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ABSTRACT - Natural CO₂ reservoirs represent important analogues for Carbon Capture and Storage 

(CCS) and Carbon Capture, Utilization, and Storage (CCUS), as they provide direct evidence of long-term 

CO₂ retention and trapping mechanisms. This study assesses porosity in a natural carbonate CO₂ reservoir 

using an integrated density–resistivity log approach. Conventional porosity logs, such as density, neutron, 

and sonic, often overestimate porosity in carbonate systems due to their limited sensitivity to pore 

connectivity. To overcome this limitation, density log-derived total porosity was integrated with resistivity-

derived effective porosity, allowing for the differentiation between connected and isolated pore systems. 

Fluid density estimations, including supercritical CO₂ and brine, were computed and validated against 

standard references to ensure accuracy. The results show that density-only porosity overestimates values by 

up to 10% in dolomitic intervals, whereas the integrated method provides estimates that are more consistent 

with core measurements. Isolated porosity, averaging 2% in the upper dolomite and 1.5% in the lower 

dolomite, was identified as a non-contributing pore volume for injectivity, although it remains relevant for 

storage capacity. These findings underscore the importance of integrated log interpretation for precise 

reservoir characterization and offer new insights into evaluating natural CO₂ reservoirs for long-term 

geological storage.  
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INTRODUCTION 

Although the current global transition toward 

renewable energy marks a positive trajectory in 

advancing sustainable energy systems, fossil fuels 

are still projected to account for approximately 

58% of total energy demand in 2050 (IEA 2024). 
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Abrupt discontinuation of investment in the oil and 

gas sector could lead to substantial disruptions in 

global economic stability (Exxon 2024). In 

response, many countries have announced long-

term strategies to achieve net-zero greenhouse gas 

(GHG) emissions by 2050 (IPCC 2025). Within 

this context, Carbon Capture and Storage (CCS) 

and Carbon Capture, Utilization, and Storage 

(CCUS) have emerged as crucial technologies for 

mitigating CO₂ emissions while maintaining a 

sustainable energy supply (Bachu 2008; Krevor et 

al., 2015). Natural CO₂ reservoirs, which have 

stored carbon dioxide safely over geological 

timescales, provide important analogues for CCS 

projects. They provide direct insights into trapping  

mechanisms and long-term storage security that are 

challenging to replicate in short-term pilot projects. 

Miocic et al. (2013) analyzed a dataset of 49 

natural CO₂ reservoirs worldwide and confirmed 

their significance in understanding leakage risk and 

reservoir performance. Such studies underscore the 

need for a deeper understanding of natural CO₂ 

reservoirs, serving as a critical reference for 

sequestration projects (Gilfillan et al., 2009). A 

critical factor in CO₂ storage is its supercritical 

condition, which is reached at pressures above 12.4 

MPa and temperatures above 180 °F, where CO₂ 

exhibits a liquid-like density and a gas-like 

viscosity. The density of CO₂ under these 

conditions governs both storage capacity and flow 

dynamics in porous media. Several correlations, 

such as the Span & Wagner (1996) equation of 

state, as well as those by Liang et al. (2014) and 

Wang et al. (2015), have been developed to predict 

CO₂ density under reservoir conditions. 

Incorporating this property into log interpretation 

workflows enhances the reliability of porosity 

estimation in supercritical CO₂ reservoirs. 

In carbonate reservoirs, however, conventional 

porosity logs (density, neutron, and sonic) often 

face limitations due to complex pore systems. 

Density logs tend to measure total porosity, 

including isolated pores, whereas resistivity logs 

derived from Archie’s equation are more sensitive 

to effective porosity, reflecting fluid-connected 

pores. Sonic logs, although more precise for 

effective porosity, were not used in this study due 

to inconsistencies with other logs. Neutron logs 

were also excluded, as their response under 

supercritical CO₂ conditions does not reliably 

represent hydrogen content. As a result, using 

density logs alone can lead to overestimation of 

effective porosity (Tiab & Donaldson 2015). 

