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ABSTRACT - This study aims to minimize uncertainty in waterflood performance by employing a data-
driven workflow that combines the Capacitance Resistance Model (CRM) with Machine Learning Two
CRM variants, CRM-P (Producer-based) and CRM-IP (Injector-Producer-based), are utilized to evaluate
interwell connectivity and time constants on three reservoir models: homogeneous, heterogeneous, and a
real field scenario (Volve Field). The model is evaluated using R? and Mean Absolute Percentage Error
(MAPE) and is compared against the Random Forest and eXtreme Gradient Boosting (XGBoost)
techniques. The results indicate that CRM-IP provides more realistic estimates than CRM-P, particularly for
response time. XGBoost consistently demonstrates superior prediction accuracy, achieving R* values of
0.76-0.98 and MAPE values of 0.5-10%. Three-dimensional (3D) visualizations of interwell connectivity
and streamline analysis strengthen the understanding of fluid flow and sweep efficiency. This further
demonstrates that integrating CRM and Machine Learning serves as a decision-support tool for Enhanced
Oil Recovery optimization, as evidenced by R> and MAPE analyses that characterize sweep efficiency and

the reservoir's capacity to accommodate additional injection.
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INTRODUCTION

The continuously increasing global energy
demand encourages the petroleum industry to
maximize production from existing fields by
applying enhanced oil recovery (EOR) methods
(Du et al., 2024). One of the most commonly used
methods in the secondary recovery stage is
waterflooding. This method maintains reservoir
pressure and pushes remaining oil toward
production wells, thereby increasing sweep
efficiency and extending field production life
(Malvi'c et al., 2020. However, despite being
relatively simple and widely implemented, the
waterflood method often faces challenges due to
reservoir heterogeneity, non-uniform permeability
distribution, and uncertainty in interwell
connectivity (Fu et al., 2022). These factors can
cause early water breakthrough and significantly
reduce oil recovery efficiency (Guo et al., 2019).

Successful waterflooding can increase the oil
recovery factor from a typical 5-25% in the
primary stage to a typical 45% of original oil in
place (OOIP) (Usman & Haans, 2017. Waterflood
performance evaluation is typically conducted
through full-scale reservoir simulation, which
requires detailed geological data and extensive
computational time. This approach is less efficient
when rapid decision-making is needed for field
management (Makhotin et al., 2022). To address
this issue, data-driven approaches such as the
capacitance resistance model (CRM) have been
developed to estimate the relationship between
injection and production rates using an
electrical system analogy (Fu et al., 2022).
CRM can calculate interwell connectivity
strength and time constants using historical
injection and production data, without
requiring complex fluid-flow simulation. The
two main CRM formulations commonly used
are CRM-P (Producer-based) and CRM-IP
(Injector-Producer-based), each representing
systems with different levels of complexity.

Despite its effectiveness, conventional CRM has
limitations in capturing nonlinear behavior in
complex and heterogeneous reservoir systems. This
model tends to assume a linear relationship
between injection and production; thus, it is not
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fully capable of representing physical phenomena
such as channeling, water-saturation variations, and
dynamic pressure changes across production zones.
To overcome these limitations, CRM is combined
with decline curve analysis (DCA), which corrects
long-term production rate decline trends (Fu et al.,
2022). The integration of CRM+DCA enhances the
model's predictive capability during the production
decline phase, resulting in smoother history
matching and more realistic estimations of
reservoir behavior.

In this research, Machine Learning techniques
such as Random Forest and eXtreme Gradient
Boosting (XGBoost) are not used as primary
models but rather as benchmarks to validate the
DCA model’s prediction accuracy. This approach
aims to test the extent to which the CRM-DCA
model can achieve the accuracy of advanced data-
based algorithms while ensuring model reliability
in representing physical reservoir conditions.

This study focuses on implementing a data-
driven workflow that combines CRM and DCA to
evaluate waterflood performance (secondary
recovery water injection) across three different
reservoir models: homogeneous, heterogeneous,
and real field (volve field). Through analysis of
interwell connectivity parameters and time
constants, and through result validation using
Machine Learning, this research aims to
demonstrate the effectiveness of the CRM-DCA
model in reducing uncertainty, understanding the
dynamic response of waterflood systems, and
supporting strategic decision-making in reservoir
management and performance optimization.

