Scientific Contributions Oil & Gas, Vol. 48. No. 4, December: 35 - 49 @SCOGP&W_AL

SCIENTIFIC CONTRIBUTIONS OIL AND GAS

Testing Center for Oil and Gas
LEMIGAS

Journal Homepage:http://www.journal.lemigas.esdm.go.id
ISSN: 2089-3361, e-ISSN: 2541-0520

Porosity Estimation in A Natural CO,-Water Reservoir Using Integrated
Density-Resistivity Log Approach

Pahala Dominicus Sinurat', Hari Sasongkoz, and Nabil Visi Samawi'
"nstitut Teknologi Bandung
Ganesha Street No.10, Lebak Siliwangi, Coblong, Bandung City, West Java 40132, Indonesia.

“Infosys Consulting
818 Town & Country Blvd Suite 600, Houston, TX 77024, USA.

Corresponding author: Pahala Dominicus Sinurat (sinurat@itb.ac.id)

Manuscript received: October 07", 2025; Revised: October 23", 2025
Approved: October 29 2025; Available online: December 05%,2025; Published: December 05™,2025.

ABSTRACT - Natural CO: reservoirs represent important analogues for Carbon Capture and Storage
(CCS) and Carbon Capture, Utilization, and Storage (CCUS), as they provide direct evidence of long-term
CO: retention and trapping mechanisms. This study assesses porosity in a natural carbonate CO: reservoir
using an integrated density—resistivity log approach. Conventional porosity logs, such as density, neutron,
and sonic, often overestimate porosity in carbonate systems due to their limited sensitivity to pore
connectivity. To overcome this limitation, density log-derived total porosity was integrated with resistivity-
derived effective porosity, allowing for the differentiation between connected and isolated pore systems.
Fluid density estimations, including supercritical CO. and brine, were computed and validated against
standard references to ensure accuracy. The results show that density-only porosity overestimates values by
up to 10% in dolomitic intervals, whereas the integrated method provides estimates that are more consistent
with core measurements. Isolated porosity, averaging 2% in the upper dolomite and 1.5% in the lower
dolomite, was identified as a non-contributing pore volume for injectivity, although it remains relevant for
storage capacity. These findings underscore the importance of integrated log interpretation for precise
reservoir characterization and offer new insights into evaluating natural CO. reservoirs for long-term
geological storage.
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INTRODUCTION advancing sustainable energy systems, fossil fuels

Although the current global transition toward are still projected to account for approximately
renewable energy marks a positive trajectory in  58% of total energy demand in 2050 (IEA 2024).
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Abrupt discontinuation of investment in the oil and
gas sector could lead to substantial disruptions in
global economic stability (Exxon 2024). In
response, many countries have announced long-
term strategies to achieve net-zero greenhouse gas
(GHG) emissions by 2050 (IPCC 2025). Within
this context, Carbon Capture and Storage (CCS)
and Carbon Capture, Utilization, and Storage
(CCUS) have emerged as crucial technologies for
mitigating CO: emissions while maintaining a
sustainable energy supply (Bachu 2008; Krevor et
al., 2015). Natural CO: reservoirs, which have
stored carbon dioxide safely over geological
timescales, provide important analogues for CCS
projects. They provide direct insights into trapping
mechanisms and long-term storage security that are
challenging to replicate in short-term pilot projects.
Miocic et al. (2013) analyzed a dataset of 49
natural CO: reservoirs worldwide and confirmed
their significance in understanding leakage risk and
reservoir performance. Such studies underscore the
need for a deeper understanding of natural CO:
reservoirs, serving as a critical reference for
sequestration projects (Gilfillan et al., 2009). A
critical factor in CO: storage is its supercritical
condition, which is reached at pressures above 12.4
MPa and temperatures above 180 °F, where CO:
exhibits a liquid-like density and a gas-like
viscosity. The density of CO: under these
conditions governs both storage capacity and flow
dynamics in porous media. Several correlations,
such as the Span & Wagner (1996) equation of
state, as well as those by Liang et al. (2014) and
Wang et al. (2015), have been developed to predict
CO: density under reservoir conditions.
Incorporating this property into log interpretation
workflows enhances the reliability of porosity
estimation in supercritical CO- reservoirs.

