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ABSTRACT - This study aims to minimize uncertainty in waterflood performance by employing a data-

driven workflow that combines the Capacitance Resistance Model (CRM) with Machine Learning. Two 

CRM variants, CRM-P (Producer-based) and CRM-IP (Injector-Producer-based), are utilized to evaluate 

interwell connectivity and time constants on three reservoir models: homogeneous, heterogeneous, and a 

real field scenario (Volve Field). The model is evaluated using R² and Mean Absolute Percentage Error 

(MAPE) and is compared against the Random Forest and eXtreme Gradient Boosting (XGBoost) 

techniques. The results indicate that CRM-IP provides more realistic estimates than CRM-P, particularly for 

response time. XGBoost consistently demonstrates superior prediction accuracy, achieving R² values of 

0.76–0.98 and MAPE values of 0.5–10%. Three-dimensional (3D) visualizations of interwell connectivity 

and streamline analysis strengthen the understanding of fluid flow and sweep efficiency. This further 

demonstrates that integrating CRM and Machine Learning serves as a decision-support tool for Enhanced 

Oil Recovery optimization, as evidenced by R² and MAPE analyses that characterize sweep efficiency and 

the reservoir's capacity to accommodate additional injection. 
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INTRODUCTION 

The continuously increasing global energy 

demand encourages the petroleum industry to 

maximize production from existing fields by 

applying enhanced oil recovery (EOR) methods 

(Du et al., 2024). One of the most commonly used 

methods in the secondary recovery stage is 

waterflooding. This method maintains reservoir 

pressure and pushes remaining oil toward 

production wells, thereby increasing sweep 

efficiency and extending field production life 

(Malvi´c et al., 2020. However, despite being 

relatively simple and widely implemented, the 

waterflood method often faces challenges due to 

reservoir heterogeneity, non-uniform permeability 

distribution, and uncertainty in interwell 

connectivity (Fu et al., 2022). These factors can 

cause early water breakthrough and significantly 

reduce oil recovery efficiency (Guo et al., 2019). 

Successful waterflooding can increase the oil 

recovery factor from a typical 5-25% in the 

primary stage to a typical 45% of original oil in 

place (OOIP) (Usman & Haans, 2017. Waterflood 

performance evaluation is typically conducted 

through full-scale reservoir simulation, which 

requires detailed geological data and extensive 

computational time. This approach is less efficient 

when rapid decision-making is needed for field 

management (Makhotin et al., 2022). To address 

this issue, data-driven approaches such as the 

capacitance resistance model (CRM) have been 

developed to estimate the relationship between 

injection and production rates using an 

electrical system analogy (Fu et al., 2022). 

CRM can calculate interwell connectivity 

strength and time constants using historical 

injection and production data, without 

requiring complex fluid-flow simulation. The 

two main CRM formulations commonly used 

are CRM-P (Producer-based) and CRM-IP 

(Injector-Producer-based), each representing 

systems with different levels of complexity. 

Despite its effectiveness, conventional CRM has 

limitations in capturing nonlinear behavior in 

complex and heterogeneous reservoir systems. This 

model tends to assume a linear relationship 

between injection and production; thus, it is not 

fully capable of representing physical phenomena 

such as channeling, water-saturation variations, and 

dynamic pressure changes across production zones. 

To overcome these limitations, CRM is combined 

with decline curve analysis (DCA), which corrects 

long-term production rate decline trends (Fu et al., 

2022). The integration of CRM+DCA enhances the 

model's predictive capability during the production 

decline phase, resulting in smoother history 

matching and more realistic estimations of 

reservoir behavior. 

In this research, Machine Learning techniques 

such as Random Forest and eXtreme Gradient 

Boosting (XGBoost) are not used as primary 

models but rather as benchmarks to validate the 

DCA model’s prediction accuracy. This approach 

aims to test the extent to which the CRM-DCA 

model can achieve the accuracy of advanced data-

based algorithms while ensuring model reliability 

in representing physical reservoir conditions. 

This study focuses on implementing a data-

driven workflow that combines CRM and DCA to 

evaluate waterflood performance (secondary 

recovery water injection) across three different 

reservoir models: homogeneous, heterogeneous, 

and real field (volve field). Through analysis of 

interwell connectivity parameters and time 

constants, and through result validation using 

Machine Learning, this research aims to 

demonstrate the effectiveness of the CRM-DCA 

model in reducing uncertainty, understanding the 

dynamic response of waterflood systems, and 

supporting strategic decision-making in reservoir 

management and performance optimization. 