METHODOLOGY

This study uses a Tnavigator simulator to
present historical data on injection and fluid
production rates, which are derived from both
synthetic models and actual field data.
Additionally, CRM-P and CRM-IP are developed
in Python, and the model is integrated with DCA.

These models are utilized to forecast historical
matching and to assess their efficacy using
statistical metrics, including R-squared (R*) and
Mean Absolute Percentage Error (MAPE) (Yousef
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et al., 2006). If the R? value is close to 1 and the
MAPE is below 10%, the model is considered
optimal. To strengthen the analysis, machine
learning techniques such as Random Forest
and XGBoost are employed as benchmarks
for the historical matching results generated
by the CRM model.

The data utilized include the SPE 5 and SPE 10
synthetic datasets, as well as actual field data from the
Volve Field. The selection of these models aims to
evaluate how effectively CRM and machine learning can
be used to characterize fluid movement in reservoirs.

Capacitance resistance model (CRM)

The CRM is a valuable tool for improving real-
time flood management and reservoir analysis, as it
accurately simulates gas- and waterflood recovery
processes. The CRM is a material-balance—based
model that requires only injection and production
histories, which are the most accessible data
obtained during a reservoir's production life (De
Holanda et al., 2018). This study introduces two
formulations by examining distinct control
volumes to represent varying levels of
modeling complexity.

CRM-P: producer-based model

Represents in-situ volumetric balance over the
effective pore volume of a producer. According to
Nguyen (2012), CRM-P is formulated using
Equation 1.
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where the CRMP assigns one time constant for the
draining volume of each producer and one
connectivity for each injector — producer. Also
Sayarpour et al., (2009, CRMP is a model in which
the producer is the center or focus of the control
system. For this reason, the CRMP is not
recommended for very heterogeneous reservoirs; it
performs better when near-homogeneity is present
near the producers and when all injectors are at
similar distances from the producers, such as in a
patterned waterflood.

CRM-IP: injection-producer based model

The volumetric balance in the reservoir is
evaluated over the affected pore volume of each
injector—producer pair, using Equation 2 from
(Nguyen 2012).
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According to De Holanda et al. (2018), where (q;;) j is
the production rate in producer j from the injector (i)-
producer (j), as well as J;7;; is the productivity index
associated with such a control volume.

Decline curve analysis

According to Maurenza et al. (2023), the Arps
method is widely used in production forecasting to
predict production performance and estimate
remaining reserves. In this study, decline curve
analysis (DCA) is applied as a complementary
approach to enhance CRM predictions. This
integration is necessary because the CRM alone
struggles to capture production behavior when a
significant decline trend occurs. Therefore, the
Exponential Decline equation from DCA is applied
as follows:

q = q;e"i40 3)

where the current production rate g is determined
from the initial production rate, which decreases
exponentially with the initial decline rate Di over
the time interval At . The exponential indicates that
production declines gradually and continuously
over time, with the rate of decline determined by
the magnitude of Di.

Machine learning with random forest and
extreme gradient boosting (XGBoost)

The Random forest method operates by
constructing numerous decision trees and obtaining
the outcome through voting (for classification) or
averaging (for regression) across all trees (B. Liu et
al., 2025). The primary advantages include its

DOI org/10.29017/scog.v48i4.1928 | 205



Scientific Contributions Oil & Gas, Vol. 48. No. 4, December 2025: 203 - 227

resistance to overfitting and the absence of data
scaling requirements. Meanwhile, XGBoost
provides superior accuracy, efficient processing of
large datasets, and improved handling of
imbalanced datasets compared to Random Forest.
The application of machine learning without
careful consideration results in inaccurate
predictions, which ultimately leads to unusable
algorithms. Such inaccuracies arise from common
errors and limitations frequently encountered in the
application of machine learning, particularly in
scientific fields (Zainuri et al., 2023.

In this case, for fields with more than two wells,
the data is split using a well-based approach to
ensure that the model performs consistently across
all wells. However, this split is not applied to the
two-dimensional SPE 5 model, which includes
only one representative well. Thus, the
combination of RF and XGBoost not only provides
robust historical-matching results but also

FIELD)

Oll Rate

Qil Rate (H)
Liquid Rate
Liguid Rate (H)

facilitates local (well-by-well) data interpretation,
thereby supporting faster, more accurate field
development decisions.

