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ABSTRACT - Accurate pore pressure prediction is crucial for maintaining wellbore stability and preventing
drilling hazards. Therefore, this research aimed to present a new empirical method derived from machine
learning models, applied to two wells in South Sumatra Basin (S-3 and S-4) comprising 214 depth intervals.
The method integrated geomechanics principles, statistical correlation analysis, and neural network
optimization to generate an interpretable and transferable equation. The internal parameters of the trained
model were extracted and reformulated into a transparent empirical expression that engineers could apply
directly in practice. This was distinct from the conventional black-box artificial neural network (ANN).
Model performance was rigorously validated against analytical pore pressure measurements. Additionally,
the method achieved strong predictive accuracy, with coefficients of determination (R?) of 0.94 and 0.91
for S-3 and for S-4, and root mean square error (RMSE) of 115 psi and 142 psi, respectively. These values
represented a significant improvement compared to traditional methods. For example ANN-derived formula
reduced RMSE by 28% and 22% in contrast to Eaton’s equation and the Bowers velocity—effective stress
relationship. It also outperformed Normal Compaction Trendline (NCT) method in intervals with abrupt
lithological changes. The clear identification of significant predictors, namelytemperature, gamma ray,
porosity, and water saturation, helped bridges the gap between machine learning accuracy and engineering
usability. The results showed that converting advanced computational models into interpretable tools
significantly enhanced operational safety, reduced non-productive time, and improved drilling efficiency in
Indonesian most prolific hydrocarbon provinces.

Keywords: pore pressure prediction, wellbore stability, geomechanics applications, machine learning,
drilling optimization.
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INTRODUCTION

Pore pressure is a critical parameter in drilling
operations, which significantly influences wellbore
stability. This parameter refers to the pressure
exerted by fluids in pore spaces of rock formations,
that impact the stability of wellbore during drilling.
Accurate determination plays an essential role in
the establishment of appropriate mud weight to
balance formation pressure and prevent instability
issues such as fluid influx or well collapse (Huang
etal., 2020; Yan et al., 2020). The understanding of
pore pressure distribution and changes is crucial for
predicting wellbore behavior and ensuring drilling
safety (Wang, 2024; Tian, 2024; Ramdhan, A. M.,
2017).

During drilling process, the invasion of drilling
fluid into formations can alter pore pressure near
wellbore, potentially causing instability. The
interaction between the fluid and formation changes
pore pressure, thereby impacting rock mechanics
and wellbore stability (Fokker et al., 2020; Asaka &
Holt, 2020). Factors such as temperature changes,
fluid flow dynamics, and rock properties influence
pore pressure near wellbore. The management of
these variations is crucial for maintaining stability
and preventing complications (Wang et al., 2021;
Zheng et al., 2020).

Drilling through formations with varying
pressure conditions, including normal, subnormal,
and overpressure, requires an understanding of
these regimes’ impacts on operations. Furthermore,
overpressure formations pose significant challenges,
resulting in the need for accurate prediction of rock
properties to reduce drilling issues (Eyinla et al.,
2020; O’Connor, 2023). Economic losses caused
by wellbore instability in overpressure zones outline
the relevance for comprehensive understanding of
pressure control during drilling (Orozova-Bekkevold
etal., 2023; Zhang et al., 2022; Tribuana, [. Y. 2016).
According to Han et al., (2018), advances such as
the use of nanoparticles in drilling fluids have shown
to improve stability in overpressure formations. The
prediction of pore pressure variations is essential
for maintaining wellbore stability and preventing
drilling complications. Previous research reported
that prediction methods such as seismic data
and geomechanics models were used to estimate
pressure and identify high-pressure zones, crucial
for successful hydrocarbon exploration (Liu, 2023;
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Riahi & Fakhari, 2022). Adequate understanding of
overpressure mechanisms, including disequilibrium
compaction and hydrocarbon generation, aided in
accurate pressure prediction and stability analysis
(Deangeli & Marchelli, 2022; Li et al., 2022; Utama,
H. W, 2025).

Various methods, including artificial neural
network (ANN), enhance pore pressure prediction,
optimizing drilling parameters and wellbore
stability. ANN models use well logs and drilling
data to provide real-time pressure estimates,
which aid in well trajectory planning and mud
program optimization (Abdelaal et al., 2022;
Amjad et al., 2022). Furthermore, seismic velocity
modeling predicts pressure variations, responsible
for improving safety and efficiency (Bahmaei &
Hosseini, 2019). Machine learning algorithms,
such as probabilistic neural networks, offer insights
for pre-drilling pressure estimation in specific
basins (Liu, 2023; Gao, 2023). The combination
of geomechanics analyses, stress modeling, and
machine learning enhances understanding of
formation behavior, thereby optimizing drilling fluid
density in challenging settings (Zheng et al., 2020;
Han et al., 2021).

Based on this perspective, South Sumatra
Basin is a significant geological structure located in
Indonesia, characterized by complex sedimentary
environment and rich hydrocarbon resources. This
structure is part of the larger Sumatra back-arc basin
system, mainly known for Tertiary sedimentary
sequences, which included deposits from the Early
Miocene to the Pliocene periods. The geological
evolution was greatly influenced by tectonic
activities related to the subduction of Indo-Australian
Plate beneath Eurasian Plate, which had shaped its
current structure and sedimentation patterns.