In carbonate reservoirs, however, conventional
porosity logs (density, neutron, and sonic) often
face limitations due to complex pore systems.
Density logs tend to measure total porosity,
including isolated pores, whereas resistivity logs
derived from Archie’s equation are more sensitive
to effective porosity, reflecting fluid-connected
pores. Sonic logs, although more precise for
effective porosity, were not used in this study due
to inconsistencies with other logs. Neutron logs
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were also excluded, as their response under
supercritical CO: conditions does not reliably
represent hydrogen content. As a result, using
density logs alone can lead to overestimation of
effective porosity (Tiab & Donaldson 2015).

To address these limitations, this study proposes
an integrated porosity estimation method that
combines density and resistivity logs to enhance
accuracy. This approach enables differentiation
between total and effective porosity, as well as

quantification of isolated pore systems. By
comparing log-derived porosity with core
measurements, this method provides a more

accurate basis for evaluating natural CO:2 reservoirs
as long-term storage sites. It contributes to
improving reservoir characterization for CCS/
CCUS applications.

METHODOLOGY

Clay typing was conducted to evaluate the
potential influence of clay minerals on log
responses and porosity interpretation. Figure 2
presents the clay typing chart based on the
Schlumberger Lith-2 cross-plot, which uses
thorium and potassium content from spectral
gamma ray measurements. The plot shows that the
data do not correspond to any distinct clay type
such as kaolinite, illite, smectite, or mixed-layer
clays. This indicates the absence of a pure shale
zone within the studied interval.

Since thorium and potassium are reliable
proxies for differentiating clay minerals, their low
concentrations suggest that clay content in this
reservoir is minimal. For porosity analysis, the clay
effect can therefore be considered negligible. This
finding is consistent with observations in carbonate
reservoirs, where clay minerals typically have a
lesser impact on porosity compared to siliciclastic
formations (Asquith & Krygowski, 2004; Rider &
Kennedy 2011). Consequently, no shale correction
was applied to the log data in subsequent porosity
computations.

Data preparation

The dataset used in this study consisted of
gamma ray, density, neutron, and resistivity logs,
complemented by core porosity data. Pre-
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processing included quality control, environmental
correction, and core—log depth shifting (Figure 3).
This step is essential to minimize depth mismatch,
which can otherwise cause significant errors in
porosity validation (Doveton 2014).

Clay typing was conducted using spectral
gamma ray cross-plots of thorium versus potassium
(Figure 2). The absence of clustering in typical clay
zones indicated negligible shale content. This result
justifies the assumption that clay effects on
porosity estimation are minor in this carbonate
reservoir (Asquith & Krygowski 2004).

Fluid density computation
Supercritical CO, density

The supercritical CO, density is calculated
based on Liang’s correlation (2014) as follows:

p=A,+ A p+A4;p° +A3p* + A, p* U]

where

Ai = bi() + bil + bi2T2 + bi3T3 + bi4T4 (2)
(i=0,1,234)

The coefficients for pressures greater than 3,000
psia. At reservoir conditions (3,602 psi and 132 °
F), the estimated CO, density is 0.8056 g/cc. These
results were compared against the NIST database
(Span & Wagner 1996), which is considered the
benchmark equation of state.

The coefficients used in this study are
summarized in Table 1, which provides the
polynomial constants b0-b4 as functions of
temperature. These constants enable the correlation

to predict CO: density reliably for pressures above

B =—_——2"P
W1+ AV,

3,000 psia. As shown in Table 1, the correlation
incorporates temperature-dependent terms up to the
fourth order, enabling accurate density predictions
under reservoir conditions. At 3,602 psi and 132 °
F, the estimated CO: density was 0.8056 g/cc,
which is consistent with values from the NIST
database (Span & Wagner 1996). This validates the
applicability of Liang’s correlation for the
conditions analyzed in this study.

Brine density

The water density is calculated based on
McCain’s correlation. The first step is to calculate
the brine formation volume factor:

144V, @)

where

AV, = —1.0001 (107%) + 1.33391 (107™%) + 550654 (10772 (4)

and

A, = ~195301 (107°)pT — 1.72834 (107'3)pT — 3.58922 (10~")p — 225341p>  (5)

Then, we use correlation to estimate the brine
density based on the total dissolved solid weight
percent.

g urgace = 62:368 + 0.438603 S + 1.60074 (1073) 52 (6)

Finally, the brine density as a reservoir
condition is calculated based on the water
formation volume factor at a particular depth and
corresponding pressure and temperature:

P = pW@ surface
w BW

Table 1. Polynomial coefficients (bo—bs) in liang’s CO, density correlation

biy bit b2 bi3 bis
i=0  6.897382693936E+02  2.730479206931E+00  -2.254102364542E-02 -4.651196146917E-03  3.439702234956E-05
i=1  2213692462613E-01  -6.547268255814E-03  5.982258882656E-05  2.274997412526E-06  -1.888361337660E-08
i=2  -5.118724890479E-05  2.019697017603E-06  -2.311332097185E-08  -4.079557404679E-10  3.893599641874E-12

i=3  5.517971126745E-09
i=4  -2.184152941323E-13

-2.415814703211E-10
1.010703706059E-14

3.121603486524E-12
-1.406620681883E-16

3.171271084870E-14
-8.957731136447E-19

-3.560785550401E-16
1.215810469539E-20
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The same equation is used for mud filtrate
density calculation in the invaded zone. To
compare the results, we use the National Institute
of Standards and Technology (NIST) database.

Porosity computation

The same equation is used for mud filtrate
density calculation in the invaded zone. To
compare the results, we use the National Institute
of Standards and Technology (NIST) database.

As shown in Figure 6, at a lower pressure of
around 3,000 psi, the computation results yield
slightly higher values than those from NIST. The
NIST uses Span & Wagner correlation (1996). We
tried a new correlation from Wang et al. (2015);
however, it gives unrealistic values.

The density log reads electron density instead of
the bulk density. For every element and compound
molecule, a conversion should be made from bulk
density to electron density, and then eventually to
the tool reading. The atomic or molecular number
and weight relate to the bulk and electron density.

For CO,, the estimated density at 3,602 psi and
132 °F is 0.8056 g/cc (using Liang’s method, as
implemented in the program). The electron density
The electron density related to bulk density is:

2(6+2x8)

) _ (8)
(12.011 + 2 x 16) 0.8054

= 22_08056
Pe = Poyy = Y

The tool reading is calibrated based on a
reference lithology. For pure, fully water-saturated
limestone:

pa = 1.0704 p, — 0.1883 9)

Therefore, in pure supercritical CO,, the density
tool should read:

po = 1.0704 x 0.8054 — 0.1883 = 0.6741 (10)

In the computation, the initial

estimation is calculated based on:
2 + 2
= ®p : opy (11)
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porosity

However, since the neutron log does not
correspond to hydrogen content, the neutron log
data is not being used. In this work, we estimate the
effective porosity by integrating the resistivity log
using Archie’s equation and the density log.

Considering the mud invasion phenomenon, the
resistivity log reading in the uninvaded zone should
be affected by the initial formation fluid (formation
water and supercritical CO,;). The deepest
resistivity reading is expected to be in the
uninvaded zone. The mnemonics for resistivity
curves are R300, R400, R600, R850, and RTAO.
We do not recognize this mnemonics, but we think
it is an array induction log. The geothermal
gradient is calculated to estimate the temperature at
every depth. For Archie’s equation, the values of a,
m, and n are 1, 1.99, and 2, respectively.

The formation water saturation is calculated at
every depth by using Arp’s equation. The Arp’s
equation estimates resistivity variations based on
temperature and salt concentration:

3647.5

R, = 00123 +
(Nact

81.77
0.955 ] (12)

T+6.77

ppm)

The following equation calculates mud filtrate
resistivity at every depth:

Tasurface + 6.77

R
mfesurface Tepepth + 6.77

R (13)

Mmf@pepth —

The algorithm for porosity computation is
shown in Figures 1 and 2. Figure 1 represents
porosity computation in the uninvaded zone, while
Figure 2 represents the invaded zone.

Figure 8 illustrates the difference in porosity
estimation between the density log alone (total
porosity) and the integrated method presented in
this work. It is observed that the difference in the
interest zones (dolomite) is about 10%.

To validate log-derived porosity, core data after
shifting is used. Figure 9 shows that the log-
derived porosity matches most of the lower parts of
dolomites. Some cores with very low porosity (less
than 5% at intervals 8,080-8,130 ft) require further
verification. Overall, the porosity between the core
and log-derived samples shows a good correlation.
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The porosity estimation result will be used for
permeability prediction in the following progress
report.