To address these limitations, this study proposes 

an integrated porosity estimation method that 

combines density and resistivity logs to enhance 

accuracy. This approach enables differentiation 

between total and effective porosity, as well as 

quantification of isolated pore systems. By 

comparing log-derived porosity with core 

measurements, this method provides a more 

accurate basis for evaluating natural CO₂ reservoirs 

as long-term storage sites. It contributes to 

improving reservoir characterization for CCS/

CCUS applications. 

 

METHODOLOGY 

Clay typing was conducted to evaluate the 

potential influence of clay minerals on log 

responses and porosity interpretation. Figure 2 

presents the clay typing chart based on the 

Schlumberger Lith-2 cross-plot, which uses 

thorium and potassium content from spectral 

gamma ray measurements. The plot shows that the 

data do not correspond to any distinct clay type 

such as kaolinite, illite, smectite, or mixed-layer 

clays. This indicates the absence of a pure shale 

zone within the studied interval. 

Since thorium and potassium are reliable 

proxies for differentiating clay minerals, their low 

concentrations suggest that clay content in this 

reservoir is minimal. For porosity analysis, the clay 

effect can therefore be considered negligible. This 

finding is consistent with observations in carbonate 

reservoirs, where clay minerals typically have a 

lesser impact on porosity compared to siliciclastic 

formations (Asquith & Krygowski, 2004; Rider & 

Kennedy 2011). Consequently, no shale correction 

was applied to the log data in subsequent porosity 

computations. 

Data preparation 

The dataset used in this study consisted of 

gamma ray, density, neutron, and resistivity logs, 

complemented by core porosity data. Pre-
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𝜌𝑤 =  
𝜌𝑤@ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐵𝑤
 

 

 

processing included quality control, environmental 

correction, and core–log depth shifting (Figure 3). 

This step is essential to minimize depth mismatch, 

which can otherwise cause significant errors in 

porosity validation (Doveton 2014). 

Clay typing was conducted using spectral 

gamma ray cross-plots of thorium versus potassium 

(Figure 2). The absence of clustering in typical clay 

zones indicated negligible shale content. This result 

justifies the assumption that clay effects on 

porosity estimation are minor in this carbonate 

reservoir (Asquith & Krygowski 2004). 

Fluid density computation 

Supercritical CO2 density 

The supercritical CO2 density is calculated 

based on Liang’s correlation (2014) as follows: 

𝜌 = 𝐴𝑜 + 𝐴1 𝑝+ 𝐴2 𝑝2 + 𝐴3 𝑝3 + 𝐴4 𝑝4 

 

 

(1) 

where 

𝐴𝑖 = 𝑏𝑖0 + 𝑏𝑖1 + 𝑏𝑖2𝑇
2 + 𝑏𝑖3𝑇

3 + 𝑏𝑖4𝑇
4    

(𝑖 = 0,1,2,3,4) 

 

(2) 

The coefficients for pressures greater than 3,000 

psia. At reservoir conditions (3,602 psi and 132 °

F), the estimated CO2 density is 0.8056 g/cc. These 

results were compared against the NIST database 

(Span & Wagner 1996), which is considered the 

benchmark equation of state. 

The coefficients used in this study are 

summarized in Table 1, which provides the 

polynomial constants b0–b4 as functions of 

temperature. These constants enable the correlation 

to predict CO₂ density reliably for pressures above 

Table 1. Polynomial coefficients (b0–b4) in liang’s CO2 density correlation 

3,000 psia. As shown in Table 1, the correlation 

incorporates temperature-dependent terms up to the 

fourth order, enabling accurate density predictions 

under reservoir conditions. At 3,602 psi and 132 °

F, the estimated CO₂ density was 0.8056 g/cc, 

which is consistent with values from the NIST 

database (Span & Wagner 1996). This validates the 

applicability of Liang’s correlation for the 

conditions analyzed in this study.  