 

METHODOLOGY 

This study uses a Tnavigator simulator to 

present historical data on injection and fluid 

production rates, which are derived from both 

synthetic models and actual field data. 

Additionally, CRM-P and CRM-IP are developed 

in Python, and the model is integrated with DCA. 

These models are utilized to forecast historical 

matching and to assess their efficacy using 

statistical metrics, including R-squared (R²) and 

Mean Absolute Percentage Error (MAPE) (Yousef 
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et al., 2006). If the R² value is close to 1 and the 

MAPE is below 10%, the model is considered 

optimal. To strengthen the analysis, machine 

learning techniques such as Random Forest 

and XGBoost are employed as benchmarks 

for the historical matching results generated 

by the CRM model. 

The data utilized include the SPE 5 and SPE 10 

synthetic datasets, as well as actual field data from the 

Volve Field. The selection of these models aims to 

evaluate how effectively CRM and machine learning can 

be used to characterize fluid movement in reservoirs. 

Capacitance resistance model (CRM) 

The CRM is a valuable tool for improving real-

time flood management and reservoir analysis, as it 

accurately simulates gas- and waterflood recovery 

processes. The CRM is a material–balance–based 

model that requires only injection and production 

histories, which are the most accessible data 

obtained during a reservoir's production life (De 

Holanda et al., 2018). This study introduces two 

formulations by examining distinct control 

volumes to represent varying levels of 

modeling complexity.  

CRM-P: producer-based model 

Represents in-situ volumetric balance over the 

effective pore volume of a producer. According to 

Nguyen (2012), CRM-P is formulated using 

Equation 1. 

      

 

 

 

where the CRMP assigns one time constant for the 

draining volume of each producer and one 

connectivity for each injector – producer. Also 

Sayarpour et al., (2009, CRMP is a model in which 

the producer is the center or focus of the control 

system. For this reason, the CRMP is not 

recommended for very heterogeneous reservoirs; it 

performs better when near-homogeneity is present 

near the producers and when all injectors are at 

similar distances from the producers, such as in a 

patterned waterflood. 

CRM-IP: injection-producer based model 

The volumetric balance in the reservoir is 

evaluated over the affected pore volume of each 

injector–producer pair, using Equation 2 from 

(Nguyen 2012). 

     

According to De Holanda et al. (2018), where          j is 

the production rate in producer j from the injector (i)-

producer (j), as well as      is the productivity index 

associated with such a control volume. 

Decline curve analysis 

According to Maurenza et al. (2023), the Arps 

method is widely used in production forecasting to 

predict production performance and estimate 

remaining reserves. In this study, decline curve 

analysis (DCA) is applied as a complementary 

approach to enhance CRM predictions. This 

integration is necessary because the CRM alone 

struggles to capture production behavior when a 

significant decline trend occurs. Therefore, the 

Exponential Decline equation from DCA is applied 

as follows: 

 

where the current production rate q is determined 

from the initial production rate, which decreases 

exponentially with the initial decline rate Di over 

the time interval     . The exponential indicates that 

production declines gradually and continuously 

over time, with the rate of decline determined by 

the magnitude of Di. 

Machine learning with random forest and 

extreme gradient boosting (XGBoost) 

The Random forest method operates by 

constructing numerous decision trees and obtaining 

the outcome through voting (for classification) or 

averaging (for regression) across all trees (B. Liu et 

al., 2025). The primary advantages include its 
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resistance to overfitting and the absence of data 

scaling requirements. Meanwhile, XGBoost 

provides superior accuracy, efficient processing of 

large datasets, and improved handling of 

imbalanced datasets compared to Random Forest. 

The application of machine learning without 

careful consideration results in inaccurate 

predictions, which ultimately leads to unusable 

algorithms. Such inaccuracies arise from common 

errors and limitations frequently encountered in the 

application of machine learning, particularly in 

scientific fields (Zainuri et al., 2023. 

In this case, for fields with more than two wells, 

the data is split using a well-based approach to 

ensure that the model performs consistently across 

all wells. However, this split is not applied to the 

two-dimensional SPE 5 model, which includes 

only one representative well. Thus, the 

combination of RF and XGBoost not only provides 

robust historical-matching results but also 

facilitates local (well-by-well) data interpretation, 

thereby supporting faster, more accurate field 

development decisions. 

 

RESULT AND DISCUSSION 

Homogeneous reservoir model 

In this reservoir, gas and water are injected into 

a single injection well, but gas injection has been 

shut off, and continuous water injection is currently 

in use. In the base scenario, the permeability value 

in this model is 50 mDarcy across the entire board.  

