the 

injection rate for both wells is maintained at a 

constant level of 1,500 STB/day. 

Figure 11 presents the oil production rate 

forecast for the 3,000 ppm polymer injection 

scenario across the three main production 

wells. After a period of fluctuating history 

matching (before 2025), the implementation 

of polymer injection resulted in a flatter and 

more sustainable production decline 

curve.This demonstrates the effectiveness of 

polymers in improving sweep efficiency and 

reducing the rate of decline. Well P-F-14 

(blue) shows the most stable production 

profile, while P-F-11B (red) experiences the 

fastest decline. This combined profile 

represents the optimal EOR scenario that 

produces the highest Recovery Factor.  

Figure 12 presents a comparison of water cut 

between the base case and the 3,000 ppm 

polymer injection scenarios. During the forecast 

period (after 2025), the polymer scenario clearly 

produces a lower water cut in all three wells. 

This shows that the polymer does improve the 

mobility ratio, delay water breakthrough, and 

boost sweep efficiency, thereby contributing to 

the observed increase in oil production rate 

(Palyanitsina et al., 2022). 
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Figure 9. XGBoost prediction performance for wells production (a) Well P1 (b) Well P2 (c) Well P3 

Figure 9 (b) 

Figure 9 (c) 

 
Figure 9 (a) 
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Figure 13 presents the cumulative oil production 

for both the base waterflood case and the polymer 

injection scenario. During the history matching 

period, both curves overlap, indicating identical 

reservoir performance prior to polymer injection. 

After the onset of polymer injection, the polymer 

scenario exhibits a higher cumulative oil production, 

resulting in an incremental oil gain of 

approximately 0.138 MMSTB. Although this 

increase confirms the effectiveness of polymer 

flooding, the relatively small magnitude highlights 

the limited improvement in sweep efficiency 

caused by reservoir heterogeneity and polymer 

retention effects.  

The results of polymer injection simulations 

in the Volve field, as presented in Table 5, 

indicate that there is no significant improvement 

in the recovery factor (RF). The RF value only 

increased from 21.12% in the base scenario to 

21.30% at a concentration of 3000 ppm, 

corresponding to a cumulative oil production 

increase from 16.25 MMSTB to 16.39 MMSTB.  

Figure 10. Historical and forecasted water injection rates for well injectors I-F-4 and I-F-5 

Figure 11. Forecasted oil production rates for production wells P-F-11B, P-F-12, and P-F-14 under the                       
3,000 ppm polymer injection scenario. 

Table 5. Polymer injection scenario 

 

Scenario 
Oil 

Cumulative 
RF% 

 

 Scenario 0 ppm 16,25 21,12  

 Scenario 1000 ppm 16,32 21,20  

 Scenario 1500 ppm 16,34 21,23  

 Scenario 2000 ppm 16,36 21,26  

 Scenario 3000 ppm 16,39 21,30  
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Figure 12. Comparison of water cut between the base waterflood case and the 3,000 ppm polymer injection scenario.  

Figure 13. Cumulative oil production comparison between the base case and polymer injection scenario.  
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This relatively small increase indicates that the 

performance of the polymer injection mechanism 

in the Volve field is limited due to reservoir 

characteristics that constrain the effectiveness of 

polymer fluids. 

Figure 14 utilizes the 'Minimum' aggregation method 

to visualize the reservoir layer exhibiting the highest 

fluid viscosity. It is evident that the polymer successfully 

increased the viscosity to 1.29 cP (blue zone) compared 

to the baseline formation water viscosity of 0.3 cP (red 

zone). However, the polymer distribution is severely 

restricted, and it fails to reach the primary production 

wells. Given that this map represents the 'best-case' layer, 

it strongly suggests a channeling issue in which the 

polymer flows primarily through thin, high-permeability 

streaks while leaving the remaining oil in adjacent 

layers. This process explains why the total incremental 

oil recovery remains low, at 0.18%." 

Figure 15 illustrates the distribution of polymer 

concentration at the end of the simulation. The 

visualization reveals that the polymer is primarily 

concentrated around the injection wells (I-F-4 and I-F

-5) and the production well P-F-11B. Conversely, the 

remaining production wells (P-F-12 and P-F-14) and 

the majority of the inter-well area remain in the blue 

zone (0 lb/stb). The presence of polymer at producer 

 

Figure 14. Water viscosity distribution after polymer injection. 