Brine density 

The water density is calculated based on 

McCain’s correlation. The first step is to calculate 

the brine formation volume factor: 

𝐵𝑤 =
1 + 𝛥𝑉𝑤𝑝
1 + 𝛥𝑉𝑤𝑇

 

 

(3) 

where 

 
(4) 

and 
 

(5) 

Then, we use correlation to estimate the brine 

density based on the total dissolved solid weight 

percent. 

(6) 

Finally, the brine density as a reservoir 

condition is calculated based on the water 

formation volume factor at a particular depth and 

corresponding pressure and temperature: 

(7) 

 

 bi0 bi1 bi2 bi3 bi4 

i = 0 6.897382693936E+02 2.730479206931E+00 -2.254102364542E-02 -4.651196146917E-03 3.439702234956E-05 

i = 1 2.213692462613E-01 -6.547268255814E-03 5.982258882656E-05 2.274997412526E-06 -1.888361337660E-08 

i = 2 -5.118724890479E-05 2.019697017603E-06 -2.311332097185E-08 -4.079557404679E-10 3.893599641874E-12 

i = 3 5.517971126745E-09 -2.415814703211E-10 3.121603486524E-12 3.171271084870E-14 -3.560785550401E-16 

i = 4 -2.184152941323E-13 1.010703706059E-14 -1.406620681883E-16 -8.957731136447E-19 1.215810469539E-20 
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𝑅𝑤 =  0.0123 +
3647.5

 𝑁𝑎𝐶𝑙𝑝𝑝𝑚  
0.955  

81.77

𝑇 + 6.77
  

 

The same equation is used for mud filtrate 

density calculation in the invaded zone. To 

compare the results, we use the National Institute 

of Standards and Technology (NIST) database. 

Porosity computation 

The same equation is used for mud filtrate 

density calculation in the invaded zone. To 

compare the results, we use the National Institute 

of Standards and Technology (NIST) database. 

As shown in Figure 6, at a lower pressure of 

around 3,000 psi, the computation results yield 

slightly higher values than those from NIST. The 

NIST uses Span & Wagner correlation (1996). We 

tried a new correlation from Wang et al. (2015); 

however, it gives unrealistic values.  

The density log reads electron density instead of 

the bulk density.  For every element and compound 

molecule, a conversion should be made from bulk 

density to electron density, and then eventually to 

the tool reading. The atomic or molecular number 

and weight relate to the bulk and electron density.   

For CO2, the estimated density at 3,602 psi and 

132 °F is 0.8056 g/cc (using Liang’s method, as 

implemented in the program). The electron density 

The electron density related to bulk density is: 

 

(8) 

𝜌𝑎 = 1.0704 𝜌𝑒 − 0.1883 

 
(9) 

𝜌𝑎 = 1.0704 × 0.8054− 0.1883 =  0.6741 

 

(10) 

𝜙 =  
𝜙𝐷

2 + 𝜙𝑁
2

2
 

 

(11) 

The tool reading is calibrated based on a 

reference lithology. For pure, fully water-saturated 

limestone: 

Therefore, in pure supercritical CO2, the density 

tool should read: 

In the computation, the initial porosity 

estimation is calculated based on: 

However, since the neutron log does not 

correspond to hydrogen content, the neutron log 

data is not being used. In this work, we estimate the 

effective porosity by integrating the resistivity log 

using Archie’s equation and the density log.  

Considering the mud invasion phenomenon, the 

resistivity log reading in the uninvaded zone should 

be affected by the initial formation fluid (formation 

water and supercritical CO2). The deepest 

resistivity reading is expected to be in the 

uninvaded zone. The mnemonics for resistivity 

curves are R30O, R40O, R60O, R85O, and RTAO. 

We do not recognize this mnemonics, but we think 

it is an array induction log. The geothermal 

gradient is calculated to estimate the temperature at 

every depth. For Archie’s equation, the values of a, 

m, and n are 1, 1.99, and 2, respectively.  