In carbonate reservoirs, it is common to have
multiple types of porosity, such as interparticle,
vugs, and fractures. Dissolved particles form vugs
(smaller size) and caverns (bigger size). The
supercritical CO, and rock interactions force clay
mineral  splitting and mineral dissolution
(cementing, filling, and calcium carbonate
aggregate itself). The final product of the chemical
reaction is the precipitation of minerals. The
precipitation could change small connected pores
into an isolated pore system.

Figure 10 shows the estimated isolated porosity
based on the difference between effective porosity
(calculated from integration resistivity and density)
and total porosity (density log alone). Figure 9
illustrates that the dolomite sections contain more
isolated pores. The average of isolated pores is
about 2% in the upper dolomite section and 1.5%
in the lower dolomite section.

Porosity is calculated using Archie’s equation as
follows:

1
a Rw)m (14)

o= (5w
Then the fluid density is calculated using:

pfa = Swpwa + SSCOszCOZa (15)

Research workflow

To address mud-filtrate invasion, porosity was
computed separately for uninvaded and invaded
zones. The iterative algorithms are summarized in
Figures 1 and 2.

Figure 1: Porosity computation in the
uninvaded zone, using deep resistivity data less
affected by invasion.

Figure 2: Porosity computation in the invaded
zone, incorporating mud-filtrate resistivity into
Archie’s formulation.

This dual approach ensures robust estimation of
porosity across different invasion conditions.
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Figure 1. Porosity computation for uninvaded zone R;
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RESULT AND DISCUSSION
Comparison with previous studies

To contextualize the present study within
existing research, several analog and comparative
investigations were reviewed. The Sleipner CO:
storage project in the North Sea (Arts et al., 2004)
provides an essential analog for supercritical CO>—
brine systems. Although the Sleipner study
primarily used 4D seismic monitoring, it
demonstrates how CO: injection alters the pore
system connectivity and resistivity distribution,
which conceptually aligns with the integration of
density and resistivity logs employed in this work.
In contrast, Suwondo et al. (2022) examined
carbonate reservoirs in the Bintuni Basin (an
analog to the Tangguh area) using log-based
porosity estimation and found that dolomitic
intervals exhibit overestimation when density logs
are used alone—similar to the trends observed in
this study.

Recent research by Kaczmarczyk-Kuszpit &
Sowizdzat (2024) on carbonate reservoirs in
Poland integrated well logs and seismic attributes
to improve porosity and lithofacies prediction,
reinforcing the reliability of log integration for
heterogeneous carbonate systems. Laboratory
investigations by Hernandez-Castro et al. (2019)
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also confirmed that CO:-enriched brine can
significantly modify porosity and resistivity
responses in carbonates due to dissolution and
mineral precipitation effects. These studies
collectively support the methodology and findings
of the present work, emphasizing that density—
resistivity integration is an effective means of
estimating porosity and distinguishing between
connected and isolated pore systems in CO.-water
carbonate reservoirs.

Porosity computation

Figure 3 shows the density log data used for
quality control. The top section indicates a washout
zone in soft limestone with high clay content, while
the main reservoir interest lies in the Dolomite 1
interval. Despite rugosity effects, the density log
signal depth of investigation (typically 15-20
inches) ensures that readings remain reliable. Mud
cake buildup observed in the lower dolomite zone
was assumed corrected using environmental
corrections  (spine-and-rib  chart).  Density
corrections were within tolerance (<0.05), and
gamma ray—density alignment confirmed that no
additional depth shifting was necessary. These
checks wvalidate that the density log can be
confidently applied in porosity computation.
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Table 2. Summary of comparable studies and their relevance

Study

Location/ lithology Methodology

Key findings

Relevance to this study

Utsira Formation,
North Sea (sandstone

Arts et al. (2004)
aquifer)

Carbonate (dolomite-
Suwondo et al. (2022) limestone), Papua

Barat

Kaczmarczyk-Kuszpit Carbonate platform,

& Sowizdzat (2024) Poland

Hernandez-Castro et Experimental car-

Seismic anomalies

4D seismic CO:

evolution

Log-based porosity
(density-neutron)

trace CO: migration
plume monitoring and pore connectivity

Density log tends to
overestimate porosity
in dolomitic sections

Improved porosity

Integrated log-
seismic inversion

ping

CO: alters porosity/
resistivity through dis-

CO:-brine flow

estimation accuracy
and heterogeneity map-

Serves as an analog for CO2>—
brine system behavior and
pore connectivity context