The simulation system delivers excellent history

-matching results in Figure 1, highlighting the two 

main phases of field production. The initial phase, 

concluding in 1994, was characterized by primary 

depletion, during which oil was the only fluid 

produced. The second phase shows a classic 

response to water injection: the total fluid rate 

Figure 1. The plot of liquid rate vs oil rate in the homogeneous model 
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increases and stabilizes, while the oil rate decreases 

dramatically due to water breakthrough. At the end 

of the period, the field produces almost entirely 

water, indicating a high water-sweep efficiency. 

History matching analysis and validation of 

CRM-P and CRM-IP in homogeneous model 

A comprehensive evaluation of the hybrid 

model on well P1 is presented in Figure 2. 

Although the time-comparison plots and statistical 

metrics show very high accuracy, they also 

highlight limitations in fully capturing the complex 

model of reservoir behaviour. This finding is 

consistent with research that indicates that hybrid 

models, despite providing accurate predictions 

based on conventional statistical metrics, still face 

challenges in representing complex physical 

phenomena in reservoir systems (Fan et al., 2025). 

Interwell connectivity and time constant 

analysis in homogeneous model 

Table 1 presents a comparison of dynamic 

reservoir parameters using the CRM-P and CRM-

IP models for production well P1. The results show 

very significant differences in interpretation 

between the two models. The CRM-P model 

estimates very weak interwell connectivity 

(0.000786) and an extreme response time constant 

of 1,314.20 days.  In contrast, the CRM-IP model 

identifies a much stronger connectivity (0.0102) 

and a much faster time constant (98.03 days). This 

drastic difference strongly supports the CRM-IP 

model, as its response time is much more 

physically realistic for active waterflood dynamics 

than the delay time indicated by the CRM-P model. 

 

The perfect single-flow path in Figure 3 shows 

that there is no geological complexity that could 

interfere with fluid flow. The high efficiency of 

this homogeneous base-case scenario has proven to 

be an important benchmark for reservoir 

performance evaluation. 

Homogeneous conditions allow for optimal 

sweep efficiency because there are no permeability 

variations that inhibit flow. Direct pressure from 

the injector to the producer reflects ideal 

waterflooding conditions. (Ogbeiwi et al., 2018) 

Confirm that effective pressure maintenance occurs 

when there is direct connectivity between the 

injection and production wells. Meanwhile, (Sidiq 

et al., 2019) explain that under homogeneous 

conditions, the displacing phase can move 

optimally without interference from an adverse 

mobility ratio. 

Figure 2. The Plot of production rate vs date for CRM-P and CRM-IP in homogeneous model  

 

Table 1. Interwell connectivity and time constant CRM-P 
and CRM-IP homogeneous model 

 
CRM 

Type 
Well 

Injection 

Well 

Time 

Constant 

(Day) 

 

 CRM-P P1 0.000786 1314.20  

 CRM-IP P1 0.0102 98.03  
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3D interwell connectivity map 

Figure 3. 3D mapwell connectivity in homogeneous reservoir  

Compared to other models, this model enables a 

systematic evaluation of the impact of reservoir 

complexity. Ismailova et al. (2021) Emphasize that 

understanding homogeneous reservoirs as a basic 

reference is essential for analyzing how formation 

heterogeneity can cause irregular flow profiles and 

uneven fluid distribution under more realistic 

conditions. 

Streamline analysis for homogeneous reservoir 

model 

In Figure 4, a streamline plot shows what would 

happen if an ideal fluid were to flow through a 

homogeneous reservoir. The white lines/curves show the 

optimal flow path for fluids from the injector to the 

producer. This figure illustrates an ideal scenario of 

100% sweep efficiency, a rare occurrence in actual field 

operations. In comparison, (Ramadhan et al., 2023 

reported that homogeneous reservoirs achieved an oil 

recovery factor of 59.86%, whereas heterogeneous 

reservoirs ranged from 45.83% to 80.46%, depending on 

heterogeneity level. 

Streamline in this homogeneous reservoir served as 

an important baseline for understanding fluid flow 

dynamics (Krogstad et al., 2017. This 

visualization allows reservoir engineers to analyze 

sweep efficiency and identify areas that may not 

be swept in a complex field.  



The Integration of Hybrid Capacitance  Resistance Model and Machine Learning: A Data-Based Workflow for 

Optimizing Waterflood Performance and Reservoir Management (Rita et al.) 