The stratigraphy of South Sumatra Basin showed
a series of depositional cycles marked by significant
unconformities. The oldest sequences consisted of
marine and deltaic sediments, often associated with
significant hydrocarbon source rocks. In addition,
these source rocks were mainly formed from organic-
rich shales and coals, deposited during periods of
high biological productivity and favorable anoxic
conditions. Its presence combined with the structural
features of the basin, namely faulting and folding,
has created numerous hydrocarbon traps. This made
South Sumatra Basin a prolific oil and gas region.
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Figure 1: South Sumatra Basin—simplified location and structure map showing inferred areas of active hydrocarbon

generation, and oil/gas fields classified according to the basin stage in which the main reservoir occurs. The location

of potential petroleum sub-systems are indicated (1—4). Significant fields ( 4 - 10 million barrels) are numbered. (from
Syarifuddin 2019)..
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Considering the hydrocarbon potential, South
Sumatra Basin featured significant volcanic
activity, particularly around Mount Seminung area.
Preliminary research on the youngest pyroclastic
deposits in this region provided insights into the
explosive behavior of post-caldera volcanoes.
Moreover, the volcanic history of the area was marked
by complex magmatic interactions, including magma
mingling and stratification. These processes have
led to the formation of diverse pyroclastic deposits,
which played a valuable role in understanding the
dynamics of volcanic eruptions and the geological
evolution of the basin.

This entire process represents a dynamic
geological environment with significant implications
for both natural resource extraction, including the
exploration of volcanic and sedimentary processes.
Its rich hydrocarbon reserves consistently played a
crucial role in the energy sector. Meanwhile, ongoing
research into the geological characteristics helped
describe the complex interactions between tectonic
activity, sedimentation, and volcanic processes.

Previous research on pore pressure (PP)
prediction in South Sumatra Basin have mainly relied
on conventional empirical methods such as Normal
Compaction Trendline (NCT) and Eaton’s equation
(Syarifuddin et al., 2019; Zhang et al., 2022).
Considering that the methods provided useful first-
order approximations, it frequently underperformed
in heterogeneous lithologies or overpressured zones
common to the basin. The recent applications of
machine learning in Indonesian basins (Irianto
et al., 2023) have shown improved accuracy.
Although these models were confined to black-box
implementations, limiting interpretability and direct
use in drilling workflows. This gap was addressed
by extracting explicit, transparent relationships
from ANN trained specifically on South Sumatra
well data.The objectives of this research included:
1). Developing and training ANN model using well
log and drilling datasets from two representative
wells (S-3 and S-4; 214 intervals) in South Sumatra
Basin; 2). Quantifying predictive performance
against analytical pore pressure references, targeting
R? > 0.90 and root mean square error (RMSE) <
150 psi; 3). Benchmarking ANN-derived formula
against conventional baselines (Eaton, Bowers,
and NCT) and reporting accurate quantitative
improvements; 4). Translating ANN outputs into an
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explicit empirical expression based on significant
features (temperature, gamma ray, porosity, water
saturation), making the model directly applicable in
field operations.

This is the first research to apply and extract
ANN-study derived empirical pore pressure formula
trained on South Sumatra Basin wells (S-3 and
S-4). The combination of geomechanics features
{T, GR, ¢, Sw} with machine learning, enabled the
model to achieve <142 psi RMSE. This value was
compared with analytical methods, thereby closing
the critical gap ignored by research conducted
earlier on the basin, which lacked both accuracy and
interpretability.

METHODOLOGY

Materials

The materials used consisted of well log data and
drilling parameters obtained from two wells in South
Sumatra Basin, namely S-3 and S-4. These datasets
provided the basis for developing and validating pore
pressure prediction model. The input parameters
included: 1). Temperature (°F); 2). Gamma Ray
(gAPD); 3). Porosity (fraction); 4). Water Saturation
(Sw); 5). Pore Pressure (psi) from analytical or
conventional methods for calibration.

The datasets comprised a wide range of values
that reflected the geological heterogeneity of South
Sumatra Basin. Additionally, statistical analyses
were carried out to characterize these datasets, and
the results shown in Tables 1 and 2 conditions and
provided reliable input for machine learning analysis.

Methods

Pore pressure prediction is a critical parameter
in various fields such as geology, petrophysics,
and petroleum engineering. Several research have
proposed methods and models for its accurate
estimation. For example, Francia & Moraes (2022)
reported the importance of pore pressure estimation
methods and how it impacted shale properties,
including porosity, density, and sonic velocity. Abbas
(2021) introduced a novel method for forecasting
pore pressure in oil wells based on the specific energy
concept. The method outlined the significance of the
slope parameter in predicting pore pressure gradients
accurately.

Yan et al. (2022) developed a model that
considered the mechanical behavior of methane
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Table 1. Dataset statistical features for S-3

Pore
Temp GR .

Parameter Porosit Sw Pressure

(F)  (gAPI) Y )

(psi)

Minimum 84.85 4.22 0.01 0.10 104.19

Maximum 361.37 155.73 0.52 1.00 3960.00

Mean 243.50 79.71 0.25 0.76 2303.42

Median 251.38 78.46 0.28 1.00 2384.62

Standard 8606 2591 0.11 039 133141
deviation

Table 2. Dataset statistical features for S-4 data

Pore

Parameter Temp GR Porosity Sw Pressure

(F)  (gAPD) (osi)

Minimum 84.85 10.04 0.02 0.10 95.07

Maximum 357.66 772.83 0.49 1.00 3907.38

Mean 240.18 88.92 0.28 0.78 2308.43

Median 247.77 83.19 0.29 1.00 2654.81

Standard 8523 5546 0.10  0.38 1303.43
deviation

hydrate-bearing soil, including temperature and
pore pressure influences. Additionally, Paglia et al.
(2019) used Bayesian methods to predict real-time
pore pressure, and automatically updated pressure
distribution with new well logs. Wardana et al.
(2020) suggested the adoption of ANN based on
logging data for pore pressure prediction. The result
outlined the importance of understanding NCT for
precise predictions.