The formation water saturation is calculated at 

every depth by using Arp’s equation. The Arp’s 

equation estimates resistivity variations based on 

temperature and salt concentration: 

(12) 

The following equation calculates mud filtrate 

resistivity at every depth:  

𝑅𝑚𝑓@𝐷𝑒𝑝𝑡ℎ
=  𝑅𝑚𝑓@𝑆𝑢𝑟𝑓𝑎𝑐𝑒

𝑇@𝑆𝑢𝑟𝑓𝑎𝑐𝑒 + 6.77

𝑇@𝐷𝑒𝑝𝑡ℎ + 6.77
 

 

(13) 

The algorithm for porosity computation is 

shown in Figures 1 and 2. Figure 1 represents 

porosity computation in the uninvaded zone, while 

Figure 2 represents the invaded zone.  

Figure 8 illustrates the difference in porosity 

estimation between the density log alone (total 

porosity) and the integrated method presented in 

this work. It is observed that the difference in the 

interest zones (dolomite) is about 10%. 

To validate log-derived porosity, core data after 

shifting is used. Figure 9 shows that the log-

derived porosity matches most of the lower parts of 

dolomites. Some cores with very low porosity (less 

than 5% at intervals 8,080–8,130 ft) require further 

verification. Overall, the porosity between the core 

and log-derived samples shows a good correlation. 
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The porosity estimation result will be used for 

permeability prediction in the following progress 

report.  

In carbonate reservoirs, it is common to have 

multiple types of porosity, such as interparticle, 

vugs, and fractures. Dissolved particles form vugs 

(smaller size) and caverns (bigger size). The 

supercritical CO2 and rock interactions force clay 

mineral splitting and mineral dissolution 

(cementing, filling, and calcium carbonate 

aggregate itself). The final product of the chemical 

reaction is the precipitation of minerals. The 

precipitation could change small connected pores 

into an isolated pore system.  

Figure 10 shows the estimated isolated porosity 

based on the difference between effective porosity 

(calculated from integration resistivity and density) 

and total porosity (density log alone). Figure 9 

illustrates that the dolomite sections contain more 

isolated pores. The average of isolated pores is 

about 2% in the upper dolomite section and 1.5% 

in the lower dolomite section. 

Porosity is calculated using Archie’s equation as 

follows: 

Then the fluid density is calculated using: 

Figure 1. Porosity computation for uninvaded zone Rt 

𝜙 =  
𝑎

𝑆𝑤
𝑛

𝑅𝑤
𝑅𝑡
 

1
𝑚

 

 

(14) 

Research workflow 

To address mud-filtrate invasion, porosity was 

computed separately for uninvaded and invaded 

zones. The iterative algorithms are summarized in 

Figures 1 and 2. 

Figure 1: Porosity computation in the 

uninvaded zone, using deep resistivity data less 

affected by invasion. 

Figure 2: Porosity computation in the invaded 

zone, incorporating mud-filtrate resistivity into 

Archie’s formulation. 

This dual approach ensures robust estimation of 

porosity across different invasion conditions. 

𝜌𝑓𝑎 = 𝑆𝑤𝜌𝑤𝑎 + 𝑆𝑠𝐶𝑂2
𝜌𝑠𝐶𝑂2𝑎

 

 

 

(15) 
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Figure 2. Porosity computation for invaded zone Rxo 

RESULT AND DISCUSSION 

Comparison with previous studies 

To contextualize the present study within 

existing research, several analog and comparative 

investigations were reviewed. The Sleipner CO₂ 

storage project in the North Sea (Arts et al., 2004) 

provides an essential analog for supercritical CO₂–

brine systems. Although the Sleipner study 

primarily used 4D seismic monitoring, it 

demonstrates how CO₂ injection alters the pore 

system connectivity and resistivity distribution, 

which conceptually aligns with the integration of 

density and resistivity logs employed in this work. 