 

DOI org/10.29017/scog.v48i4.1928 I 209 

Figure 4. 2D Streamline with permeability analysis in homogeneous model 

 

Machine learning analysis with random forest 

and eXtreme gradient boosting in homogeneous 

model 

Figures 5 and 6 show Random Forest and 

XGBoost plots in production prediction evaluation. 

They demonstrated that both machine learning 

algorithms, Random Forest and XGBoost, perform 

exceptionally well during the history-matching 

phase. The XGBoost model had a slight advantage, 

with an R² of 0.9999 and an MAPE of 0.17%, 

compared to the Random Forest's R² of 0.9992 and 

MAPE of 0.50%.  

(Sri Chandrahas et al., 2022 found that the 

XGBoost model outperformed other ensemble 

methods, such as Random Forest, in terms of 

MAPE, root mean square error (RMSE), and R² 

values. (Fadzil et al., 2021 also showed that 

XGBoost was the best and most stable model for 

predicting kinematic viscosity and base oil 

viscosity index during validation, as evidenced by 

its accuracy. This indicates that both models are 

good at predicting production with high confidence 

and do not exhibit any signs of overfitting. 

Heterogeneous reservoir model 

The heterogeneous reservoir model with a 

vertical permeability distribution that varies in 

Figure 7. The most noticeable feature is the 

presence of high-permeability pores (red/yellow), 

which will control fluid flow. The existence of 

these preferential flow paths creates the risk of 

early breakthrough and will result in uneven sweep 

efficiency throughout the reservoir. 

Figure 8 shows field production under strong 

waterflood, characterized by a constant total fluid 

rate of 4.9 mmstb/day. A significant decrease in oil 

rate, in contrast to a stable fluid rate, indicates 

rapid water breakthrough and a continuous increase 

in water content. This profile is characteristic of a 

pressure maintenance strategy in which the oil 

produced is continuously replaced by water. 

History matching analysis and validation of 

CRM-P and CRM-IP in heterogeneous model 

The results show a very high level of prediction 

accuracy. Visually, in Figure 9, the time 

comparison graph shows that the model predictions 
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Figure 5. History matching of random forest model for prediction rate in reservoir  

 

Figure 6. History matching of eXtreme gradient boost model for prediction rate in reservoir 

 

(both CRMP and CRMIP) almost perfectly overlap 

with the actual production data, hence successfully 

replicating the initial surge and long plateau phase. 

From the regression graphs in Figure 10, this 

model confirms superior performance, with the 

CRMIP+DCA model achieving an R² of 0.88 and a 

MAPE of only 1.46%. The distribution of errors is 

concentrated around zero, without any clear 

pattern, indicating that this model has no 

systematic bias and is highly reliable. 

Overall, the combination of these two analyses 

provides very strong evidence that the developed 

hybrid model is a highly accurate and robust 

representation of field performance.  

Interwell connectivity and time  constant 

analysis in heterogeneous model  

Tables 2 and 3 present a comparison of 

parameters estimated by the CRM-P and CRM-IP 

models for the heterogeneous reservoir case study. 

These results surprisingly show a very high level of 

convergence between the two formulations. The 

interwell connectivity values for each producer are 

essentially identical between the two models, with 

P3 consistently identified as the strongest and P1 as 

the weakest. The time constant parameter (ô) also 

shows striking similarities, with both models 

uniformly estimated at around 30 days. This 

convergence indicates that the heterogeneous 
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Figure 7. 2D permeability area in heterogeneous reservoir model   

 

Figure 8. The plot of liquid rate vs oil   rate in the heterogeneous model 
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reservoir system modeled by the CRM-P is 

adequate and yields results comparable to those of 

the more complex CRM-IP formulation. 

 
Table 2. Interwell connectivity and time constant CRM-P 

heterogeneous model 

 

 

 

 

 

Table 3. Interwell connectivity and time constant CRM-IP 
heterogeneous model 

 

 

 

 

 

The 3D visualization in Figure 11 clearly 

identifies the preferential flow paths within the 

reservoir. Injector_I1 shows the most dominant 

connectivity to the P3 production well, as indicated 

by the thickest arrow. This shows the risk of early 

breakthrough at P3 and forms the basis for 

optimizing the injection strategy to balance sweep 

efficiency across the field. 

The importance of optimizing injection 

strategies to mitigate the risk of early breakthrough 

is supported by (Pratama & Saptadji 2021), who 

emphasize that the right production-injection 

strategy can lead to low reservoir pressure and 

minimal decline rates. Their research shows that a 

combination of distributed and deep injection 

strategies provides the best results in maintaining 

long-term reservoir performance. 