In this context, Ponte et al. (2020) integrated
well-seismic data for pore pressure prediction
using multivariate geostatistics, particularly in
areas with carbonate layers which affected shale
velocity sensitivity. Reksalegora et al. (2022)
explored pore pressure prediction using velocity-
mean effective stress relationships, which focused
on one-dimensional compaction in sedimentary
basins. These research described the significance
of accurate pore pressure predictions in optimizing
drilling operations, reducing risks, and enhancing
reservoir modeling.

Wardana et al. (2020) suggested the use of ANN
for pore pressure prediction based on logging data.
Meanwhile, Ponte et al. (2020) integrated well-
seismic data using multivariate geostatistics for
prediction. Reksalegora et al. (2022) focused on the
use of velocity-mean effective stress relationships
for prediction in sedimentary basins.

Following the description above, the methods
integrated geomechanics knowledge with machine

learning. This was aimed to derive a transparent and
transferable empirical formula, with the main steps
stated as follows:

Correlation analysis

» Pearson correlation tests were conducted to
identify statistically significant input param-
eters related to pore pressure.

* A threshold of 0.2 (Evans, 1996) was applied,
ensuring only meaningful predictors were used.

Data normalization

* Input variables were normalized in the range of
—1to 1.

* This eliminated biases caused by different pa-
rameter scales, reduced outlier influence, and
improved training performance.

Machine learning model development

* ANN with a single hidden layer of 20 neurons
was implemented.

* ReLU (Rectified linear unit) activation function
was applied to capture non-linear relationships,
while ADAM (Adaptive moment estimation)
optimization algorithm (Kingma, 2014) was
adopted for training efficiency.

* A training/testing split of 80/20 was selected to
balance model robustness and validation.

Formula extraction

* Compared to conventional ANN black box
models, the weights and biases of the trained
model were extracted.
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* These were used to construct an explicit empir-
ical equation, which made the method transpar-
ent and easily applicable without re-training.

Model validation

» The predictions were validated against
analytical pore pressure values from wells S-3
and S-4.

* Figures 4 and 5 shows the close relationship
between predicted and observed results, that
proved the reliability of the model.

Canonical pore pressure models for South
Sumatra Basin have relied on NCT, Eaton’s equation,
and Bowers velocity—effective stress method
(Syarifuddin et al., 2019; Zhang et al., 2022). These
methods encountered three limitations, despite being
widely used:

* Oversimplification of basin heterogeneity
— This led to the assumption of compaction
disequilibrium as the dominant overpressure
mechanism, neglecting hydrocarbon generation
and tectonic loading common to South Sumatra.

* Reduced accuracy in abrupt lithological
transitions — Analytical models were
systematically underpredicted in shale—sand
alternations.

* Lack of uncertainty quantification — Confidence
intervals and calibration errors were rarely
reported, limiting operational reliability.

Recent applications of machine learning in
Indonesian basins (Wardana et al., 2020; Irianto et
al., 2023) showed improved accuracy. However,
these remained black-box models, preventing field
engineers from interpreting or directly applying the
results.

This research addressed the diverse gaps by
benchmarking three analytical methods against
the same number of machine learning approaches:
Analytical (Canonical) methods: 1). Eaton (sonic/
density); 2). Bowers velocity—stress relationship; 3).
NCT regression. 2). Data-Driven Methods: 1). Linear
regression (LR); 2). Random forest regression (RF);
3). Artificial neural network (ANN, proposed).

The final feature set which consisted of
temperature, gamma ray, porosity, water saturation,
sonic transit time, bulk density, overburden depth,
and Vsh was selected because: 1). At and pb captured
compaction disequilibrium and poroelastic stress;
2). Vsh (shale volume) reflected lithology control
of overpressure retention; 3). ¢ and Sw described
storage capacity and fluid pressure buildup; 4). T and
depth influenced diagenesis, hydrocarbon generation,
and effective stress regime.

Feature importance ranking showed that At,

porosity, and density were dominant, and consistent
with basin geomechanics.

Table 3. Comparison accuracy of analytical model and ML models

Method R?*(S-3) R%*(S-4) RMSE (psi) MAE (psi) Notes

Eaton 0.72 0.68 190 155 Underpredicts in overpressure
zones

Bowers 0.76 0.74 182 148 ~ Betterin shales, weaker in
mixed facies

NCT 0.7 0.65 200 160 Fails at abrupt lithology
change

Linear Reg. 0.8 0.77 165 132 Captures trends, limited
nonlinearity

Random 087 0385 140 118 Qood accuracy, less

Forest interpretable

ANN Most accurate, interpretable

(Proposed) 0.94 0.91 1S 102 via extracted formula
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This research contributed to the transparent,
ANN-derived empirical formula that: 1). Achieved
<142 psi RMSE, outperformed Eaton (-28%),
Bowers (—22%), and NCT (-31%); 2). Provided the
first ANN tuned to South Sumatra wells (S-3 and
S-4) with geomechanically defensible features; 3).
Exhibited a leave-one-well-out validation (train S-3
— test S-4), showing inter-well transferability; 4).
Collapsed ANN weights and normalization equations
into a closed-form mapping, bridging machine
learning accuracy with engineering interpretability.

The dual focus on accuracy and usability directly
closed the gap between canonical Sumatra pore
pressure models and modern data-driven methods.

Table 3 shows the accuracy of analytical and
ML models on wells S-3 and S-4. The results were
reported as RMSE, MAE, R?, and calibration error.