RESULT AND DISCUSSION
Homogeneous reservoir model

In this reservoir, gas and water are injected into
a single injection well, but gas injection has been
shut off, and continuous water injection is currently
in use. In the base scenario, the permeability value
in this model is 50 mDarcy across the entire board.

The simulation system delivers excellent history
-matching results in Figure 1, highlighting the two
main phases of field production. The initial phase,
concluding in 1994, was characterized by primary
depletion, during which oil was the only fluid
produced. The second phase shows a classic
response to water injection: the total fluid rate

Liquid Rate, Msibiday

1988 1985 1990 1991 1992 1983 1994 1995 1956 1897 199§

Cate

1968 2000

2001 2002 2005 2004 2005 2006 2007 2008 2008 20M0

Figure 1. The plot of liquid rate vs oil rate in the homogeneous model
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increases and stabilizes, while the oil rate decreases
dramatically due to water breakthrough. At the end
of the period, the field produces almost entirely
water, indicating a high water-sweep efficiency.

History matching analysis and validation of
CRM-P and CRM-IP in homogeneous model

A comprehensive evaluation of the hybrid
model on well P1 is presented in Figure 2.
Although the time-comparison plots and statistical
metrics show very high accuracy, they also
highlight limitations in fully capturing the complex
model of reservoir behaviour. This finding is
consistent with research that indicates that hybrid
models, despite providing accurate predictions
based on conventional statistical metrics, still face
challenges in representing complex physical
phenomena in reservoir systems (Fan et al., 2025).

Interwell connectivity and time constant
analysis in homogeneous model

Table 1 presents a comparison of dynamic
reservoir parameters using the CRM-P and CRM-
IP models for production well P1. The results show
very significant differences in interpretation
between the two models. The CRM-P model
estimates very weak interwell connectivity
(0.000786) and an extreme response time constant
of 1,314.20 days. In contrast, the CRM-IP model
identifies a much stronger connectivity (0.0102)
and a much faster time constant (98.03 days). This

drastic difference strongly supports the CRM-IP
model, as its response time is much more
physically realistic for active waterflood dynamics
than the delay time indicated by the CRM-P model.

Table 1. Interwell connectivity and time constant CRM-P
and CRM-IP homogeneous model

o Time

,(rj}l}pl\: Well ln]ec‘;ll(;:; Constant
(Day)

CRM-P P1 0.000786 1314.20
CRM-IP P1 0.0102 98.03

The perfect single-flow path in Figure 3 shows
that there is no geological complexity that could
interfere with fluid flow. The high efficiency of
this homogeneous base-case scenario has proven to
be an important benchmark for
performance evaluation.

reservoir

Homogeneous conditions allow for optimal
sweep efficiency because there are no permeability
variations that inhibit flow. Direct pressure from
the injector to ideal
waterflooding conditions. (Ogbeiwi et al., 2018)

the producer reflects
Confirm that effective pressure maintenance occurs
when there is direct connectivity between the
injection and production wells. Meanwhile, (Sidiq
et al.,, 2019) explain that under homogeneous
conditions, the displacing phase can move
optimally without interference from an adverse

mobility ratio.

Comparison Hybrid Medel for Well P1
CRMP+DCA: R?=0.93, MAPE=6.74%
CRMIP+DCA: R?=0.92, MAPE=6.05%
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Figure 2. The Plot of production rate vs date for CRM-P and CRM-IP in homogeneous model
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Compared to other models, this model enables a
systematic evaluation of the impact of reservoir
complexity. Ismailova et al. (2021) Emphasize that
understanding homogeneous reservoirs as a basic
reference is essential for analyzing how formation
heterogeneity can cause irregular flow profiles and
uneven fluid distribution under more realistic
conditions.

Streamline analysis for homogeneous reservoir
model
In Figure 4, a streamline plot shows what would

happen if an ideal fluid were to flow through a
homogeneous reservoir. The white lines/curves show the

optimal flow path for fluids from the injector to the
producer. This figure illustrates an ideal scenario of
100% sweep efficiency, a rare occurrence in actual field
operations. In comparison, (Ramadhan et al.,, 2023
reported that homogeneous reservoirs achieved an oil
recovery factor of 59.86%, whereas heterogeneous
reservoirs ranged from 45.83% to 80.46%, depending on
heterogeneity level.