Direct analog for carbonate
lithology and log-based poros-
ity overestimation

Supports an integration ap-
proach for heterogeneous car-
bonate systems

CO:>-brine
ence on resistivity-porosity

Confirms influ-

al. (2019) bonate core experiments solution and mineral . .
S relations in carbonates
precipitation
DEFTH Ravw_012GRIGC (GAPT) Raw_0L:DEN (GACI) R 0 1:0008 {GICE) I Raw_01:POFE (BE)
FTy Q. 50. | 1.94 2.97|0.75 0.25]0.
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00, Py 0 1:58T0U QLB 000, Greater than 005
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r pper
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L
]
r
r —
Dolomite 2

Figure 3. Density log data presented for quality control. The density track (left) shows washout effects in the upper
limestone interval and more stable readings across the main reservoir sections. Lithology interpretation indicates four
primary units: Upper Limestone, Dolomite 1, Limestone 2, and Dolomite 2. The rugosity log highlights zones affected by
borehole enlargement, while the density correction curve displays intervals requiring caution during porosity estimation.
These logs collectively confirm data reliability prior to density—resistivity integration.
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Neutron log assessment

The neutron log was recorded in limestone
porosity units, using mnemonics NPRL and NPOR,
which both produced consistent results. However,
its application in porosity estimation was limited
due to the presence of NaCl, which can distort
hydrogen index readings. Furthermore, under
supercritical CO: conditions, neutron counts do not
correspond to hydrogen content, rendering the tool
ineffective for estimating effective porosity. Thus,
neutron logs were excluded from further analysis.

Clay content estimation

Clay typing using the Schlumberger Lith-2
spectral gamma ray cross-plot (thorium vs.
potassium) showed that the data did not cluster into
any specific clay type (Figure 4). The absence of a
pure shale zone implies that the clay influence on
log responses is negligible. This justifies the
exclusion of clay correction in subsequent porosity
calculations.

Core-log depth matching

To validate log interpretation, depth shifting
was performed by aligning gamma ray and density
logs with core measurements. Figure 5 shows good
alignment after shifting, reducing mismatch, and
enabling more reliable comparison between core
and log-derived porosity. This calibration step is
critical for ensuring the robustness of porosity
interpretation.

Supercritical CO; density validation

The supercritical CO: density was computed
using Liang’s correlation (2014) and compared
with NIST data (Span & Wagner, 1996). As shown
in Figure 6, the computation matched well at
reservoir conditions (~3,602 psi, 132 °F) with an
estimated density of 0.8056 g/cc. Slight
overprediction at lower pressures (~3,000 psi) was
observed relative to NIST data, while correlations
from Wang et al. (2015) produced unrealistic
values. This confirms the suitability of Liang’s
correlation for supercritical CO: density under field
conditions.
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Figure 4. Figure 4. Clay mineral typing using spectral gamma ray crossplot of thorium versus potassium. The
distribution of data points indicates the presence of mixed clay mineralogy, with zones trending toward kaolinite, illite,
and chlorite fields. The Th/K trends also reveal intervals with higher heavy-mineral or mica content. This mineralogical

classification supports the lithology interpretation and provides constraints on matrix density, neutron response, and
porosity behavior in the carbonate reservoir units.
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Figure 5. Core—log depth shifting for gamma ray and density measurements. The plotted core data from five core
intervals are aligned against the corresponding well-log responses to correct depth mismatches caused by coring
disturbances and depth-recording uncertainties. The alignment improves consistency between high-resolution core
measurements and continuous log profiles, ensuring accurate calibration for porosity and lithology interpretation.
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Figure 6. Comparison between computed supercritical CO, density (using Liang’s correlation) and reference
data from NIST. The strong agreement between the calculated curve and NIST measurements validates
the reliability of the correlation across the reservoir pressure range (3,000—4,000 psi). This verification
ensures that the CO; density used in the porosity computation is accurate for in-situ reservoir conditions.
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Mud invasion and resistivity response

Resistivity logs (R300, R400, R600, R850,
RTAO) displayed separation between shallow and
deep curves, confirming mud filtrate invasion
(Figure 7). Deep resistivity readings are
representative of the uninvaded zone, while
shallow readings reflect invaded intervals. This
observation  necessitated  separate  porosity
workflows for uninvaded (Rt) and invaded (Rxo)
zones (Figures 1 and 2). Such differentiation
ensures that porosity estimation accounts for
invasion effects, which are common in carbonate
reservoirs.