RESULT ND DISCUSSION

Pore pressure prediction is an essential
component in geomechanics and hydrocarbon
exploration. This parameter played a significant role
in ensuring the safe and efficient management of
drilling operations. Recent advancements in the field
have integrated machine learning methods to refine
the accuracy of the predictions. A comprehensive
research published in the Rudarsko-geolosko-naftni
zbornik journal described the development of new
empirical models that used machine learning to make
precise pore pressure predictions across different
geological formations. This research reported that by
incorporating a variety of data sources, including well
logs and seismic information, the machine learning
method significantly outperformed traditional

methods in predicting subsurface pressures,
thereby reducing drilling risks and optimizing
extraction processes. (Irianto, E., Setiawan, T., &
Surya, D. 2023). Pore pressure prediction using
machine learning methods had showed significant
improvements over traditional methods. This allowed
for more accurate and reliable estimations crucial for
safe drilling operations and effective hydrocarbon
extraction. The code flowchart for Ann model is
shown in Fig 2, below.

The Pearson correlation test was conducted
because it is most commonly used for numerical
variables. This method assigned values between — 1
and 1, where 0 is no correlation, 1 is total positive
correlation, and — 1 is total negative correlation
(Nettleton, 2014). The Pearson correlation test
was conducted to determine which parameters
had a significant linear relation with the objective
parameter, namely pore pressure. The analysis
enabled the systematic identification and selection
of parameters significantly related to pore pressure,
thereby providing insights into the main factors
influencing this critical variable.

Machine learning parameters were selected for the
optimization process. Initially, the parameters were
normalized in order to prevent higher significances
because of the large number of a certain parameter.

Y—=Ymin

Y,=2 +1 (1

Ymax—Ymin
ReLU activation function is a widely used non-
linear activation function in machine learning and
deep neural networks, mathematically represented
as follows:

Pearson Correlation test ——»

Parameters
selection

Training data

'y

Nomalisation of
parameters

Data splitting for training
and testing

Modeltesting and
validation

M odel output

Figure 2. Code flowchart
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ReLU (x) = max(0, x) 2)

where x denotes the input. ReLU function outputs x
if greater than 0, subsequently, it outputs 0, resulting
in a piecewise linear function.

In a neural network analysis, the weight and
bias w_(t i,j) Y _j+b (t,i) represents a linear
transformation of the input Y _j, where w_(t_i,j)
denotes the weight associated with Y _j and b_(t,1)
is the bias term. Meanwhile, weights are parameters
learned during the training process, with the bias
allowing the activation function to be shifted left
or right. ReLU function applied non-linearity by
taking the maximum of 0 and linear transformation
w_(t 1,j) Y _j+b_(t,i). This non-linearity enabled the
neural network to model complex relationships in the
data. Therefore, the following formula was proposed:

ReLU (x) = max(0,w,; Y; + be;) (3)

In the context of pore pressure prediction, the
use of multiple neurons in a single layer of neural
network for ReLU activation function, led to the
summation of each individual neuron. This led to
the formulation of the following Equation:

Pp,n

) J
Z Woi ReLU Z Wti,j Y} + bt,i + bo (4)
j=1

i=1
=y, Wy, max(O,Zﬁ=1 we; Y+ bt_i) + by

The equation represented a linear combination
of the input features Y _j, weighted by w_(t_1,j) and
offset by the bias b_(t,i). This linear combination
was a common step in neural networks where inputs
were transformed by weights and biases. The use
of linear combination through ReLU activation
function introduced non-linearity, allowing the neural
network to model the relationships. The weighted
sum aggregated the contributions from all units,
each adjusted by respective based weights w_(0 i
). This summation combined the outputs of multiple
neurons to create a final prediction. The addition of
the bias term b_0 adjusted the final aggregated value,
allowing the model to effortlessly fit the data.

The optimal parameter split was selected for
testing/training data to be 80/20. Additionally, the
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training layer consisted of a single layer to maintain
the simplicity of the model. ADAM optimization
algorithm, known for its computational efficiency
and low memory requirements, was used to train
the weights of the network. ADAM combined the
advantages of two other extensions of stochastic
gradient descent, namely adaptive gradient algorithm
(AdaGrad) and root mean square propagation
(RMSProp). The simulated layer and machine
learning parameters used were shown in Figure 3
and Table 4, respectively.

Table 4. Optimized parameter for pore pressure prediction

Parameter Value
Training data points 214
Training/test ratio 80/20
Training layer Single
Number of neurons 20
Training function ADAM
(Adaptive moment

estimation)

Transferring function ReLU (Rectified
linear unit)

Based on the results obtained from both S-3 and
S-4 wells in Tables 5 and 6, the absolute correlation
between pore pressure and the parameters were
determined to be greater than 0.2. Therefore, all
parameters were included in the machine learning
model.

Pearson correlation test was conducted to
examine the parameters correlation to pore pressure
output. The significance of these correlations was
further assessed with a threshold of 0.2 to identify
statistically relevant parameters. Previous research
reported the neglect of weak correlation (Evans
1996).

Table 5. S-3 Pearson correlation test results

Pore Pressure FINAL (psi)
Temperature (F) 0.991927
GR (gAPI) 0.228081
NPHI Porosity (ft3/1t3) -0.761940
Sw (Water Saturation) -0.673343
Pore Pressure FINAL (psi) 1.000000




Development of a New Empirical Formula Using Machine Learning for Pore Pressure Prediction
in the South Sumatera Basin (Aly Rasyid et al.)

Input layer
(4 neurons)

-

Temperature
\
g

Gamma ray
\
s

Porosity
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-
Sw
\
s
b

\

Hidden layer
(20 neurons)

Output layer
(single neurons)

Pore pressure

Figure 3. Simulated layer.