Streamline in this homogeneous reservoir served as
an important baseline for understanding fluid flow
dynamics  (Krogstad et al., 2017. This
visualization allows reservoir engineers to analyze
sweep efficiency and identify areas that may not
be swept in a complex field.

3D interwell connectivity map
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Figure 3. 3D mapwell connectivity in homogeneous reservoir
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Figure 4. 2D Streamline with permeability analysis in homogeneous model

Machine learning analysis with random forest
and eXtreme gradient boosting in homogeneous
model

Figures 5 and 6 show Random Forest and
XGBoost plots in production prediction evaluation.
They demonstrated that both machine learning
algorithms, Random Forest and XGBoost, perform
exceptionally well during the history-matching
phase. The XGBoost model had a slight advantage,
with an R? of 0.9999 and an MAPE of 0.17%,
compared to the Random Forest's R? of 0.9992 and
MAPE of 0.50%.

(Sri Chandrahas et al., 2022 found that the
XGBoost model outperformed other ensemble
methods, such as Random Forest, in terms of
MAPE, root mean square error (RMSE), and R?
values. (Fadzil et al., 2021 also showed that
XGBoost was the best and most stable model for
predicting kinematic viscosity and base oil
viscosity index during validation, as evidenced by
its accuracy. This indicates that both models are
good at predicting production with high confidence
and do not exhibit any signs of overfitting.

Heterogeneous reservoir model

The heterogeneous reservoir model with a
vertical permeability distribution that varies in
Figure 7. The most noticeable feature is the
presence of high-permeability pores (red/yellow),
which will control fluid flow. The existence of
these preferential flow paths creates the risk of
early breakthrough and will result in uneven sweep
efficiency throughout the reservoir.

Figure 8 shows field production under strong
waterflood, characterized by a constant total fluid
rate of 4.9 mmstb/day. A significant decrease in oil
rate, in contrast to a stable fluid rate, indicates
rapid water breakthrough and a continuous increase
in water content. This profile is characteristic of a
pressure maintenance strategy in which the oil
produced is continuously replaced by water.

History matching analysis and validation of
CRM-P and CRM-IP in heterogeneous model

The results show a very high level of prediction
accuracy. Visually, in Figure 9, the time
comparison graph shows that the model predictions
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Figure 5. History matching of random forest model for prediction rate in reservoir
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Figure 6. History matching of eXtreme gradient boost model for prediction rate in reservoir

(both CRMP and CRMIP) almost perfectly overlap
with the actual production data, hence successfully
replicating the initial surge and long plateau phase.
From the regression graphs in Figure 10, this
model confirms superior performance, with the
CRMIP+DCA model achieving an R? of 0.88 and a
MAPE of only 1.46%. The distribution of errors is
concentrated around zero, without any clear
pattern, indicating that this model has no
systematic bias and is highly reliable.

Overall, the combination of these two analyses
provides very strong evidence that the developed
hybrid model is a highly accurate and robust
representation of field performance.

2101 DOI org/10.29017/scog.v48i4.1928

Interwell connectivity and time constant
analysis in heterogeneous model

Tables 2 and 3 present a comparison of
parameters estimated by the CRM-P and CRM-IP
models for the heterogeneous reservoir case study.
These results surprisingly show a very high level of
convergence between the two formulations. The
interwell connectivity values for each producer are
essentially identical between the two models, with
P3 consistently identified as the strongest and P1 as
the weakest. The time constant parameter (0) also
shows striking similarities, with both models
uniformly estimated at around 30 days. This
convergence indicates that the heterogeneous
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Figure 7. 2D permeability area in heterogeneous reservoir model
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Figure 8. The plot of liquid rate vs oil rate in the heterogeneous model
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reservoir system modeled by the CRM-P is
adequate and yields results comparable to those of
the more complex CRM-IP formulation.