Porosity estimation and core validation

Porosity was first estimated from density logs
(total porosity) and then refined through integration
with resistivity logs using Archie’s equation
(effective porosity). As shown in Figure 8 (left
panel), density-only porosity consistently overesti-
mated values in dolomitic zones by approximately
10%. The integrated approach provided more real-
istic estimates by excluding isolated, non-

connected pores, underscoring the importance of
incorporating resistivity in porosity analysis. Vali-
dation with core porosity measurements further
confirmed the reliability of the integrated method.
Figure 8 (right panel) shows that most dolomite
intervals exhibit good agreement between core and
log-derived porosity. Minor discrepancies were
observed in low-porosity intervals (<5% at depths
of 8,080-8,130 ft), which may require further veri-
fication. Overall, the integrated method demon-
strated stronger correlation with core data com-
pared to density log alone, reinforcing its robust-
ness for porosity assessment in carbonate reser-
VOirs.

Isolated pore estimation

Carbonate reservoirs typically exhibit complex
pore systems, including interparticle pores, vugs,
and fractures. Diagenetic processes, such as
dissolution and precipitation, strongly influence
these heterogeneities. Dissolution caused by COx—
brine-rock interactions can generate secondary
porosity, enhancing the overall pore volume.

DEPTH Raw_01:GRGC (GAPT)

Raw_01:R 300 (OHMM)

Raw_01:06N (G/C3) | Raw_01:PDPE | CoreDescZone
2.0 3.15]2 5

|- s0.|20
' Raw_01:5PCG (MV)
300. |20

Raw_01:R400 (OHMM

20000.12.03

20000

20

2.

)
Raw_01:RE00 (OHMM)
)

Raw_D1:R850 (OHMM

20000

Raw_D1:RTAD (OHMM)

20000.

2.

Resistraty Separaton

20000.

8100

Upper LS

Dolo 1

Dalo 2

Figure 7. Resistivity log separation illustrating the extent of mud filtrate invasion across the carbonate intervals. The
divergence between shallow, medium, and deep resistivity curves indicates zones where mud filtrate has displaced
formation fluids, particularly within more porous intervals of the Upper Limestone, Dolomite 1, LS2, and Dolomite 2
units. This resistivity separation is critical for determining invaded-zone saturation (Sxo) and for ensuring accurate input
to the integrated density—resistivity porosity calculation.
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Isolated pore estimation

Carbonate reservoirs typically exhibit complex
pore systems, including interparticle pores, vugs,
and fractures. Diagenetic processes, such as
dissolution and precipitation, strongly influence
these heterogeneities. Dissolution caused by CO»—
brine-rock interactions can generate secondary
porosity, enhancing the overall pore volume.
Conversely, mineral precipitation (e.g., calcite or
ankerite = cementation) can occlude pore
connectivity, leading to the development of
isolated pores that are not hydraulically connected
to the main flow system.

The comparison between core and log-derived
porosity (Figure 9) highlights that while overall
porosity trends are consistent, certain dolomitic
intervals display discrepancies that may reflect the
presence of isolated pores. These isolated pores
were quantified as the difference between total
porosity (derived from density logs) and effective

0. 9
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w— Dty log (alone)

——Integrated methaod (2 hie, teration)

DEPTH (ft)

8,140

B,160 —

porosity (derived from integrated resistivity—
density analysis). As shown in Figure 10, the
distribution of isolated pores is heterogeneously
developed across the studied interval. The results
indicate an average of approximately 2% isolated
porosity in the upper dolomite and about 1.5% in
the lower dolomite. Although these pores
contribute to storage capacity by increasing total
pore volume, they do not enhance fluid flow or
permeability. Consequently, their presence may
limit injectivity and reduce the efficiency of CO:
storage operations.