In the context of injection optimization for 

sweep efficiency, it demonstrates that modeling 

and optimizing the injection process are crucial for 

determining the optimal injection scenario, 

enabling optimization results to identify injection 

parameters that maximize oil recovery while 

minimizing operational risks. 

Streamline analysis for heterogeneous reservoir 

model 

Figure 12 shows the impact of reservoir 

heterogeneity on flow patterns. Flow lines are not 

evenly distributed; rather, they are concentrated in 

areas of high permeability. This pattern visually 

confirms the high risk of early breakthrough and 

uneven sweep efficiency, with most of the reservoir 

area likely to be missed. This phenomenon is 

supported by various studies, which show that 

reservoir heterogeneity has a significant impact on 

macroscopic connectivity and sweep efficiency 

 
Production 

well 

Connectivity 

Injection 

Well 

Time 

Constant 

(Day) 

 

 P1 0.003018 30.38  

 P2 0.006232 30  

 P3 0.015958 30  

 P4 0.00798 30  

 

 
Production 

well 

Connectivity 

Injection 

Well 

Time 

Constant 

(Day) 

 

 P1 0.0031 30  

 P2 0.0062 30  

 P3 0.0160 30  

 P4 0.0080 30  

 

Figure 9. The plot of production rate vs date for CRM-P and CRM-IP in the heterogeneous model  
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Figure 10. The Regression plot producer well heterogeneous model (a) the result with CRMP (b) the result with CRMIP 

Figure 11. 3D map well connectivity in heterogeneous reservoir 

 
3D interwell connectivity map 
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(Unless et al., 2017). Studies show that high 

heterogeneity in reservoirs leads to early 

breakthrough and production well blockage, while 

some oil-bearing areas remain difficult to access 

(Ismailova et al., 2021). 

Analysis of flow in heterogeneous media shows 

that the injected fluid exhibits channeling, leading 

to rapid penetration and low area-sweep efficiency. 

(Soltanmohammadi et al., 2024).  

Machine learning analysis  with random forest 

and eXtreme gradient boosting in heterogeneous 

model 

The performance evaluation of the Random 

Forest and XGBoost models was conducted by 

dividing them into training phases (P1, P2, P3) and 

validation (P4). Both models show very high 

accuracy on the training data. However, on the 

validation data, XGBoost proved to be much more 

accurate than Random Forest. These results 

confirm that the model did not experience 

overfitting and that XGBoost is the superior 

model for this forecasting application, as 

shown in Figure 13.  

Real field model reservoir 

Figure 14 shows the real field reservoir model 

of the Volve Field. Its main features are a complex 

fault system that serves as a layer separator and 

low-permeability zones (blue) that act as flow 

barriers. Although it is characterized by high 

permeability (red/orange), this complex structure 

will lead to uneven sweep efficiency and pose a 

major challenge for waterflood management. The 

results of reservoir model validation through 

history, which match the process against actual 

Figure 12. 2D streamline with permeability analysis in heterogeneous model  
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field production data, are shown in Figure 15. 

Visually, the simulation results (solid line) closely 

match the historical data (markers), indicating that 

this model accurately represents reservoir behavior. 

The production profile shows the field peaked in 

mid-2016 and then declined steadily. Notably, 

water production increased substantially over time, 

as evidenced by the widening gap between the total 

fluid rate and oil rate curves. This phenomenon 

indicates that the field is in a mature production 

stage with a strong water drive mechanism. The 

success of this validation is very important, as it 

provides confidence that the model is a reliable 

representation of the reservoir and can be used for 

future scenario forecasting. 

History matching analysis and validation of 

CRM-P and CRM-IP in a real field model 

Based on the analysis presented, Figure 16 

provides a comprehensive performance analysis of 

hybrid models at the field scale. Both models 

(CRMP & CRMIP) capture actual production 

trends effectively despite their high volatility. 

Although they do not perfectly replicate every peak 

and trough, the model predictions consistently 

follow the general behavior of the historical data. 

Both models achieved an R² of 0.76, indicating that 

they explained 76% of the variation in the 

production data. The MAPE of around 20% 

suggests an acceptable level of prediction error for 

complex field-scale models, with the 

CRMIP+DCA model performing slightly better. 

The use of MAPE as a model evaluation metric is 

consistent with practices in time series modeling. 

(Ruhiat & Effendi 2018).  