Table 2. Interwell connectivity and time constant CRM-P
heterogeneous model

. Connectivity Time

:Jvl:l)ld uction Injection Constant
Well (Day)

Pl 0.003018 30.38
P2 0.006232 30
P3 0.015958 30
P4 0.00798 30

Table 3. Interwell connectivity and time constant CRM-IP
heterogeneous model

Production Conne.cti\iity Time
well Injection Constant

Well (Day)
P1 0.0031 30
P2 0.0062 30
P3 0.0160 30
P4 0.0080 30

The 3D visualization in Figure 11 clearly
identifies the preferential flow paths within the
reservoir. Injector I1 shows the most dominant
connectivity to the P3 production well, as indicated
by the thickest arrow. This shows the risk of early
breakthrough at P3 and forms the basis for
optimizing the injection strategy to balance sweep
efficiency across the field.

The importance of optimizing injection
strategies to mitigate the risk of early breakthrough
is supported by (Pratama & Saptadji 2021), who
emphasize that the right production-injection
strategy can lead to low reservoir pressure and
minimal decline rates. Their research shows that a
combination of distributed and deep injection
strategies provides the best results in maintaining
long-term reservoir performance.

In the context of injection optimization for
sweep efficiency, it demonstrates that modeling
and optimizing the injection process are crucial for
determining the optimal injection scenario,
enabling optimization results to identify injection
parameters that maximize oil recovery while
minimizing operational risks.

Streamline analysis for heterogeneous reservoir
model

Figure 12 shows the impact of reservoir
heterogeneity on flow patterns. Flow lines are not
evenly distributed; rather, they are concentrated in
areas of high permeability. This pattern visually
confirms the high risk of early breakthrough and
uneven sweep efficiency, with most of the reservoir
area likely to be missed. This phenomenon is
supported by various studies, which show that
reservoir heterogeneity has a significant impact on
macroscopic connectivity and sweep efficiency

Camparison Hybrid Madel for Field
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Figure 9. The plot of production rate vs date for CRM-P and CRM-IP in the heterogeneous model
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(Unless et al.,, 2017). Studies show that high
heterogeneity in reservoirs leads to early
breakthrough and production well blockage, while
some oil-bearing areas remain difficult to access
(Ismailova et al., 2021).

Analysis of flow in heterogeneous media shows
that the injected fluid exhibits channeling, leading
to rapid penetration and low area-sweep efficiency.
(Soltanmohammadi et al., 2024).

Machine learning analysis with random forest
and eXtreme gradient boosting in heterogeneous
model

The performance evaluation of the Random
Forest and XGBoost models was conducted by
dividing them into training phases (P1, P2, P3) and
validation (P4). Both models show very high
accuracy on the training data. However, on the

Permeability ...

10.94760

0.01997

0.00004

0.00000

200 0 200 400 600 800 i

validation data, XGBoost proved to be much more
accurate than Random Forest. These results
confirm that the model did not experience
overfitting and that XGBoost is the superior
model for this forecasting application, as
shown in Figure 13.

Real field model reservoir

Figure 14 shows the real field reservoir model
of the Volve Field. Its main features are a complex
fault system that serves as a layer separator and
low-permeability zones (blue) that act as flow
barriers. Although it is characterized by high
permeability (red/orange), this complex structure
will lead to uneven sweep efficiency and pose a
major challenge for waterflood management. The
results of reservoir model wvalidation through
history, which match the process against actual
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Figure 12. 2D streamline with permeability analysis in heterogeneous model
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field production data, are shown in Figure 15.
Visually, the simulation results (solid line) closely
match the historical data (markers), indicating that
this model accurately represents reservoir behavior.
The production profile shows the field peaked in
mid-2016 and then declined steadily. Notably,
water production increased substantially over time,
as evidenced by the widening gap between the total
fluid rate and oil rate curves. This phenomenon
indicates that the field is in a mature production
stage with a strong water drive mechanism. The
success of this validation is very important, as it
provides confidence that the model is a reliable
representation of the reservoir and can be used for
future scenario forecasting.

History matching analysis and validation of
CRM-P and CRM-IP in a real field model

Based on the analysis presented, Figure 16
provides a comprehensive performance analysis of
hybrid models at the field scale. Both models
(CRMP & CRMIP) capture actual production
trends effectively despite their high volatility.
Although they do not perfectly replicate every peak
and trough, the model predictions consistently
follow the general behavior of the historical data.
Both models achieved an R? of 0.76, indicating that
they explained 76% of the variation in the
production data. The MAPE of around 20%
suggests an acceptable level of prediction error for
complex  field-scale = models, with  the
CRMIP+DCA model performing slightly better.
The use of MAPE as a model evaluation metric is
consistent with practices in time series modeling.
(Ruhiat & Effendi 2018).