In contrast, Suwondo et al. (2022) examined 

carbonate reservoirs in the Bintuni Basin (an 

analog to the Tangguh area) using log-based 

porosity estimation and found that dolomitic 

intervals exhibit overestimation when density logs 

are used alone—similar to the trends observed in 

this study. 

Recent research by Kaczmarczyk-Kuszpit & 

Sowiżdżał (2024) on carbonate reservoirs in 

Poland integrated well logs and seismic attributes 

to improve porosity and lithofacies prediction, 

reinforcing the reliability of log integration for 

heterogeneous carbonate systems. Laboratory 

investigations by Hernández-Castro et al. (2019) 

also confirmed that CO₂-enriched brine can 

significantly modify porosity and resistivity 

responses in carbonates due to dissolution and 

mineral precipitation effects. These studies 

collectively support the methodology and findings 

of the present work, emphasizing that density–

resistivity integration is an effective means of 

estimating porosity and distinguishing between 

connected and isolated pore systems in CO₂-water 

carbonate reservoirs. 

Porosity computation 

Figure 3 shows the density log data used for 

quality control. The top section indicates a washout 

zone in soft limestone with high clay content, while 

the main reservoir interest lies in the Dolomite 1 

interval. Despite rugosity effects, the density log 

signal depth of investigation (typically 15–20 

inches) ensures that readings remain reliable. Mud 

cake buildup observed in the lower dolomite zone 

was assumed corrected using environmental 

corrections (spine-and-rib chart). Density 

corrections were within tolerance (<0.05), and 

gamma ray–density alignment confirmed that no 

additional depth shifting was necessary. These 

checks validate that the density log can be 

confidently applied in porosity computation. 
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Table 2. Summary of comparable studies and their relevance 

Study Location/ lithology Methodology Key findings Relevance to this study 

Arts et al. (2004) 
Utsira Formation, 
North Sea (sandstone 
aquifer) 

4D seismic CO₂ 
plume monitoring 

 Seismic anomalies 
trace CO₂ migration 
and pore connectivity 
evolution 

 Serves as an analog for CO₂–
brine system behavior and 
pore connectivity context 

Suwondo et al. (2022) 
Carbonate (dolomite-
limestone), Papua 
Barat 

Log-based porosity 
(density-neutron) 

 Density log tends to 
overestimate porosity 
in dolomitic sections 

 Direct analog for carbonate 
lithology and log-based poros-
ity overestimation 

Kaczmarczyk-Kuszpit 
& Sowiżdżał (2024) 

Carbonate platform, 
Poland 

Integrated log-
seismic inversion 

 Improved porosity 
estimation accuracy 
and heterogeneity map-
ping 

 Supports an integration ap-
proach for heterogeneous car-
bonate systems 

Hernández-Castro et 
al. (2019) 

Experimental car-
bonate core 

CO₂-brine flow 
experiments 

 CO₂ alters porosity/
resistivity through dis-
solution and mineral 
precipitation 

 Confirms CO₂–brine influ-
ence on resistivity-porosity 
relations in carbonates 

 

Figure 3. Density log data presented for quality control. The density track (left) shows washout effects in the upper 
limestone interval and more stable readings across the main reservoir sections. Lithology interpretation indicates four 

primary units: Upper Limestone, Dolomite 1, Limestone 2, and Dolomite 2. The rugosity log highlights zones affected by 
borehole enlargement, while the density correction curve displays intervals requiring caution during porosity estimation. 

These logs collectively confirm data reliability prior to density–resistivity integration.  
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Neutron log assessment 

The neutron log was recorded in limestone 

porosity units, using mnemonics NPRL and NPOR, 

which both produced consistent results. However, 

its application in porosity estimation was limited 

due to the presence of NaCl, which can distort 

hydrogen index readings. Furthermore, under 

supercritical CO₂ conditions, neutron counts do not 

correspond to hydrogen content, rendering the tool 

ineffective for estimating effective porosity. Thus, 

neutron logs were excluded from further analysis. 