Overall, the combination of these two analyses 

provides strong evidence that the developed hybrid 

model is a valid and reliable representation of field 

performance. The level of accuracy achieved is 

comparable to that of other predictive model 

studies, which reported 95.93% accuracy (Widodo 

et al., 2017), indicating that this hybrid approach is 

effective for field-scale applications. 

Interwell connectivity and time constant 

analysis in a real field model 

Table 4-6 presents the quantitative results of 

CRM modeling, which summarize the interwell 

connectivity parameters (fij) and time constants (ô). 

Evaluating interwell connectivity using modeling 

methods has proven effective in analyzing reservoir 

parameters (J. Liu 2020). Analysis of the CRMP 

model Table 4, which assumes one time constant 

per production well, clearly identifies that Injector 

I_1 has the most dominant influence on Producer 

P2, with the highest connectivity value (f = 0.019). 

The CRMIP model tables 5-6, which provide a 

more detailed analysis with unique parameters for 

each well pair, confirm these findings. Table 5 

shows that the strongest connectivity remains 

between I_1 and P2, demonstrating the robustness 

of the analysis results. According to Poplygin et al. 

(2022), understanding factors influencing flow 

velocity between wells is crucial. Notably, Table 6 

reveals that the CRMIP model's time constants are 

relatively uniform, ranging from 30 to 32 days 

across different well pairs. Overall, the consistency 

of connectivity results between the two models 

increases confidence in the identification of the 

main flow path. In addition, the uniformity of the 

time constant calculated by the CRMIP model is an 

important finding that indicates the hydraulic 

properties of the reservoir in the modeled area are 

relatively homogeneous, given that reservoir 

heterogeneity has a significant impact on fluid flow 

and recovery factors. (Ramadhan et al., 2023). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Production 

well 

Connectivity 

Injection Well 
Time 

Constant 

 

 I_1 I_2  

 P1 0.0066 0.0098 30  

 P2 0.019 0.011 30  

 P3 0.0066 0.0098 30  

 

Table 4. Interwell connectivity and time constant CRM-P 
real field 

 Production 

well 

Connectivity 

Injection Well 
 

 I_1 I_2  

 P1 0.0094 0.0064  

 P2 0.0191 0.0109  

 P3 0.0067 0.0099  

 

Table 5. Interwell connectivity CRM-IP real field 

Table 6. Time constant CRM-IP real field 

 Production 

well 

Time Constant (τ) 

Injection Well 

 

 I_1 I_2  

 P1 32 30.55  

 P2 30.86 30.54  

 P3 30 30  
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Figure 13. The production prediction result with training and validation data (a) random forest model (b) eXtreme 
gradient boost (eXBoost) model 

 

 

(a) 

(b) 
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Figure 14. 2D permeability area in real field model 

 

Figure 15. The plot of liquid rate vs oil rate in the real field model 
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Figure 16. The plot of production rate vs date for CRM-P and CRM-IP in the real field model 

 

Figure 17. 3D map well connectivity in real field model 

 

3D interwell connectivity map 
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Figure 18. 2D streamline with permeability analysis in a real field model 

 

The 3D visualization in Figure 17 clearly 

identifies Injector I_1 as the dominant injector with 

strong connectivity to all producer wells. In 

contrast, Injector I_2 has a more focusd impact, 

particularly on well P1. This map forms the basis 

for optimizing the injection strategy to improve 

sweep efficiency. This aligns with the principles of 

waterflood optimization, which state that 

understanding the connectivity between wells is 

crucial for designing effective injection strategies 

(Ogbeiwi et al., 2018). Research shows that 

optimizing injection rates and injection well 

placement are key factors in improving oil 

recovery (Izadmehr et al., 2018). The right 

injection strategy can improve reservoir pressure 

maintenance and sweep efficiency, especially when 

waterflood is carried out in the same zone as 

production. 

Streamline analysis for real field model 

Figure 18, a visualization of fluid flow in this 

Real Volve Field model, effectively demonstrates 

the critical impact of geological complexity on 

fluid injection performance. The uneven flow 

pattern with concentration in the high-permeability 

zone in the northeast is consistent with existing 

research on heterogeneous reservoir behavior. The 

observed channeling effect has been well 

documented in the literature. (Weijermars & van 

Harmelen 2017) Shows how fault barriers and 

permeability variations cause the loss of planned 

drainage symmetry and divert the waterflood 

pattern. At (Pandey et al., 2023), models with high 

horizontal permeability showed reduced area-

sweep efficiency and early breakthrough, which 

align with the observed flow concentration pattern. 