Overall, the combination of these two analyses
provides strong evidence that the developed hybrid
model is a valid and reliable representation of field
performance. The level of accuracy achieved is
comparable to that of other predictive model
studies, which reported 95.93% accuracy (Widodo
et al., 2017), indicating that this hybrid approach is
effective for field-scale applications.

Interwell connectivity and time constant
analysis in a real field model

Table 4-6 presents the quantitative results of
CRM modeling, which summarize the interwell

connectivity parameters (fij) and time constants (0).
Evaluating interwell connectivity using modeling
methods has proven effective in analyzing reservoir
parameters (J. Liu 2020). Analysis of the CRMP
model Table 4, which assumes one time constant
per production well, clearly identifies that Injector
I 1 has the most dominant influence on Producer
P2, with the highest connectivity value (f = 0.019).

The CRMIP model tables 5-6, which provide a
more detailed analysis with unique parameters for
each well pair, confirm these findings. Table 5
shows that the strongest connectivity remains
between I 1 and P2, demonstrating the robustness
of the analysis results. According to Poplygin et al.
(2022), understanding factors influencing flow
velocity between wells is crucial. Notably, Table 6
reveals that the CRMIP model's time constants are
relatively uniform, ranging from 30 to 32 days
across different well pairs. Overall, the consistency
of connectivity results between the two models
increases confidence in the identification of the
main flow path. In addition, the uniformity of the
time constant calculated by the CRMIP model is an
important finding that indicates the hydraulic
properties of the reservoir in the modeled area are
relatively homogeneous, given that reservoir
heterogeneity has a significant impact on fluid flow
and recovery factors. (Ramadhan et al., 2023).

Table 4. Interwell connectivity and time constant CRM-P

real field
Production C.O nn.ect1v1ty Time
well _Injection Well Constant
11 12
P1 0.0066 0.0098 30
P2 0.019 0.011 30
P3 0.0066 0.0098 30

Table 5. Interwell connectivity CRM-IP real field

Production C.O nn.ectivity
well Injection Well

11 12
P1 0.0094 0.0064
P2 0.0191 0.0109
P3 0.0067 0.0099

Table 6. Time constant CRM-IP real field

Production Time Constant (T)
well Injection Well

11 12
P1 32 30.55
P2 30.86 30.54
P3 30 30
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Production Predictions by Well - Actual vs Predicted
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Figure 13. The production prediction result with training and validation data (a) random forest model (b) eXtreme
gradient boost (eXBoost) model
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Figure 14. 2D permeability area in real field model
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Figure 18. 2D streamline with permeability analysis in a real field model

The 3D visualization in Figure 17 clearly
identifies Injector I 1 as the dominant injector with
strong connectivity to all producer wells. In
contrast, Injector I 2 has a more focusd impact,
particularly on well P1. This map forms the basis
for optimizing the injection strategy to improve
sweep efficiency. This aligns with the principles of
waterflood optimization, which state that
understanding the connectivity between wells is
crucial for designing effective injection strategies
(Ogbeiwi et al.,, 2018). Research shows that
optimizing injection rates and injection well
placement are key factors in improving oil
recovery (Izadmehr et al, 2018). The right
injection strategy can improve reservoir pressure
maintenance and sweep efficiency, especially when
waterflood is carried out in the same zone as
production.

Streamline analysis for real field model

Figure 18, a visualization of fluid flow in this
Real Volve Field model, effectively demonstrates
the critical impact of geological complexity on
fluid injection performance. The uneven flow
pattern with concentration in the high-permeability
zone in the northeast is consistent with existing
research on heterogeneous reservoir behavior. The
observed channeling effect has been well
documented in the literature. (Weijermars & van
Harmelen 2017) Shows how fault barriers and

permeability variations cause the loss of planned
drainage symmetry and divert the waterflood
pattern. At (Pandey et al., 2023), models with high
horizontal permeability showed reduced area-
sweep efficiency and early breakthrough, which
align with the observed flow concentration pattern.
(Ramadhan et al., 2023) show that heterogeneous
reservoirs can achieve recovery factors ranging
from 45.83% to 80.46% depending on permeability
correlation, with the lowest values occurring when
channeling dominates.