 

Figure 15. Polymer concentration distribution at the end of simulation Polymer Injection 
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P-F-11B indicates a channeling issue or early 

polymer breakthrough, where the injected fluid 

followed a high-permeability path directly from the 

injector to this specific producer. Regarding the 

unswept areas, this observation indicates that a 

significant portion of the injected polymer was likely 

adsorbed by the formation rock, thereby impeding its 

transport to a wider area. Since the polymer was 

unable to sweep the inter-well zones effectively 

between the injectors and the remaining producers, 

significant oil displacement toward the production 

wells was not achieved. These combined factors-

channeling and high retention-constitute the primary 

reasons for the minimal incremental recovery 

observed (0.18%)."  

Figure 16 visualizes the distribution of adsorbed 

polymer concentration retained on the reservoir rock 

surface. The map exhibits high adsorption values 

(indicated by green and yellow zones) concentrated 

heavily in the immediate vicinity of the injection wells 

(I-F-4 and I-F-5). In contrast, the regions further into 

the reservoir and surrounding the production wells (P-F

-12 and P-F-14) show negligible adsorption (blue 

zones), indicating that the polymer front never reached 

these areas. This visual evidence confirms that high 

polymer retention is a critical factor limiting the 

project's success. The injected polymer is rapidly 

consumed by the rock matrix due to adsorption 

near the wellbore, causing a severe 

'chromatographic retardation' effect. This prevents 

the polymer bank from propagating deep into the 

inter-well zones to mobilize bypassed oil. 

Consequently, the effective viscosity within the 

reservoir remains low, directly explaining the 

marginal incremental oil recovery of 0.18%." 

Figures 17 and 18 present the comparison of 

areal oil saturation maps at the end of the 

simulation period for the base case (waterflooding) 

Figure 17. Oil saturation distribution after waterflooding 

Figure 16. Distribution of adsorbed polymer concentration 
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and the polymer injection scenario, respectively. 

Visual observation reveals that the saturation 

profiles between the two scenarios are strikingly 

similar. Significant zones of by passed oil 

(indicated by red areas with So> 0.60) persist in the 

inter-well regions in both cases, indicating that the 

injected fluid followed similar preferential flow 

paths regardless of the injection type. This lack of 

visual contrast in the saturation maps suggests that 

the polymer injection did not significantly improve 

the macroscopic sweep efficiency. The expected 

mechanism of flow diversion—where the viscous 

polymer diverts flow from high-permeability swept 

zones into low-permeability unswept zones—did 

not occur effectively. This could be attributed to 

high polymer adsorption on the rock surface or 

insufficient viscosity contrast to overcome the 

reservoir heterogeneity. Consequently, this visual 

evidence strongly corroborates the production 

performance results, which showed a marginal 

incremental oil recovery of only 0.18%.  

The inability of the polymer to expand the 

swept volume (as shown in Figure 18) physically 

explains the insignificant gain in cumulative oil 

production compared to the waterflood baseline. 

Based on the permeability distribution in Figure 3, 

the Volve field exhibits a relatively high degree of 

heterogeneity. Permeability values vary significantly, 

with red-orange areas indicating high-permeability 

zones (up to ±2000 mD), while yellow to green areas 

indicate zones with low permeability approaching zero.  

This condition leads to an imbalance in fluid flow 

during the injection process, where the polymer 

tends to flow through high-permeability streaks and 

bypass low-permeability regions without being 

effectively swept. As a result, sweep efficiency 

does not increase significantly, even though the 

viscosity of the injection fluid has been enhanced 

by the addition of polymer (Erfando et al., 2019). 

The high temperature of the reservoir, which is 

about 224.6°F (107°C), also breaks down the 

molecular chains of the hydrolyzed polyacrylamide 

(HPAM) polymer utilized in this simulation.  

HPAM is known to have limited thermal 

stability, as at temperatures above 90–100°C the 

polymer chain structure begins to experience chain 

scission and excessive hydrolysis (Saputra et al., 

2022), resulting in a decrease in molecular weight 

and a loss of ability to maintain solution viscosity. 

The polymer's efficacy in reducing the mobility 

ratio between water and oil is significantly reduced 

when viscosity decreases. The injected polymer 

fluid behaves almost like ordinary water in porous 

media and is unable to inhibit water fingering and 

channeling in high-permeability zones effectively. 