From a CCS perspective, recognizing and
quantifying isolated porosity is critical. While such
pores can temporarily retain CO:, they are unlikely
to provide long-term benefits in terms of
injectivity. Distinguishing between total and
effective porosity, therefore, becomes essential in
evaluating reservoir quality and ensuring realistic
assessments of CO: storage performance in
carbonate formations.
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Figure 8. Comparison between porosity derived from density log alone and the integrated density—resistivity iterative
method. The left track shows that the integrated method yields lower porosity estimates within dolomitic intervals,
where density logs typically overestimate due to high matrix density and secondary porosity effects. The right track
presents the percent difference, highlighting zones (shaded) where the integrated method significantly reduces
overestimation. This comparison demonstrates the effectiveness of the integrated approach in improving porosity
accuracy, particularly in heterogeneous dolomite layers.
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Figure 9. Comparison between log-derived porosity and core porosity measurements across the carbonate intervals.
The log-derived porosity curve generally captures the overall porosity trend but shows noticeable deviations in dolomitic
sections, where core measurements indicate lower porosity than suggested by logs. This comparison highlights the
importance of calibration with core data and demonstrates the need for an integrated density—resistivity approach to
reduce overestimation in heterogeneous carbonate reservoirs.
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Figure 10. Estimated isolated[Ipore porosity across the carbonate intervals. The curve highlights depth zones
where porosity occurs predominantly within unconnected or poorly connected pore spaces, which do not
contribute to fluid flow. These isolated pores are typically associated with tight limestone layers and partially
recrystallized dolomite intervals. Identifying isolated porosity helps differentiate effective porosity from total
porosity and improves the reliability of reservoir quality assessment in CO[l—water carbonate systems.
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CONCLUSION

This study emphasizes the significance of em-
ploying an integrated density-resistivity log ap-
proach for porosity estimation in natural carbonate
CO: reservoirs. The results demonstrate that densi-
ty logs alone tend to overestimate porosity, particu-
larly in dolomitic zones, because they include both
connected and isolated pores. By incorporating re-
sistivity logs, it was possible to distinguish between
total and effective porosity, leading to a more real-
istic representation of pore connectivity. Core vali-
dation further confirmed the robustness of this inte-
grated method, showing closer agreement with
measured porosity values compared to density-only
estimations, with minor discrepancies observed in
very low-porosity intervals.

Additionally, the study identified the presence
of isolated porosity, averaging approximately 2%
in the upper dolomite and 1.5% in the lower dolo-
mite. While these isolated pores contribute to over-
all storage capacity, they do not improve permea-
bility or injectivity, which are critical parameters
for CO: storage performance. Recognizing and
quantifying these differences is therefore essential
in evaluating carbonate reservoirs for long-term
geological storage.

Overall, the integrated workflow presented in
this study provides a more accurate and compre-
hensive assessment of reservoir quality. By com-
bining log data with fluid density computations and
core validation, this approach enhances the reliabil-
ity of porosity interpretation. It provides valuable
insights for evaluating the suitability of natural CO:
reservoirs as analogues for CCS and CCUS pro-
jects.
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GLOSSARY OF TERMS
Symbol Definition Unit
p Density (general) g/cc
pb Bulk density (log-derived) g/cc
Pma Matrix or grain density g/cc

Apparent fluid density
pfa (mixture of CO: and brine) g/cc

W Formation water (brine) Joc
P density &

Water density at surface
pw(@surface conditions g/cc
PScos Supercritical CO: density  g/cc
Pmf Mud filtrate density g/cc
pe Electron density g/cc
pa Apparent density tool read- g/cc
plog reading Density log recorded read- g/cc
(0] Porosity (general) Fraction
o© 1n1t1a_1 guess of porosity in - o .

1terative computation
oD Density-derived porosity ~ Fraction
o Iterated.porosny Valqe i e tion

successive computation
Rt Tru_e formation resistivity ohmm

(uninvaded zone)

Rxo Shallow resistivity (invaded ohm'm
zone)

Rw Formation water resistivity ohm-m

R Mud filtrate resistivity ohm'm

Rmf@surface Mud filtrate resistivity at ohm'm
the surface

Mud filtrate resistivity at .
Rmf@depth depth ohm'm
Sw Water saturation Fraction

Water saturation in the in- .
Sxo Fraction

vaded zone
SScos Supercritical CO: saturation Fraction

Supercritical CO2 apparent .
SScom saturation (Archie’s con- Fraction
a Tortuosity factor (Archie’s

constant)

m Cementation exponent —

n Saturation exponent —

Ao-As Coefﬁments in Llang sCO.
density correlation

Polynomial coefficient de-

Ai —
pendent on temperature

Polynomial constants used
biO_ bi4 -

to calculate A;
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Brine formation volume

Bw factor bbl/STB
AV Temperatu.re correqtion
W term for brine density
AV Pr_essure cprrection term for
wp brine density
Temperature °F
Salinity (total dissolved
S solids) ( %
Z Atomic number —
MW Molecular weight g/mol
NaClym Salinity as sodium chloride ppm

equivalent
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