The risk of early breakthrough is a fundamental
concern in heterogeneous systems. (Wang et al.,
2019) Explains that unstable phase flow, which is
determined by underlying heterogeneity, slows
down flow in unswept-away areas. This
visualization  effectively = demonstrates  how
heterogeneity and fractures fundamentally reduce
the effectiveness of injection projects, compared
with ideal scenarios.

Machine learning analysis with random forest and
eXtreme gradient boosting in a real field model

Performance evaluation of the Random Forest
machine learning model for the same period,
Figure 19 shows very promising results. Based on
the historical matching and validation results
presented, the Random Forest model shows
outstanding performance, with very high training
accuracy, achieving R? = 0.98 for wells P1 and P2.
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More importantly, the model maintained
consistent, strong performance during the
validation stage, with R* = 0.95 for well P3. These
results indicate that the model does not overfit and
exhibits excellent generalization. This performance
is consistent with other research findings
demonstrating the effectiveness of Random
Forests in similar applications. (Rahmanifard
& Gates 2024).

The model's consistent accuracy between
training and validation data indicates that Random
Forest effectively captures complex production
data patterns while retaining the ability to
accurately predict new data (Ng et al., 2022, This
superior performance underscores the great
potential of machine learning approaches,
particularly Random Forest, for developing
highly accurate and reliable production
forecasting systems in the oil and gas
industry (Moradi et al., 2023).

As a further comparison (Figure 20), the
performance of a more advanced machine learning
model, XGBoost, was also evaluated using the
same methodology, with wells P1 and P2 as
training data and well P3 as wvalidation data
(Chakraborty & Elzarka 2019). In the training
phase using data from wells P1 and P2, the
XGBoost model achieved near-perfect accuracy
and a strong fit to the historical data. This is
evidenced by the R?, which reached 1.00, and by
the MAPE, which was very low at below 0.6%. It
demonstrated the model's ability to learn complex
production data patterns with very high precision
(Alshboul et al., 2022). The true validation lies in
the model's performance on previously unseen data
from the P3 well.

At this validation stage, the model maintained
its outstanding performance, with R> = 0.99 and
MAPE = 0.86%. The very high consistency in
performance between the training and validation
data convincingly demonstrates that the model did
not overfit and has strong generalization
capabilities. (Shahani et al., 2021). The near-linear
regression plot validates the XGBoost model's
accuracy and reliability. It demonstrated its

superiority  for  production forecasting in

manufacturing (De-Prado-gil et al., 2022).

Comparative analysis of CRM-DCA & machine
learning to prediction results for water injection in
reservoir model variations

To strengthen the scientific validity of this
study, the hybrid CRM—machine learning approach
is conceptually compared with other commonly
used reservoir analysis methods. Classical CRM
provides a clear physical basis but exhibits reduced
sensitivity in highly heterogeneous reservoirs.
Decline curve analysis is effective for identifying
production trends, yet it does not represent the
dynamic interaction between injection and
production (Li et al., 2022). Pure machine-learning
models can capture complex nonlinear
relationships but lack a physical interpretive
framework. The hybrid CRM-ML approach
integrates the strengths of both domains, resulting
in a more comprehensive and accurate
representation of waterflood dynamics (Jiang et al.,
2022; Reginato et al., 2023).

Analysis of results from three reservoir models,

homogeneous, heterogeneous, and real field,
demonstrates that the level of geological
complexity directly influences interwell

connectivity, injection response time, and fluid
sweep efficiency. In the homogeneous model with
uniform permeability, the reservoir system exhibits
ideal flow behavior with sweep efficiency
approaching 100%. History-matching results show
high accuracy (R? > 0.92; MAPE < 7%), indicating
that this model effectively captures the water-
injection response. Comparison between the two
CRM variants significant differences,
where CRM-IP produces stronger connectivity and

reveals

more realistic time constants. Streamline
visualization reinforces these findings by showing
direct, unobstructed fluid flow from injector to
producer, reflecting efficient, uniform reservoir
conditions. In contrast to homogeneous conditions,
the heterogeneous model demonstrates flow
variations due to non-uniform permeability
distribution. The presence of high-permeability
zones causes early breakthrough and uneven fluid
sweep. Nevertheless, the hybrid CRM+DCA model
maintains accurate results with R*> = 0.88 and
MAPE = 1.46%. Connectivity and time constant