High salinity conditions and the presence of 

 

Figure 18. Oil saturation distribution after polymer flooding 
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Figure 19. CRM prediction after polymer injection in volve field (a) Well P1 (b) Well P2 (c) Well P3 

Figure 19(b) 

Figure 19(c) 

 

Figure 19(a) 
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divalent ions (Ca²⁺ and Mg²⁺) in the Volve 

formation water further impair the polymer's 

performance. These ions interact with the polymer 

chains, leading to precipitation or coiling that 

diminishes the solution's hydrodynamic efficiency. 

In addition, polymer adsorption onto the surface of 

sand grains causes most of the polymer to remain 

around the injection zone, allowing only a limited 

amount to reach the production zone. 

Consequently, the improvement in sweep 

efficiency becomes localized and restricted to 

certain areas of the reservoir. 

Analysis of the water cut trends in Figure 12 

supports these findings. In the base scenario 

without polymer (0 ppm), the water cut increases 

rapidly after the initial production period and 

reaches more than 80% in 2035, indicating the 

dominance of water production in the production 

well. Conversely, in the 3000 ppm polymer 

injection scenario, the rate of increase in water cut 

is slower and tends to stabilize in the range of 70–

75% in the same period. This shows that even 

though the increase in RF is not significant, 

polymers nonetheless have an important function in 

controlling the rate of injection water movement by 

increasing fluid viscosity and decreasing the 

mobility ratio (Pramadika et al., 2019).   

Thus, polymer injection still contributes to 

delaying water breakthrough and mitigating the 

rate of water cut increase in some wells, especially 

in zones with high permeability. However, the 

water control effect is temporary and local, as 

reservoir heterogeneity causes uneven polymer 

distribution. In high-permeability pathways, the 

polymer is rapidly transported toward the 

production well, providing limited improvement in 

low-permeability zones. As a result, although the 

water cut improved slightly at the beginning of the 

injection period, the effect decreased over time, 

and water production increased again.  

Overall, the simulation results show that 

polymer injection in the Volve Field has a positive 

effect on water control and production stability, but 

does not result in a significant increase in oil 

recovery. This phenomenon illustrates the diminishing 

return effect of polymer injection, where increasing 

polymer concentration is no longer proportional to the 

increase in recovery factor. The combination of high 

permeability heterogeneity, thermal degradation of 

polymers at 107°C, high formation salinity, and high 

adsorption is the main factor limiting the effectiveness 

of the mobility control mechanism in the Volve 

reservoir. 

Analysis, history matching, and validation CRM 

for polymer injection 

Figure 19 presents the final validation of the 

models CRMP and CRMIP by testing them against 

a predetermined polymer injection forecasting 

scenario. The objective is to ensure that these 

simplified analytical models can accurately 

replicate the results of complex enhanced oil 

recovery (EOR) scenarios at the individual well 

level (Sayarpour et al., 2009), as the effectiveness 

of the CRM approach in reservoir characterization 

and performance prediction has also been well 

documented in various previous studies (de 

Holanda et al., 2018). For wells P2 and P3, which 

represent injection-dominated plateau scenarios, 

themodel showed very high accuracy, with MAPE 

as low as 0.00% to 1.33%. Furthermore, the model 

also proved reliable in predicting the more complex 

decline scenario in Well P1, where the interaction 

between injection supportand natural decline 

occurs. In this case, the model remain produces 

strong predictions withresults of R² = 0.94 and 

MAPE = 9%. 

Overall, the model's ability to accurately predict 

these vastly different production profiles provides 

high confidence that models can be used as an 

efficient proxy for EOR scenario optimization 

(Sayarpour et al., 2008). The regression plot 

analysis in Figure 20 provides strong visual 

validation for the polymer injection forecasting 

scenario. For Well P1, which represents the 

dynamic decline scenario, the data points are 

distributed linearly andclosely along the perfect 

prediction line, which is quantitatively confirmed 

by R2 = 0.94 and MAPE = 9%.  Conversely, for 

Wells P2 and P3, which represent the plateau (flat 

production) scenario, the regression plot shows the 

data clustered tightly at a single point (2000, 2000). 

This exceptional accuracy is evidenced by a very 

low MAPE (0.00% to 1.33%). It is important to 

note that the low R2 value for P2 (0.66) is not an 
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Figure 20. Comparison of regression plots for wells production after polymer injection                                                    
(a) Well P1 (b) Well P2 (c) Well P3 

 

Figure 20 (b) 

Figure 20 (a) 

Figure 20 (c) 
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Well production 

Well injection  

 I1 I2  

 P1 0.0000 0.0018  

 P2 0.0442 0.0000  

 P3 0.0028 0.0414  

 

 

Well 

production 

Well injection Time 

constant 

τ (days) 

 

 
I1 I2 

 

 P1 0.000015 0.000399 298.75  

 P2 0.023314 0.017766 32.25  

 P3 0.019998 0.023486 30.66  

 

indication of model failure, but rather a statistical 

deviation due to data validation with very low 

variance. Collectively, these plots visually confirm 

that both models have nearly identical performance 

and are highly reliable in replicating various 

forecasting profiles. 