Clay content estimation 

Clay typing using the Schlumberger Lith-2 

spectral gamma ray cross-plot (thorium vs. 

potassium) showed that the data did not cluster into 

any specific clay type (Figure 4). The absence of a 

pure shale zone implies that the clay influence on 

log responses is negligible. This justifies the 

exclusion of clay correction in subsequent porosity 

calculations. 

Core-log depth matching 

To validate log interpretation, depth shifting 

was performed by aligning gamma ray and density 

logs with core measurements. Figure 5 shows good 

alignment after shifting, reducing mismatch, and 

enabling more reliable comparison between core 

and log-derived porosity. This calibration step is 

critical for ensuring the robustness of porosity 

interpretation. 

Supercritical CO2 density validation 

The supercritical CO₂ density was computed 

using Liang’s correlation (2014) and compared 

with NIST data (Span & Wagner, 1996). As shown 

in Figure 6, the computation matched well at 

reservoir conditions (~3,602 psi, 132 °F) with an 

estimated density of 0.8056 g/cc. Slight 

overprediction at lower pressures (~3,000 psi) was 

observed relative to NIST data, while correlations 

from Wang et al. (2015) produced unrealistic 

values. This confirms the suitability of Liang’s 

correlation for supercritical CO₂ density under field 

conditions. 

 

Figure 4. Figure 4. Clay mineral typing using spectral gamma ray crossplot of thorium versus potassium. The 
distribution of data points indicates the presence of mixed clay mineralogy, with zones trending toward kaolinite, illite, 
and chlorite fields. The Th/K trends also reveal intervals with higher heavy-mineral or mica content. This mineralogical 
classification supports the lithology interpretation and provides constraints on matrix density, neutron response, and 

porosity behavior in the carbonate reservoir units. 
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Figure 5. Core–log depth shifting for gamma ray and density measurements. The plotted core data from five core 
intervals are aligned against the corresponding well-log responses to correct depth mismatches caused by coring 

disturbances and depth-recording uncertainties. The alignment improves consistency between high-resolution core 
measurements and continuous log profiles, ensuring accurate calibration for porosity and lithology interpretation. 

Figure 6. Comparison between computed supercritical CO2 density (using Liang’s correlation) and reference 
data from NIST. The strong agreement between the calculated curve and NIST measurements validates 

the reliability of the correlation across the reservoir pressure range (3,000–4,000 psi). This verification 
ensures that the CO2 density used in the porosity computation is accurate for in-situ reservoir conditions.  
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Mud invasion and resistivity response 

Resistivity logs (R30O, R40O, R60O, R85O, 

RTAO) displayed separation between shallow and 

deep curves, confirming mud filtrate invasion 

(Figure 7). Deep resistivity readings are 

representative of the uninvaded zone, while 

shallow readings reflect invaded intervals. This 

observation necessitated separate porosity 

workflows for uninvaded (Rt) and invaded (Rxo) 

zones (Figures 1 and 2). Such differentiation 

ensures that porosity estimation accounts for 

invasion effects, which are common in carbonate 

reservoirs. 

Porosity estimation and core validation 

Porosity was first estimated from density logs 

(total porosity) and then refined through integration 

with resistivity logs using Archie’s equation 

(effective porosity). As shown in Figure 8 (left 

panel), density-only porosity consistently overesti-

mated values in dolomitic zones by approximately 

10%. The integrated approach provided more real-

istic estimates by excluding isolated, non-

connected pores, underscoring the importance of 

incorporating resistivity in porosity analysis. Vali-

dation with core porosity measurements further 

confirmed the reliability of the integrated method. 

Figure 8 (right panel) shows that most dolomite 

intervals exhibit good agreement between core and 

log-derived porosity. Minor discrepancies were 

observed in low-porosity intervals (<5% at depths 

of 8,080–8,130 ft), which may require further veri-

fication. Overall, the integrated method demon-

strated stronger correlation with core data com-

pared to density log alone, reinforcing its robust-

ness for porosity assessment in carbonate reser-

voirs. 