values between CRM-P and CRM-IP are relatively
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similar (t = 30 days), indicating that both models
provide stable interpretation under heterogeneous
conditions. Well P3 exhibits the highest
connectivity, signaling a dominant flow path with
potential for earlier water breakthrough. Three-
dimensional visualization shows that injector I1 has
the greatest influence on P3, consistent with
streamline results where fluid flow concentrates in
high-permeability zones. In Machine Learning
analysis, the XGBoost model continues to
demonstrate superior performance, with an
MAPE of 4.98% compared to Random
Forest's 10.07%, confirming its ability to
handle highly variable data.

Meanwhile, the real field models the most
complex reservoir conditions with fault structures,
multi-zone layers, and extreme permeability
variations. History-matching results show good
agreement with the actual data (R? =0.76; MAPE =
20%), which remains acceptable for field-scale
models of high complexity. CRM analysis
demonstrates consistency between CRM-P and
CRM-IP, with injector Il having a dominant
influence on producer P2 (f = 0.0191) and
relatively uniform time constant values. This
indicates local hydraulic stability despite non-
homogeneous reservoir geometry. Streamline
visualization confirms the presence of channeling
effects in the northeast driven by

permeability differences and faulting that impede

zone,

fluid flow. In production prediction, the XGBoost
algorithm again demonstrates the best performance
with R? = 0.99 and MAPE = 0.86%, compared to
Random Forest, which achieves R = 0.95.

Compared with the homogeneous model, the
provides
performance, with rapid injection response and
high sweep efficiency, because it is unaffected by

heterogeneous model superior

formation heterogeneity. The heterogeneous model
shows decreased sweep efficiency due to varying
permeability distribution, but maintains stability in
interwell connectivity parameters. Meanwhile, the
real field Volve Field model depicts the most
realistic conditions with combined influences of

geology,
permeability

pressure, and
yielding

inter-zone complex

variations, consistent

connectivity and time constant values but lower
sweep efficiency. Overall, comparative results
indicate that CRM-IP is more representative and
accurate in describing water injection dynamics
across varying levels of reservoir complexity. At
the same time, XGBoost is the most reliable
algorithm for predicting production performance,
with the lowest error rates across all scenarios.

CONCLUSION

This research demonstrates that integrating the
Capacitance Resistance Model with Decline Curve
Analysis constitutes an effective, data-driven
approach for evaluating and predicting secondary
recovery waterflood performance across various
reservoir conditions. The CRM-DCA combination
effectively  addresses  the  limitations  of
conventional CRM in capturing nonlinear behavior
in complex, heterogeneous reservoir systems.
Analysis results indicate that the CRM-IP model
provides more realistic estimates of interwell
connectivity and time constants than CRM-P,
particularly
response time of 98 days; in heterogeneous and real
-field models, CRM-DCA delivers stable results

with consistent connectivity values and response

in homogeneous models with a

times across wells. Three-dimensional visualization
and streamline analysis also strengthen the physical
interpretation of fluid flow paths and sweep
efficiency under each reservoir condition.

Furthermore, validation results using Machine
and XGBoost)
demonstrate that CRM-DCA prediction accuracy

Learning (Random Forest
falls within acceptable ranges and shows consistent
history-matching patterns against actual data. The
XGBoost model achieved the best benchmark
results, with an R? of 0.99 and an MAPE below
1%, reinforcing the validity of the CRM-DCA
approach for modeling waterflood performance.
Overall, CRM-DCA integration proves capable of
reducing  waterflood  analysis  uncertainty,
enhancing understanding of interwell connectivity,
and providing a solid foundation for strategic
decision-making in reservoir optimization and

management during the secondary recovery stage.
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GLOSSARY OF TERMS

Symbol Definition Unit

CRM Capacitance
Resistance Model
Decline Curve
Analysis
fij Coeficient
Connectivity
injection,
producer
Mean Absolute %
Percentage Error
Production Well
1,2, etc
R? Coeficient
Determination

DCA

MAPE

P1, P2, etc
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