 

 

 

 

 

 

 

 

 

Figure 21. 3D interwell connectivity map derived from the CRMIP model after polymer injection. 

Tables 6, 7, and 8 summarize the post-polymer 

injection CRM parameters. This comparison 

highlights the significant advantages of the CRMIP 

model (Tables 7 and 8) in modeling EOR 

scenarios. The CRMIP model distinctly captures 

significant changes in reservoir flow patterns. The 

emergence of zero connectivity (P1-I1 and P2-I2) 

indicates the successful blocking of channeling 

pathways. Along with this, there is a flow diversion 

marked by a very high connectivity strengthening 

in the P2-I1 and P3-I2 paths. This phenomenon is 

consistent with research on the effects of 

heterogeneity on sweep efficiency (Borovina et al., 

2022; Ramadhan et al., 2023). Conversely, the 

CRMP model (Table 6) fails to capture this 

dynamic behaviour, as evidenced by the physically 

unrealistic time constant estimate for P1 (298.75 

days). Therefore, CRMIP provides a more accurate 

and reliable representation of post-polymer 

reservoir conditions.  

This finding aligns with previous studies 

emphasizing thatselecting the appropriate 

simulation model is crucial for understanding flow 

behavior in heterogeneous reservoirs after polymer 

injection (Ramadhan et al., 2020). Figure 21 shows 

a 3D visualization of inter-well connectivity after 

polymer injection, where the thickness of the 

arrows indicates flow strength (f_ᵢⱼ). The dominant 

pattern is seen from Injector I1 to Producer P2 as the 

Table 8. CRMIP time constant after polymer injection 

Table 7. Interwell connectivity of CRMIP after               
polymer injection 

Table 6. Interwell connectivity and CRMP time constant 
after polymer injection 

 
Well production 

Well injection  

 I1 I2  

 P1 43.67 68.48  

 P2 30.00 83.95  

 P3 30.00 30.15  
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Figure 22. Random Forest performance analysis for wells production after polymer injection                                            
(a) Well P1 (b) Well P2 (c) Well P3 

Figure 22. (a) 

Figure 22. (b) 

Figure 22. (c) 
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strongest path, and from I2 to P1 and P3 as secondary 

flows. This pattern confirms the occurrence of 

effective flow diversion, with the polymer 

successfully increasing resistance in weak pathways 

and directing the fluid to the main production zones. 

Overall, this map demonstrates the success of the 

EOR intervention in modifying reservoir connectivity 

and increasing sweep efficiency. 

Analysis machine learning random forest and 

gradient boosting for polymer injection 

Figure 22 shows the results of the Random 

Forest model performance analysis on oil 

production rate predictions for three wells (P1, P2, 

and P3) after polymer injection. Each pair of 

graphs illustrates two main aspects, namely the 

history matching results between actual data and 

model predictions, as well as regression plots 

showing the level of conformity between actual 

data and predictions. The results show that the 

Random Forest model accurately represents 

production trends with a high degree of precision. 

R² value, which is close to 1, along with the low 

MAPE, demonstrates the model's ability to reliably 

predict changes in production due to the polymer 

injection process. This indicates that ensemble tree-

based machine learning models, such as Random 

Forest, are very effective in capturing the nonlinear 

relationship between reservoir variables, injection 

parameters, and production response. 

These findings are consistent with previous 

studies showing that combining the Random Forest 

algorithm with optimization techniques can 

improve the accuracy of oil and gas production 

predictions. In addition, (Rahmanifard & Gates 

2024) also confirm that machine learning-based 

models, including Random Forest, can achieve 

high R² values in production forecasting for various 

reservoir types. Meanwhile, (Zhou et al., 2023) 

confirmed the effectiveness of Random Forest in 

predicting two-phase oil-water flow rates in 

horizontal wells, which is relevant to the context of 

predicting polymer injection performance in 

production wells. 