Isolated pore estimation 

Carbonate reservoirs typically exhibit complex 

pore systems, including interparticle pores, vugs, 

and fractures. Diagenetic processes, such as 

dissolution and precipitation, strongly influence 

these heterogeneities. Dissolution caused by CO₂–

brine–rock interactions can generate secondary 

porosity, enhancing the overall pore volume. 

Figure 7. Resistivity log separation illustrating the extent of mud filtrate invasion across the carbonate intervals. The 
divergence between shallow, medium, and deep resistivity curves indicates zones where mud filtrate has displaced 
formation fluids, particularly within more porous intervals of the Upper Limestone, Dolomite 1, LS2, and Dolomite 2 

units. This resistivity separation is critical for determining invaded-zone saturation (Sxo) and for ensuring accurate input 
to the integrated density–resistivity porosity calculation. 
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Isolated pore estimation 

Carbonate reservoirs typically exhibit complex 

pore systems, including interparticle pores, vugs, 

and fractures. Diagenetic processes, such as 

dissolution and precipitation, strongly influence 

these heterogeneities. Dissolution caused by CO₂–

brine–rock interactions can generate secondary 

porosity, enhancing the overall pore volume. 

Conversely, mineral precipitation (e.g., calcite or 

ankerite cementation) can occlude pore 

connectivity, leading to the development of 

isolated pores that are not hydraulically connected 

to the main flow system. 

The comparison between core and log-derived 

porosity (Figure 9) highlights that while overall 

porosity trends are consistent, certain dolomitic 

intervals display discrepancies that may reflect the 

presence of isolated pores. These isolated pores 

were quantified as the difference between total 

porosity (derived from density logs) and effective 

porosity (derived from integrated resistivity–

density analysis). As shown in Figure 10, the 

distribution of isolated pores is heterogeneously 

developed across the studied interval. The results 

indicate an average of approximately 2% isolated 

porosity in the upper dolomite and about 1.5% in 

the lower dolomite. Although these pores 

contribute to storage capacity by increasing total 

pore volume, they do not enhance fluid flow or 

permeability. Consequently, their presence may 

limit injectivity and reduce the efficiency of CO₂ 

storage operations. 

From a CCS perspective, recognizing and 

quantifying isolated porosity is critical. While such 

pores can temporarily retain CO₂, they are unlikely 

to provide long-term benefits in terms of 

injectivity. Distinguishing between total and 

effective porosity, therefore, becomes essential in 

evaluating reservoir quality and ensuring realistic 

assessments of CO₂ storage performance in 

carbonate formations. 

Figure 8. Comparison between porosity derived from density log alone and the integrated density–resistivity iterative 
method. The left track shows that the integrated method yields lower porosity estimates within dolomitic intervals, 

where density logs typically overestimate due to high matrix density and secondary porosity effects. The right track 
presents the percent difference, highlighting zones (shaded) where the integrated method significantly reduces 

overestimation. This comparison demonstrates the effectiveness of the integrated approach in improving porosity 
accuracy, particularly in heterogeneous dolomite layers. 
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Figure 9. Comparison between log-derived porosity and core porosity measurements across the carbonate intervals. 
The log-derived porosity curve generally captures the overall porosity trend but shows noticeable deviations in dolomitic 

sections, where core measurements indicate lower porosity than suggested by logs. This comparison highlights the 
importance of calibration with core data and demonstrates the need for an integrated density–resistivity approach to 

reduce overestimation in heterogeneous carbonate reservoirs. 