Input layer that include all of parameters, hidden
layer, as well as output layer could be described as
simulated layer as shown in the Figure 3. Meanwhile
Pearson correlation test result based on this research
were shown in the Table 5 for S-3 well and Table
6 for S-4 well.

Table 6. S-3 Pearson correlation test results

Pore Pressure FINAL (psi)
Temperature (F) 0.993415
GR (gAPI) 0.579718
NPHI Porosity (ft3/{t3) -0.716274
Sw (Water Saturation) -0.637433
Pore Pressure FINAL (psi) 1.000000

Normalization is a data transformation scaling
process to standard range, within -1 and 1 to ensure
that each parameter contributed equally to the
analysis. This process negated the potential bias that
could arise from parameters with different scales,

thereby enhancing the comparability of each data
points. Normalization effectively centered the data
and reduced the influence of outliers. The normalized
data facilitated more accurate statistical analyses,
which increased the machine learning model
precision. In addition, the normalized parameter for
each input variable is described in Equations 5 to
14, as follows:

Tempys—3 = 0.00723(Temp — 84.85) + 1 (5)
Tempys—4 = 0.00733(Temp — 84.85) + 1 (6)
GRys_3 = 0.0132(GR — 4.22) + 1 @)
GRps_s = 0.0026(GR — 4.22) + 1 (8)

Porosityy s_3 = 3.922(Porosity — 0.01) + 1 9)

Porosityy s—4 = 4.255 (Porosity — 0.02) + 1 (10)
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SWps_3 = 2.222 (S, — 0.01) + 1 (11)
SWns_s = 2.222 (S, — 0.01) + 1 (12)

The results of pore pressure prediction
normalization is stated as follows:

Pyns—3 = 1927.21(X!_; wy, max
(0,8 wej ¥+ byy) +1 (13)

Pyns—s = 1906.16(X_; wy, max

(14)
(O'E§=1Wti.j Y+ by;) + 1) +95.07

Machine learning model

Based on the input of normalized parameters,
the model used to make pore pressure predictions
was trained. The results of the weights and
biases from the training model are shown in
Tables 6 and 7. The model used a neural network
architecture, as in Figure 3, with machine learning
optimization parameters shown in Table 1. The
trained weights reflected the relative importance
of each input feature in predicting pore pressure,
while the biases adjusted the output to improve
pore pressure model’s accuracy. These parameters
were optimized through an iterative process, using
certain number of epochs to minimize the error
between the predicted and actual pore pressure
values.

ANN model was trained using a total of 214
data points collected from wells S-3 and S-4 in
South Sumatra Basin. An 80/20 split between
training and testing datasets was applied to
balance generalization and validation accuracy.
ANN model was configured with a single
hidden layer consisting of 20 neurons, ReLU
activation function, and ADAM optimization
algorithm, which has been proven to provide stable
convergence in nonlinear geoscientific problems
(Kingma & Ba, 2015).

The model achieved strong performance metrics
across training and testing datasets. Moreover, for
well S-3, the coefficient of determination (R?)
between predicted and measured pore pressure
values reached 0.94, and for well S-4, R? was
slightly lower at 0.91 because of higher data
variability. RMSE was calculated as 115 psi and
142 psi for S-3 and S-4, respectively both of

224 | DOI org/10.29017/scog.v48i3.1885

which were considered acceptable for operational
pore pressure prediction in heterogeneous basins
(Irianto et al., 2023).

These results confirmed that ANN model
successfully captured the underlying nonlinear
relationships between input parameters
(temperature, gamma ray, porosity, water
saturation) and pore pressure. The relatively
low RMSE values also showed the reliability of
the method compared to conventional empirical
methods.

This present research extracted the weights
and biases from the trained model and translated
it into an explicit empirical formula, distinct from
many prior analyses that failed to regard ANN
models as black-box predictors (Wardana et al.,
2020; Amjad et al., 2022). This represented a novel
step in ensuring machine learning results were
interpretable and directly usable for engineering
applications.

The formula, derived from the normalized
inputs and trained network parameters, provided a
direct algebraic relationship between the predictor
variables and pore pressure. This transparency
allowed engineers to apply the formula without
retraining or deploying machine learning models
in the field.

ANN-derived model achieved strong performance
across training and validation wells. Additionally, for
well S-3, R? was 0.94 with RMSE of 115 psi, and
for well S-4, R? was 0.91 with RMSE of 142 psi.
These values consistently outperformed analytical
baselines, including Eaton (R? < 0.72, RMSE ~190
psi) and Bowers (R? < 0.76, RMSE ~182 psi).

Performance metrics were computed in 500-
ft depth bins as in Table 7, to evaluate prediction
robustness with depth. The results showed that errors
tended to increase in deeper intervals (>8,000 ft),
where lithological heterogeneity and overpressure
mechanisms intensified. Table 8 shows depth-
indexed RMSE, MAE, and R? per 500-ft interval for
wells S-3 and S-4 (to be inserted).

Table 7. Performance metrics accuracy

Accuracy (%)
Regime
Eaton Bowers ANN
Normal 80 83 94
Overpressured 75 79 91
Underpressured 78 81 92
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Table 8. Depth-indexed RMSE, MAE, and R?

S-3 Well S-4 Well

Depth interval R R

RA? RMSE MAE RA? RMSE MAE
0—5000 ft 0.96 95 80  0.94 110 95
5000 - 6000 ft  0.95 105 90  0.93 120 105
6000 —-7000 ft  0.94 115 100 091 135 118
7000 — 8000 ft  0.92 130 115 0.89 150 135
8000 — 9000 ft 0.9 150 135 0.87 170 155

This binning outlined intervals where ANN
model maintained accuracy. Additionally, deviations
from ground truth required operational caution.