(Ramadhan et al., 2023) show that heterogeneous 

reservoirs can achieve recovery factors ranging 

from 45.83% to 80.46% depending on permeability 

correlation, with the lowest values occurring when 

channeling dominates. 

The risk of early breakthrough is a fundamental 

concern in heterogeneous systems. (Wang et al., 

2019) Explains that unstable phase flow, which is 

determined by underlying heterogeneity, slows 

down flow in unswept-away areas. This 

visualization effectively demonstrates how 

heterogeneity and fractures fundamentally reduce 

the effectiveness of injection projects, compared 

with ideal scenarios. 

Machine learning analysis with random forest and 

eXtreme gradient boosting in a real field model  

Performance evaluation of the Random Forest 

machine learning model for the same period, 

Figure 19 shows very promising results. Based on 

the historical matching and validation results 

presented, the Random Forest model shows 

outstanding performance, with very high training 

accuracy, achieving R² = 0.98 for wells P1 and P2. 
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Figure 19. History matching & validation random forest with regression plot well production 

(a) well 1 (b) well 2 (c) well 3 

 

  

 

 

 

 

 
Analysis performance for well P1 

Analysis performance for well P2 
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More importantly, the model maintained 

consistent, strong performance during the 

validation stage, with R² = 0.95 for well P3. These 

results indicate that the model does not overfit and 

exhibits excellent generalization. This performance 

is consistent with other research findings 

demonstrating the effectiveness of Random 

Forests in similar applications. (Rahmanifard 

& Gates 2024). 

The model's consistent accuracy between 

training and validation data indicates that Random 

Forest effectively captures complex production 

data patterns while retaining the ability to 

accurately predict new data (Ng et al., 2022. This 

superior performance underscores the great 

potential of machine learning approaches, 

particularly Random Forest, for developing 

highly accurate and reliable production 

forecasting systems in the oil and gas 

industry (Moradi et al., 2023). 

As a further comparison (Figure 20), the 

performance of a more advanced machine learning 

model, XGBoost, was also evaluated using the 

same methodology, with wells P1 and P2 as 

training data and well P3 as validation data 

(Chakraborty & Elzarka 2019). In the training 

phase using data from wells P1 and P2, the 

XGBoost model achieved near-perfect accuracy 

and a strong fit to the historical data. This is 

evidenced by the R², which reached 1.00, and by 

the MAPE, which was very low at below 0.6%. It 

demonstrated the model's ability to learn complex 

production data patterns with very high precision 

(Alshboul et al., 2022). The true validation lies in 

the model's performance on previously unseen data 

from the P3 well. 

At this validation stage, the model maintained 

its outstanding performance, with R² = 0.99 and 

MAPE = 0.86%. The very high consistency in 

performance between the training and validation 

data convincingly demonstrates that the model did 

not overfit and has strong generalization 

capabilities. (Shahani et al., 2021). The near-linear 

regression plot validates the XGBoost model's 

accuracy and reliability. It demonstrated its 

superiority for production forecasting in 

manufacturing (De-Prado-gil et al., 2022). 

Comparative analysis of CRM-DCA & machine 

learning to prediction results for water injection in 

reservoir model variations 

To strengthen the scientific validity of this 

study, the hybrid CRM–machine learning approach 

is conceptually compared with other commonly 

used reservoir analysis methods. Classical CRM 

provides a clear physical basis but exhibits reduced 

sensitivity in highly heterogeneous reservoirs. 

Decline curve analysis is effective for identifying 

production trends, yet it does not represent the 

dynamic interaction between injection and 

production (Li et al., 2022). Pure machine-learning 

models can capture complex nonlinear 

relationships but lack a physical interpretive 

framework. The hybrid CRM–ML approach 

integrates the strengths of both domains, resulting 

in a more comprehensive and accurate 

representation of waterflood dynamics (Jiang et al., 

2022; Reginato et al., 2023). 

Analysis of results from three reservoir models, 

homogeneous, heterogeneous, and real field, 

demonstrates that the level of geological 

complexity directly influences interwell 

connectivity, injection response time, and fluid 

sweep efficiency. In the homogeneous model with 

uniform permeability, the reservoir system exhibits 

ideal flow behavior with sweep efficiency 

approaching 100%. History-matching results show 

high accuracy (R² > 0.92; MAPE < 7%), indicating 

that this model effectively captures the water-

injection response. Comparison between the two 

CRM variants reveals significant differences, 

where CRM-IP produces stronger connectivity and 

more realistic time constants. Streamline 

visualization reinforces these findings by showing 

direct, unobstructed fluid flow from injector to 

producer, reflecting efficient, uniform reservoir 

conditions. In contrast to homogeneous conditions, 

the heterogeneous model demonstrates flow 

variations due to non-uniform permeability 

distribution. The presence of high-permeability 

zones causes early breakthrough and uneven fluid 

sweep. Nevertheless, the hybrid CRM+DCA model 

maintains accurate results with R² = 0.88 and 

MAPE = 1.46%. Connectivity and time constant 

values between CRM-P and CRM-IP are relatively 
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Figure 20. History matching & validation XGboost with regression plot well production (a) well 1 (b) well 2 (c) well 3 