Figure 23 shows the results of the XGBoost 

(Extreme Gradient Boosting) model performance 

analysis in predicting oil production rates after 

polymer injection for three wells: P1 and P2 as 

training data, and P3 as validation data. Each pair 

of graphs shows the results of history matching 

(left) and regression plots (right) between actual 

data and model predictions. The XGBoost model 

shows very high accuracy in reconstructing 

production trends. In well P1 with a decline 

pattern, the model achieved R² = 0.99 and MAPE < 

3%, indicating its strong ability to capture 

production decline dynamics. Well, P2, which 

represents a plateau production pattern, also shows 

near-perfect prediction results (R² = 0.97, MAPE < 

2%). For well P3 (validation data), the model 

remains stable with minimal deviation, 

demonstrating good generalization capabilities for 

unseen data and no evidence of overfitting. 

The machine-learning models were validated 

using a well-based split, ensuring that the training 

and testing datasets originated from different wells 

to prevent overfitting. This process was further 

strengthened through 5-fold cross-validation, 

which ensured stable and consistent predictive 

performance. The very high R² value obtained by 

XGBoost (0.99) remains reasonable because the 

data used were derived from deterministic reservoir 

simulation results with minimal noise. The strong 

injection–production relationships in the dataset 

enable the model to learn reservoir dynamics with 

high accuracy. Residual analysis also showed no 

systematic bias, confirming that the model’s strong 

performance was not caused by overfitting. 

These results are consistent with recent studies 

demonstrating the effectiveness of the XGBoost 

algorithm in predicting oil and gas production 

performance based on field data.(A. Al Shabaan & 

N. Nemer, 2024compared XGBoost with Decision 

Tree and Random Forest and found that XGBoost 

achieved the highest prediction accuracy for oil and 

gas production data. Furthermore, (Hou et al., 

2024) developed an adaptive fusion-based 

prediction method that integrates XGBoost to 

capture nonlinear relationships in unconventional 

well production data with highly accurate results. 

The research conducted by (Zhu et al., 2024) also 

reinforces these findings by showing that the 

XGBoost model is capable of predicting production 

trends with a very low error, even when applied to 

data with high noise levels. In general, these results 

confirm that XGBoost is a reliable and efficient 
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Figure 23. XGBoost performance analysis for wells production after polymer injection                                                    
(a) Well P1 (b) Well P2 (c) Well P3 

Figure 23. (b) 

Figure 23. (a) 

Figure 23. (c) 
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 fij 

 

 

Coefficient 

Connectivity injection, 

producer 

 

 

 τ Time Constant days  

 
HPAM 

Hydrolyzed 

Polyacrylamide 
 

 

 RF Recovery Factor %  

 
MAPE 

Mean Absolute 

Percentage Error 
% 

 

 I1, I2,etc 

 
Injection Well 1, 2, etc  

 

 MMSTB 

 

Million Stock Tank 

Barrels 
 

 

 PPM Parts Per Million   

 
P1, P2, etc 

Production Well 1,2, 

etc 
 

 

 
XGBOOST 

eXtreme Gradient 

Boosting 
 

 

 R2 

 

Coefficient 

Determination 
 

 

 
EOR 

Enhanced Oil 

Recovery 
 

 

 

 

 Unit Definition Symbol  

 
CRM 

Capacitance 

Resistance Model 
 

 

 
DCA 

Decline Curve 

Analysis 
 

 

 

machine learning approach for forecasting 

enhanced oil recovery (EOR) performance based 

on field data. 

 

CONCLUSION 

This study evaluated the performance of HPAM 

polymer injection in the Volve Field by validating 

tNavigator full-physics simulation results using the 

Injector–Producer configuration of the capacitance 

resistance model (CRM-IP) and machine-learning 

algorithms. The simulation results indicate that 

polymer injection increased the oil recovery factor 

from 21.12% to 21.30%, reflecting a measurable 

but modest improvement in sweep efficiency. 

CRM-IP successfully reconstructed production 

trends and quantified interwell connectivity (R² = 

0.94; MAPE < 10%), providing clear insights into 

the influence of each injector on producer wells. 

Additional validation using machine-learning 

models demonstrated very high predictive accuracy 

(XGBoost R² = 0.99; MAPE < 1%), reinforcing the 

consistency and reliability of the simulation 

outcomes. The modest recovery improvement is 

primarily attributed to reservoir heterogeneity, 

HPAM degradation at 107°C, and formation 

salinity effects that reduce polymer viscosity 

stability. Overall, CRM-IP and machine learning 

serve as effective independent validation pathways 

that enhance confidence in polymer-injection 

evaluation and field planning. 