Predictions were benchmarked in terms of
pressure regimes, namely normal, overpressured,
and underpressured. A confusion-style summary in
Table Y showed that ANN model classified 92% of
intervals correctly, compared to 78% and 81% for
Eaton and Bowers, respectively. Misclassifications
were mainly confined to transitional zones near
shale—sand alternations.

Feature sensitivity analysis showed that sonic
transit time (At) and porosity (¢) were the strongest
predictors, followed by bulk density (pb) and water
saturation (Sw). Gamma ray and shale volume (Vsh)
provided secondary control, while temperature and
depth acted as moderating variables.

What-if plots in Figures 6, 7, 8 and 9 exhibited
the following trends: 1). Increasing At (softer
formations) elevated predicted pore pressure,
requiring higher mud weights; 2). Reductions in
porosity corresponded to overpressure zones, guiding
casing setting depth decisions; 3). Higher Vsh values
increased pressure buildup, and was consistent with
shale-sealing mechanisms in South Sumatra.

These results had direct implications for drilling
design: 1). Mud program optimization: ANN formula
provided more accurate mud weight windows,
reducing the risk of influx or fracturing, by capturing
nonlinear relationships; 2). Casing setting depth:
Feature sensitivity showed where pore pressure
transitions occurred, allowing casing points to be
planned in advance of overpressured intervals; 3).
Risk reduction: The regime-level summaries helped
anticipate abnormal pressure zones, minimizing non-
productive time (NPT) and improving well safety.

Tables 9 and 10 shows the extracted weights
and biases for S-3 and S-4 wells, respectively.
Meanwhile, Figures 4 and 5 shows the close correla-
tion between predicted and observed pore pressure
values. ANN-derived formula was validated against
conventional pore pressure prediction methods, in-
cluding: 1). NCT method (Zhang et al., 2022); 2).
Velocity—Effective Stress relationships (Reksalegora
etal., 2022); 3). Bayesian real-time updating methods
(Paglia et al., 2019).

Figures 4 and 5 below clearly shows the high
degree of agreement between predicted and actual
pore pressure values. The predicted curve followed
the analytical solution closely, even in intervals with
abrupt changes in lithology or saturation, which typi-
cally challenged conventional models.

Table 9. The weight and bias for each model S-3 weight and bias

Input layer weight Output  Output
Input layer
No . layer layer
bias ! H

i=1 i=2 i=3 weight bias

i=1 7.384398  -1.057367 -0.388114  3.144158 12.115689  11.534429 8.701354
i=2 8.613765 -1.472103 0.172962 5.94458 11.668169  11.120105
=3 6.27346  -1.654556 -0.741369  -0.656335 12.410511  10.168003
i=4 9.081951 -2.618943 3.071842  8.976675 11.637165 10.861253
i=5 12.555694  -0.814987 -1.553641 -4.28074 7.998436  10.474503
i=6  12.693086  3.104057 -2.17034  -5.193335 8.603242 9.37352
i=7 8.119246 3.672658 6.46173 10.966673 11.112354 11.573856
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Table 9. The weight and bias for each model S-3 weight and bias (Continued)

Input layer weight Output  Output
Input layer
No . layer layer
bias 3 d
=1 =2 i=3 j=4 weight bias
i=8 5.592281 3.18606 0.318165 2.598637 12.530425 11.596469
i=9 11.3724 2.913348 -1.483083 -4.30228 8.811892 9.660874
i=10 7.93586  -1.536306 -0.364015 5.06573 11.992101 11.557194
i=11 8.156552  -1.803049 -0.271891 -0.957623 11.957033  9.740883
i=12 8.069615 -1.884124 -0.259544  5.128351 12.007458 11.587111
i=13 8.564417  -0.998853 -1.467734 -2.340189 10.633727  9.855105
i=14 6.00483 2.75147 0.373418 -0.189137 12.557675 9.619313
i=15 -0.187961 0.060722 0.01089 -0.178607 -0.263779  -0.337459
i=16 6.892117 -1.552516 -0.485587  1.657275 12.372792  11.030081
i=17 -4.386384  -2.955757 8.038886 -2.774517 -6.534861  -11.90058
i=18 6.722034  -1.148709 -0.333784  0.840384 12.289119 11.24147
i=19 11.38788  3.062594 -1.509452  -4.434539 8.661933 9.748901
i=20  12.538131 0.04338 -1.922498  -4.93554 8.276694  9.993017
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Figure 4. S-3 prediction model
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Table 10. The weight and bias for each model S-4 weight and bias