  

 
 

 

 Analysis performance for well P1 

Analysis performance for well P2 
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similar (τ ≈ 30 days), indicating that both models 

provide stable interpretation under heterogeneous 

conditions. Well P3 exhibits the highest 

connectivity, signaling a dominant flow path with 

potential for earlier water breakthrough. Three-

dimensional visualization shows that injector I1 has 

the greatest influence on P3, consistent with 

streamline results where fluid flow concentrates in 

high-permeability zones. In Machine Learning 

analysis, the XGBoost model continues to 

demonstrate superior performance, with an 

MAPE of 4.98% compared to Random 

Forest's 10.07%, confirming its ability to 

handle highly variable data. 

Meanwhile, the real field models the most 

complex reservoir conditions with fault structures, 

multi-zone layers, and extreme permeability 

variations. History-matching results show good 

agreement with the actual data (R² = 0.76; MAPE ≈ 

20%), which remains acceptable for field-scale 

models of high complexity. CRM analysis 

demonstrates consistency between CRM-P and 

CRM-IP, with injector I1 having a dominant 

influence on producer P2 (f = 0.0191) and 

relatively uniform time constant values. This 

indicates local hydraulic stability despite non-

homogeneous reservoir geometry. Streamline 

visualization confirms the presence of channeling 

effects in the northeast zone, driven by 

permeability differences and faulting that impede 

fluid flow. In production prediction, the XGBoost 

algorithm again demonstrates the best performance 

with R² = 0.99 and MAPE = 0.86%, compared to 

Random Forest, which achieves R² = 0.95. 

Compared with the homogeneous model, the 

heterogeneous model provides superior 

performance, with rapid injection response and 

high sweep efficiency, because it is unaffected by 

formation heterogeneity. The heterogeneous model 

shows decreased sweep efficiency due to varying 

permeability distribution, but maintains stability in 

interwell connectivity parameters. Meanwhile, the 

real field Volve Field model depicts the most 

realistic conditions with combined influences of 

geology, inter-zone pressure, and complex 

permeability variations, yielding consistent 

connectivity and time constant values but lower 

sweep efficiency. Overall, comparative results 

indicate that CRM-IP is more representative and 

accurate in describing water injection dynamics 

across varying levels of reservoir complexity. At 

the same time, XGBoost is the most reliable 

algorithm for predicting production performance, 

with the lowest error rates across all scenarios. 

 

CONCLUSION 

This research demonstrates that integrating the 

Capacitance Resistance Model with Decline Curve 

Analysis constitutes an effective, data-driven 

approach for evaluating and predicting secondary 

recovery waterflood performance across various 

reservoir conditions. The CRM-DCA combination 

effectively addresses the limitations of 

conventional CRM in capturing nonlinear behavior 

in complex, heterogeneous reservoir systems. 

Analysis results indicate that the CRM-IP model 

provides more realistic estimates of interwell 

connectivity and time constants than CRM-P, 

particularly in homogeneous models with a 

response time of 98 days; in heterogeneous and real

-field models, CRM-DCA delivers stable results 

with consistent connectivity values and response 

times across wells. Three-dimensional visualization 

and streamline analysis also strengthen the physical 

interpretation of fluid flow paths and sweep 

efficiency under each reservoir condition. 

Furthermore, validation results using Machine 

Learning (Random Forest and XGBoost) 

demonstrate that CRM-DCA prediction accuracy 

falls within acceptable ranges and shows consistent 

history-matching patterns against actual data. The 

XGBoost model achieved the best benchmark 

results, with an R² of 0.99 and an MAPE below 

1%, reinforcing the validity of the CRM-DCA 

approach for modeling waterflood performance. 

Overall, CRM-DCA integration proves capable of 

reducing waterflood analysis uncertainty, 

enhancing understanding of interwell connectivity, 

and providing a solid foundation for strategic 

decision-making in reservoir optimization and 

management during the secondary recovery stage. 
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GLOSSARY OF TERMS  
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