 

ACKNOWLEDGMENT 

The authors would like to thank the Laboratory 

of the Petroleum Engineering Study Program, 

Faculty of Engineering, Islamic University of Riau, 

and PT Pertamina Hulu Rokan. 

 

GLOSSARY OF TERMS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

A. Al Shabaan, M., & N. Nemer, Z. (2024). Oil 

and Gas Production Forecasting Using 

Decision Trees, Random Forest, and XGBoost. 

Journal of Al-Qadisiyah for Computer Science 

and Mathematics, 16(1), 9–20. https://

doi.org/10.29304/jqcsm.2024.16.11431 

Abbasov, A. A., Abbasov, E. M., & Suleymanov, 

A. A. (2023). Estimation of the waterflooding 

process efficiency based on a capacitive-

resistive model with a nonlinear productivity 

index. 1(1), 19–26. https://doi.org/http://

dx.doi.org/10.5510/OGP2023SI100820 

Alvarado, V., & Manrique, E. (2010). Enhanced 

Oil Recovery: An Update Review. 1529–1575. 

https://doi.org/10.3390/en3091529 

Auni, N. R., Afdhol, M. K., Ridha, M., & Erfando, 

T. (2023). Potensi Polimer Sintetik Sebagai 

Bahan Chemical Enhaced Oil Recovery Untuk 

Meningkatkan Sweep Efficiency pada Skala 

Pengujian Laboratorium. 57(1), 11–23. 

Borovina, A., Hincapie, R. E., Clemens, T., 

Hoffmann, E., & Wegner, J. (2022). Selecting 

EOR Polymers through Combined 

Approaches—A Case for Flooding in a 

https://doi.org/10.29017/scog.v48i4.1929


Comparative Study of Capacitance Resistance Model and Machine Learning 

for Sensitivity Analysis of Polymer Injection Performance (Rizal et al.) 

 

DOI org/10.29017/scog.v48i4.1929  I 277 

Heterogeneous Reservoir. Polymers, 14(24). 

https://doi.org/10.3390/polym14245514 

Chicco, D., Warrens, M. J., & Jurman, G. (2021). 

The coefficient of determination, R-squared, is 

more informative than SMAPE, MAE, MAPE, 

MSE, and RMSE in regression analysis 

evaluation. PeerJ Computer Science, 7, 1–24. 

https://doi.org/10.7717/PEERJ-CS.623 

Davudov, D., Malkov, A., & Venkatraman, A. 

(2020). Integration of capacitance resistance 

model with reservoir simulation. Proceedings - 

SPE Symposium on Improved Oil 

Recovery, April 18–22. https://

doi.org/10.2118/200332-MS. 

de Holanda, R. W., Gildin, E., Jensen, J. L., Lake, 

L. W., & Shah Kabir, C. (2018). A state-of-the-

art literature review on capacitance resistance 

models for reservoir characterization and 

performance forecasting. Energies, 11(12). 

https://doi.org/10.3390/en11123368 

Erfando, T., Rita, N., & Ramadhan, R. (2019). The 

Key Parameter Effect Analysis Of Polymer 

Flooding On Oil Recovery Using Reservoir 

Simulation. Journal of Geoscience, Engineering, 

Environment, and Technology, 4(1), 49. https://

doi.org/10.25299/jgeet.2019.4.1.2107 

Fajrul Haqqi, M., Saroji, S., & Prakoso, S. (2023). 

An implementation of the XGBoost algorithm to 

estimate effective porosity on well log data. 

Journal of Physics: Conference Series, 2498(1). 

https://doi.org/10.1088/1742-6596/2498/1/012011 

Fu, L., Zhao, L., Chen, S., Xu, A., Ni, J., & Li, X. 

(2022). A Prediction Method for Development 

Indexes of Waterflooding Reservoirs Based on 

Modified Capacitance–Resistance Models. 

Energies, 15(18). https://doi.org/10.3390/en15186768 

Hafidz, M., & Fauzi, E. (2025). A Comparative Study 

of Arima, XGBoost, and Hybrid Arima–XGBoost 

Approaches for Forecasting IT Project  Demand. 8. 

https://doi.org/https://doi.org/10.31539/

intecoms.v8i3.15848 

Hidayat, F., & Astsauri, T. M. S. (2021). Applied 

random forest for parameter sensitivity of low-

salinity water injection (LSWI). https://doi.org/

https://doi.org/10.1016/j.aej.2021.06.096 

Hou, D., Han, G., Chen, S., Zhang, S., & Liang, X. 