Input layer weight Input  Output Output
No layer layer layer
= =2 =3 =4 bias weight bias
i=1 13.505953 228621 5325622 9251897 13353709  13.382729  10.391235
i=2 -0.152352 0.287425 -0.154917 0.07896 0.26072  -0.254727
=3 6.819539 1.36284 -1.400987 1743301 15.646322  11.58602
i=4 -0.064927 0.182004 0.114784 20.021897  -0.229844  -0.278119
i=5 7.702209 1.046232 -0.820406 22337846 15891793 11.429382
i=6 13.74754 -3.142291 4.904068 9.653087 13.7873  13.274394
i=7 0.153438 -0.066333 -0.071691 0.1096  -0.241638  -0.323501
i=8 14.297611 -1.73134 5.332961 9233155 13.300507  13.438828
i=9 7.031365 0.949381 -1.332009 -1.682288  15.811602  11.694222
i=10 7.695485 1.956201 -1.179658 -1.955784 15965448  11.059452
i=11 -0.046221 0.133292 -0.167361 0218618  -0.327707 -0.1233
i=12 6.923381 0.808295 -1.628395 1526463 15.877806  11.682876
i=13 7.68332 1.192268 -2.055739 2025476 15.879818  11.03406
i=14 -0.256039 0.032686 -0.018633 -0.271961 0.25847  -0.342266
i=15 0.127626 0.068285 0.020376 0.001988  -0.228788  -0.292867
i=16 9.155288 2.082366 -1.647125 -3.12981 14922222 10.998966
i=17 -0.045351 -0.063112 -0.086509 0.034996 0.15619  -0.270054
i=18 7.104453 1.816652 -1.228767 215102 15848766  11.23556
i=19 10.157554 2.602764 -2.76814 -3.459965 14755795 10.450727
i=20 6.732322 1.222995 -1.455778 2.076544  15.862597  11.553668
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Figure 5. S-4 prediction model
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On the below graphs, sensitivity output pore
pressure prediction to the each of variable included to
this prediction which are sonic transite time (Figure
6), to the porosity ¢ (Figure 7), to the bulk density
(figure 8) and to the shale volume (Figure 9). All the
below graph showed that all variable are significant
influence to the pore pressure number.

Discussion

The The results contributed to the ongoing
development of pore pressure prediction methods in
petroleum geomechanics. Considering that traditional
methods such as the Eaton equation or NCT remained
widely used, these were limited by simplifying
assumptions that often failed in complex basins
(Huang et al., 2020). The integration of multiple
geological and petrophysical parameters into ANN
framework, enabled this research overcome the
diverse limitations, as well as provided a more
comprehensive tool for pore pressure estimation.

Compared to Bayesian updating methods (Paglia
et al., 2019) and probabilistic neural networks
(Liu, 2023), the extracted empirical formula from
ANN offered the advantage of interpretability
and operational simplicity. The engineers directly
calculated pore pressure values using explicit
equation, eliminating the need for continuous model
retraining or probabilistic calibration.

The main novelty of this research focused on
translating machine learning model into an explicit
empirical formula. Distinct from most ANN
applications that remained confined to software
environments, this formula was directly integrated
into drilling engineering workflows, spreadsheets,
or well planning documents, as characterized by the
following qualities: 1). Transparency: The explicit
formula enhanced interpretability, addressing the
main criticisms of machine learning in petroleum
engineering, the black-box problem (Amjad et
al., 2022); 2). Transferability: The formula was
transferable across similar geological settings in
South Sumatra Basin without retraining, and reducing
computational requirements in field applications; 3).
Efficiency: The simplified application, enabled the
formula to be used in real-time operations where
rapid pore pressure estimates were required to adjust
mud weight programs.

South Sumatra Basin is geologically complex,
with overpressure mechanisms including
disequilibrium compaction, hydrocarbon generation,
and tectonic loading (Syarifuddin et al., 2019).
Conventional methods often underpredicted pore
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pressures in geologically complex environments,
leading to drilling risks. Moreover, ANN-derived
formula successfully captured these nonlinearities,
exhibiting high accuracy even in intervals with
abrupt pore pressure changes.

This was the initial application of ANN-extracted
empirical formulas in South Sumatra Basin,
representing regional advancement in predictive
geomechanics. It provided a framework for future
research to expand to other basins in Indonesia, such
as North Sumatra or East Java Basins, which share
similar depositional complexities.

Other recent analyses have reported the value
of machine learning in pore pressure prediction, for
example.

* Abdelaal et al. (2022) applied ANN to Middle
Eastern basins with exceptional accuracy but
retained the black-box model.

e Gao (2023) showed that probabilistic neural
networks improved pre-drilling pressure esti-
mates, although it required high computational
resources.

o Irianto et al. (2023) proposed an empirical
model in a different Indonesian basin but did
not extract explicit formulas.

* Accurate pore pressure prediction played cru-
cial roles in:

*  Wellbore Stability: Preventing collapse and
fluid influx during drilling (Zhang et al., 2022).

*  Mud Weight Optimization: Designing cost-
effective and safe drilling fluids (Han et al.,
2021).

* Drilling Risk Reduction: Minimizing non-
productive time (NPT) and avoiding blowouts
(O’Connor, 2023).

The provision of a reliable and easy-to-use for-
mula, enabled the direct contribution to operational
safety and efficiency. The adoption of these tools
significantly reduced economic losses in over-
pressured zones, which remained a challenge in
Indonesian petroleum operations. Considering that
ANN-derived formula showed strong performance
in South Sumatra Basin, several limitations should
be acknowledged: 1). Dataset Size: The model was
trained on only two wells (S-3 and S-4). Expanding
to a larger dataset would improve generalizability;
2). Geological Diversity: Application to basins with
significantly different lithologies or stress regimes
required recalibration.

Uncertainty Quantification: The current for-
mula provided deterministic outputs, future analyses
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should integrate probabilistic uncertainty bounds
(Bahmaei & Hosseini, 2019). Future research should
explore hybrid models that combined ANN-derived
formulas with real-time seismic velocity updates or
Bayesian frameworks to enhance robustness.

The results outlined the advantages of combin-
ing geomechanical insights with machine learning
for pore pressure prediction in South Sumatra Basin.
Compared with canonical methods (Eaton, Bow-
ers, and NCT), ANN-derived formula consistently
reduced error and improved interpretability.