Figure 10. Estimated isolated‐pore porosity across the carbonate intervals. The curve highlights depth zones 
where porosity occurs predominantly within unconnected or poorly connected pore spaces, which do not 

contribute to fluid flow. These isolated pores are typically associated with tight limestone layers and partially 
recrystallized dolomite intervals. Identifying isolated porosity helps differentiate effective porosity from total 

porosity and improves the reliability of reservoir quality assessment in CO₂–water carbonate systems. 
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CONCLUSION 

This study emphasizes the significance of em-

ploying an integrated density–resistivity log ap-

proach for porosity estimation in natural carbonate 

CO₂ reservoirs. The results demonstrate that densi-

ty logs alone tend to overestimate porosity, particu-

larly in dolomitic zones, because they include both 

connected and isolated pores. By incorporating re-

sistivity logs, it was possible to distinguish between 

total and effective porosity, leading to a more real-

istic representation of pore connectivity. Core vali-

dation further confirmed the robustness of this inte-

grated method, showing closer agreement with 

measured porosity values compared to density-only 

estimations, with minor discrepancies observed in 

very low-porosity intervals. 

Additionally, the study identified the presence 

of isolated porosity, averaging approximately 2% 

in the upper dolomite and 1.5% in the lower dolo-

mite. While these isolated pores contribute to over-

all storage capacity, they do not improve permea-

bility or injectivity, which are critical parameters 

for CO₂ storage performance. Recognizing and 

quantifying these differences is therefore essential 

in evaluating carbonate reservoirs for long-term 

geological storage. 

Overall, the integrated workflow presented in 

this study provides a more accurate and compre-

hensive assessment of reservoir quality. By com-

bining log data with fluid density computations and 

core validation, this approach enhances the reliabil-

ity of porosity interpretation. It provides valuable 

insights for evaluating the suitability of natural CO₂ 

reservoirs as analogues for CCS and CCUS pro-

jects. 
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Symbol Definition Unit 

ρ Density (general) g/cc 

ρb Bulk density (log-derived) g/cc 

ρma Matrix or grain density g/cc 

ρfa 
Apparent fluid density 
(mixture of CO₂ and brine) 

g/cc 

ρw 
Formation water (brine) 
density 

g/cc 

ρw@surface 
Water density at surface 
conditions 

g/cc 

ρsco₂ Supercritical CO₂ density g/cc 

ρmf Mud filtrate density g/cc 

ρe Electron density g/cc 

ρa Apparent density tool read- g/cc 

ρlog reading Density log recorded read- g/cc 

φ Porosity (general) Fraction 

φ⁽⁰⁾ 
Initial guess of porosity in 
iterative computation 

Fraction 

φD Density-derived porosity Fraction 

φ⁽ⁿ⁾ 
Iterated porosity value in 
successive computation 

Fraction 

Rt 
True formation resistivity 
(uninvaded zone) 

ohm·m 

Rxo 
Shallow resistivity (invaded 
zone) 

ohm·m 

Rw Formation water resistivity ohm·m 

Rmf Mud filtrate resistivity ohm·m 

Rmf@surface 
Mud filtrate resistivity at 
the surface 

ohm·m 

Rmf@depth 
Mud filtrate resistivity at 
depth 

ohm·m 

Sw Water saturation Fraction 

Sxo 
Water saturation in the in-
vaded zone 

Fraction 

Ssco₂ Supercritical CO₂ saturation Fraction 

Ssco₂a 
Supercritical CO₂ apparent 
saturation (Archie’s con-

Fraction 

a 
Tortuosity factor (Archie’s 
constant) 

— 

m Cementation exponent — 

n Saturation exponent — 

A₀–A₄ 
Coefficients in Liang’s CO₂ 
density correlation 

— 

Aᵢ 
Polynomial coefficient de-
pendent on temperature 

— 

bᵢ₀–bᵢ₄ 
Polynomial constants used 
to calculate Aᵢ 

— 

GLOSSARY OF TERMS  
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BW 
Brine formation volume 
factor 

bbl/STB 

ΔVwT 
Temperature correction 
term for brine density 

— 

ΔVwp 
Pressure correction term for 
brine density 

— 

T Temperature °F 

S 
Salinity (total dissolved 
solids) 

% 

Z Atomic number — 

MW Molecular weight g/mol 

NaClppm 
Salinity as sodium chloride 
equivalent 

ppm 
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