(2024). A Study on a Novel Production 

Forecasting Method of Unconventional Oil and 

Gas Wells Based on Adaptive Fusion. 

Processes, 12(11). https://doi.org/10.3390/

pr12112515 

Imankulov, T., Kenzhebek, Y., Makhmut, E., & 

Akhmed-Zaki, D. (2022). Using machine 

learning algorithms to solve the polymer 

flooding problem. European Conference on the 

Mathematics of Geological Reservoirs 2022, 

ECMOR 2022, 40(6), 35–40. https://

doi.org/10.3997/2214-4609.202244056 

Khalbia, D. (2021). Coupled Capacitance 

Resistance Model and Aquifer Model for 

Waterflood Performance Prediction. 

Lesan, A., Ehsan Eshraghi, S., Bahroudi, A., Reza 

Rasaei, M., & Rahami, H. (2018). State-of-the-Art 

Solution of Capacitance Resistance Model by 

Considering Dynamic Time Constants as a Realistic 

Assumption. Journal of Energy Resources 

Technology, Transactions of the ASME, 140(1). 

https://doi.org/10.1115/1.4037368 

Maurenza, F., Yasutra, A., & Tungkup, I. L. (2023). 

Production Forecasting Using the ARPS Decline 

Curve Model with The Effect of Artificial Lift 

Installation. Scientific Contributions Oil and Gas, 46

(1), 17–26. https://doi.org/10.29017/SCOG.46.1.1310 

Mbise, P. K. (2019). Enhanced Oil Recovery for 

Norne Field E-Segment using Alkaline 

Surfactant-Polymer Flooding. August. 

Noshi, C. I., Eissa, M. R., Abdalla, R. M., & 

Schubert, J. J. (2019). An intelligent data-driven 

approach for production prediction. Proceedings 

of the Annual Offshore Technology Conference, 

2019-May. https://doi.org/10.4043/29243-ms 

Nugroho, I. D. R., Trisna, M. D., & Saroji, S. 

(2024). An Implementation of XGBoost and 

Random Forest Algorithm to Estimate Effective 

Porosity and Permeability on Well Log Data at 

Fajar Field, South Sumatra Basin, Indonesia. 

Indonesian Journal of Applied Physics, 14(2), 

271. https://doi.org/10.13057/ijap.v14i2.82901 

Nugroho, M. H., Aslam, B., & Marhaendrajana, T. 

(2021). Capacitance Resistance Model (CRM) 

https://doi.org/10.29017/scog.v48i4.1929


Scientific Contributions Oil & Gas, Vol. 48. No. 4, December 2025: 251 - 279 

 

278 I DOI org/10.29017/scog.v48i4.1929  

Application To Rapidly Evaluate and Optimize 

Production in the Peripheral Waterflood Field, 

Pandhawa Field Case Study. PETRO:Jurnal 

Ilmiah Teknik Perminyakan, 10(3), 149–162. 

https://doi.org/10.25105/petro.v10i3.9827 

Nwogu, I. C., Ayo, A., Asemota, O., & Ajibade, O. 

(2019). Successful application of capacitance 

resistance modeling to understand reservoir 

dynamics in a brown field waterflood – A Niger 

delta swamp field case study. Society of 

Petroleum Engineers - SPE Nigeria Annual 

International Conference and Exhibition 2019, 

NAIC 2019. https://doi.org/10.2118/198819-MS 

Palyanitsina, A., Safiullina, E., Byazrov, R., 

Podoprigora, D., & Alekseenko, A. (2022). 

Environmentally Safe Technology to Increase 

Efficiency of High-Viscosity Oil Production for 

the Objects with Advanced Water Cut. Energies, 

15(3). https://doi.org/10.3390/en15030753 

Pramadika, H., Samsol, S., & Satiyawira, B. 

(2019). The effect of the addition of polymer on 

the viscosity of the fluid for industrial oil and 

gas injection in the EOR method. Journal of 

Physics: Conference Series, 1402(2). https://

doi.org/10.1088/1742-6596/1402/2/022053 

Pyatibratov, P. V., & Zammam, M. (2023). 