The depth-binned analysis showed that predic-
tion accuracy remained high in shallow to mid-depth
intervals (<8,000 ft), with RMSE consistently less
than 130 psi. However, errors increased at greater
depths, reflecting the growing complexity of litho-
logical variability and overpressure mechanisms.
This trend reflected operational experience in the
basin, where drilling problems were frequently en-
countered in deep shale-dominated sequences. The
outlining of depth-specific error bands, enabled ANN
model provide a more realistic risk profile than single
global error metrics.

The confusion-style summaries reinforced the
operational reliability of ANN method. However,
with 92% overall accuracy in classifying normal,
overpressured, and underpressured intervals, the
model outperformed Eaton (80%) and Bowers
(83%). Misclassifications were limited to transitional
zones near shale—sand alternations, where even ana-
lytical methods were prone to error. This ability to
distinguish pressure regimes had direct safety im-
plications, enabling drilling engineers to anticipate
overpressure earlier and plan contingency measures
such as mud weight increases or casing setting points.

The sensitivity plots in Figure 6-9 showed that
sonic transit time and porosity were the dominant
controls on pore pressure, consistent with compac-
tion-driven overpressure mechanisms. Bulk density
and shale volume also exhibited strong influence,
featuring the role of lithology and sealing capacity.
These results supported the geomechanical defensi-
bility of the selected features.

This research represented the initial effort in
South Sumatra Basin to translate ANN into an ex-
plicit empirical mapping for pore pressure predic-
tion. Apart from accuracy, the method addressed
two enduring gaps in the literature: (i) the lack of
uncertainty-aware, depth-specific performance
benchmarks, and (ii) the absence of geomechani-
cally defensible feature analysis in machine learning

models. The filling of these gaps, enabled this present
research to advance both the science and practice of
pore pressure prediction.

CONCLUSION

In conclusion, pore pressure prediction continues
to be a central challenge in drilling engineering and
petroleum geomechanics, as accurate estimation of
subsurface pressures remains critical for wellbore
stability, operational safety, and cost efficiency.
Conventional methods such as NCT, Eaton’s
equation, and velocity—effective stress relationships
continue to provide useful approximations, although
they often prove unreliable in heterogeneous or
tectonically complex basins. A typical example
can be observed in the South Sumatra Basin, with
its diverse lithologies, disequilibrium compaction,
and hydrocarbon generation processes. In this
context, pore pressure prediction is currently being
improved through the integration of geomechanical
understanding and modern machine learning
techniques.

An artificial neural network (ANN) is being
trained to model the nonlinear relationships
governing pore pressure, using datasets from two
representative wells, S-3 and S-4, which include
parameters such as temperature, gamma ray, porosity,
and water saturation. The model is demonstrating
strong predictive performance, with R? values above
0.90 and RMSE ranging from 115 to 142 psi—
significantly outperforming traditional empirical
methods. These findings highlight the capability of
machine learning to capture complex, multivariate
interactions that conventional approaches struggle
to represent.

The novelty of this research lies in the application
of ANN for pore pressure prediction and the
extraction of an explicit empirical formula from
the trained network. By translating the model’s
weights and biases into algebraic expressions, the
study is addressing the black-box limitation of
machine learning. This approach makes the method
transparent, interpretable, and directly usable by
drilling engineers without requiring specialized
software or frequent retraining. The resulting formula
is being implemented in real time, integrated into
spreadsheets or well-design tools, and applied across
similar geological settings within the South Sumatra
Basin.

The implications are both scientific and
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practical. From a scientific perspective, this

and pore pressure.

research demonstrates that machine learning models RMSE  Root mean square psi
can be deconstructed into explicit formulas that error calculated by
combine the accuracy of advanced computation depth intervals to
with the interpretability of traditional methods. evaluate model
This hybrid approach provides a framework for performance.
broader applications in geomechanics, such as GR Measures natural API
fracture-gradient or rock-strength prediction. From rf:ldioactivity to infer
a practical standpoint, the formula enhances drilling lithology and shale
safety by enabling more precise mud-weight design, volume (Vsh). )
thereby reducing risks of fluid influx or formation (MAE)  Mean Absolute Error,  psi
y requeing isks of i ux or formatio statistical metric
fracturing and minimizing non-productive time. In measuring average
Indonesia’s petroleum sector, where overpressured absolute difference
fo?matlon.s cqntlnue tq pose operatlonal challenges, between predicted and
this contribution remains particularly valuable. actual values.
The study acknowledges several limitations. MW Mud Weight windows, ppe
The empirical formula is derived from only safe range of drilling
two wells; thus, future work should expand to fluid densities to
larger datasets to improve generalizability. The maintain wellbore
current formulation offers deterministic predictions stability.
without explicit uncertainty quantification, which NCT Normal Compaction ft/s
could be addressed by incorporating probabilistic Tren_d, Ba§e11ne
frameworks. Moreover, application to other basins relationship between
with differing lithologies or tectonic regimes may depth.and .
require recalibration. velocity/density for
normally compacted
Overall, this research shows that by combining sediments.
geomechanical principles and machine learning, and ) Porosity, fraction of Fraction
by translating ANN outputs into an explicit empirical void spaces in rock;
formula, it is becoming possible to achieve accuracy, key for fluid storage.
transparency, and practical usability simultaneously. PP Pressure of fluids in psi
The developed formula offers new insights into pore rock pore spaces;
pressure behavior in the South Sumatra Basin and critical for drilling
establishes a methodological template for broader safety. _
adoption. The alignment of computational innovation RMSE  Root Mean Square pst
with field practicality continues to advance both the Error, Av?rage
science and practice of pore pressure prediction, squared dlffelience
o . between predicted and
coptrlbutlpg to safer, more efficient, and more observed values.
reliable drilling operations. Vsh Proportion of shale in ~ Fraction
a formation; affects
sealing capacity and
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