Waterflooding optimization based on the CRM and 

solving the linear programming problem. 2(2), 59–67. 

https://doi.org/http://dx.doi.org/10.5510/10.5510/

OGP2023SI200890 

Rahmanifard, H., & Gates, I. (2024). A Comprehensive 

review of data-driven approaches for forecasting 

production from unconventional reservoirs: best 

practices and future directions. Artificial 

Intelligence Review, 57(8). https://

doi.org/10.1007/s10462-024-10865-5 

Ramadhan, R., Abdurahman, M., & Srisuriyachai, 

F. (2020). Sensitivity Analysis Comparison of 

Synthetic Polymer and Biopolymer using 

Reservoir Simulation. Scientific Contributions 

Oil and Gas, 43(3), 143–152. https://

doi.org/10.29017/scog.43.3.516 

Ramadhan, R., Novriansyah, A., Erfando, T., 

Tangparitkul, S., Daniati, A., Permadi, A. K., & 

Abdurrahman, M. (2023). Heterogeneity Effect on 

Polymer Injection: a Study of Sumatra Light Oil. 

Scientific Contributions Oil and Gas, 46(1), 39–52. 

https://doi.org/10.29017/SCOG.46.1.1322 

Salehian, M., & Çýnar, M. (2019). Reservoir 

characterization using dynamic capacitance–

resistance model with application to shut-in and 

horizontal wells. Journal of Petroleum 

Exploration and Production Technology, 9(4), 

2811–2830. https://doi.org/10.1007/s13202-019

-0655-4 

Saputra, D. D. S. M., Prasetiyo, B. D., Eni, H., 

Taufantri, Y., Damara, G., & Rendragraha, Y. 

D. (2022). Investigation of Polymer Flood 

Performance in Light Oil Reservoir: Laboratory 

Case Study. Scientific Contributions Oil and 

Gas, 45(2), 81–86. https://doi.org/10.29017/

SCOG.45.2.965 

Sayarpour, M., Kabir, C. S., & Lake, L. W. (2008). 

Field applications of capacitance-resistive 

models in waterfloods. SPE Reservoir 

Evaluation and Engineering, 12(6), 853–864. 

https://doi.org/10.2118/114983-pa 

Sayarpour, M., Zuluaga, E., Kabir, C. S., & Lake, 

L. W. (2009). The use of capacitance-resistance 

models for rapid estimation of waterflood 

performance and optimization. Journal of 

Petroleum Science and Engineering, 69(3–4), 

227–238. https://doi.org/10.1016/j.petrol.2009.09.006 

Shang, C., Ng, W., Nait, M., Jahanbani, A., & Struen, 

L. (2023). A Survey on the Application of 

Machine Learning and Metaheuristic Algorithms 

for Intelligent Proxy Modeling in Reservoir 

Simulation. Computers and Chemical 

Engineering, 170(December 2022), 108107. 

https://doi.org/10.1016/

j.compchemeng.2022.108107 

Simanjuntak, R., & Irawan, D. (2021). Applying 

Artificial Neural Network and XGBoost to 

Improve Data Analytics in the Oil and Gas 

Industry. Indonesian Journal of Energy, 4(1),  

26–35. https://doi.org/10.33116/ije.v4i1.103 

Weber, D. (2009). The Use of Capacitance-

Resistance Models to Optimize Injection 

Allocation and Well Location in Water 

Floods. 292. 

https://doi.org/10.29017/scog.v48i4.1929


Comparative Study of Capacitance Resistance Model and Machine Learning 

for Sensitivity Analysis of Polymer Injection Performance (Rizal et al.) 

 

DOI org/10.29017/scog.v48i4.1929  I 279 

Yan, S., Li, W., Zhang, M., & Wang, Z. (2023). An 

Innovative Method for Hydraulic Fracturing 

Parameters Optimization to Enhance Production 

in Tight Oil Reservoirs. 1–24. https://

doi.org/10.14800/IOGR.1262. 

Zhao, W., & Liu, T. (2023). Approaches of Combining 

Machine Learning with NMR-based Pore Structure 

Characterization for Reservoir Evaluation. https://

doi.org/10.20944/preprints202312.0444.v1. 

Zhou, H., Liu, J., Fei, J., & Shi, S. (2023). A Model 

Based on the Random Forest Algorithm That 

Predicts the Total Oil–Water Two-Phase Flow 

Rate in Horizontal Shale Oil Wells. Processes, 

11(8). https://doi.org/10.3390/pr11082346. 

Zhu, R., Li, N., Duan, Y., Li, G., Liu, G., Qu, F., 

Long, C., Wang, X., Liao, Q., & Li, G. (2024). 

Well-Production Forecasting Using Machine 

Learning with Feature Selection and Automatic 

Hyperparameter Optimization. Energies, 18(1). 

https://doi.org/10.3390/en18010099. 

https://doi.org/10.29017/scog.v48i4.1929

