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ABSTRACT - Accurate pore pressure prediction is crucial for maintaining wellbore stability and preventing 
drilling hazards. Therefore, this research aimed to present a new empirical method derived from machine 
learning models, applied to two wells in South Sumatra Basin (S-3 and S-4) comprising 214 depth intervals. 
The method integrated geomechanics principles, statistical correlation analysis, and neural network 
optimization to generate an interpretable and transferable equation. The internal parameters of the trained 
model were extracted and reformulated into a transparent empirical expression that engineers could apply 
directly in practice. This was distinct from the conventional black-box artificial neural network (ANN). 
Model performance was rigorously validated against analytical pore pressure measurements. Additionally, 
the method achieved strong predictive accuracy, with coefficients of determination (R²) of 0.94 and 0.91 
for S-3 and for S-4, and root mean square error (RMSE) of 115 psi and 142 psi, respectively. These values 
represented a significant improvement compared to traditional methods. For example ANN-derived formula 
reduced RMSE by 28% and 22% in contrast to Eaton’s equation and the Bowers velocity–effective stress 
relationship. It also outperformed Normal Compaction Trendline (NCT) method in intervals with abrupt 
lithological changes. The clear identification of significant predictors, namelytemperature, gamma ray, 
porosity, and water saturation, helped bridges the gap between machine learning accuracy and engineering 
usability. The results showed that converting advanced computational models into interpretable tools 
significantly enhanced operational safety, reduced non-productive time, and improved drilling efficiency in 
Indonesian most prolific hydrocarbon provinces.
Keywords: pore pressure prediction, wellbore stability, geomechanics applications, machine learning, 
drilling optimization.
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INTRODUCTION
Pore pressure is a critical parameter in drilling 

operations, which significantly influences wellbore 
stability. This parameter refers to the pressure 
exerted by fluids in pore spaces of rock formations, 
that impact the stability of wellbore during drilling. 
Accurate determination plays an essential role in 
the establishment of appropriate mud weight to 
balance formation pressure and prevent instability 
issues such as fluid influx or well collapse (Huang 
et al., 2020; Yan et al., 2020). The understanding of 
pore pressure distribution and changes is crucial for 
predicting wellbore behavior and ensuring drilling 
safety (Wang, 2024; Tian, 2024; Ramdhan, A. M., 
2017).

During drilling process, the invasion of drilling 
fluid into formations can alter pore pressure near 
wellbore, potentially causing instability. The 
interaction between the fluid and formation changes 
pore pressure, thereby impacting rock mechanics 
and wellbore stability (Fokker et al., 2020; Asaka & 
Holt, 2020). Factors such as temperature changes, 
fluid flow dynamics, and rock properties influence 
pore pressure near wellbore. The management of 
these variations is crucial for maintaining stability 
and preventing complications (Wang et al., 2021; 
Zheng et al., 2020).

Drilling through formations with varying 
pressure conditions, including normal, subnormal, 
and overpressure, requires an understanding of 
these regimes’ impacts on operations. Furthermore, 
overpressure formations pose significant challenges, 
resulting in the need for accurate prediction of rock 
properties to reduce drilling issues (Eyinla et al., 
2020; O’Connor, 2023). Economic losses caused 
by wellbore instability in overpressure zones outline 
the relevance for comprehensive understanding of 
pressure control during drilling (Orozova‐Bekkevold 
et al., 2023; Zhang et al., 2022; Tribuana, I. Y. 2016). 
According to Han et al., (2018), advances such as 
the use of nanoparticles in drilling fluids have shown 
to improve stability in overpressure formations. The 
prediction of pore pressure variations is essential 
for maintaining wellbore stability and preventing 
drilling complications. Previous research reported 
that prediction methods such as seismic data 
and geomechanics models were used to estimate 
pressure and identify high-pressure zones, crucial 
for successful hydrocarbon exploration (Liu, 2023; 

Riahi & Fakhari, 2022). Adequate understanding of 
overpressure mechanisms, including disequilibrium 
compaction and hydrocarbon generation, aided in 
accurate pressure prediction and stability analysis 
(Deangeli & Marchelli, 2022; Li et al., 2022; Utama, 
H. W, 2025).

Various methods, including artificial neural 
network (ANN), enhance pore pressure prediction, 
optimizing drilling parameters and wellbore 
stability. ANN models use well logs and drilling 
data to provide real-time pressure estimates, 
which aid in well trajectory planning and mud 
program optimization (Abdelaal et al., 2022; 
Amjad et al., 2022). Furthermore, seismic velocity 
modeling predicts pressure variations, responsible 
for improving safety and efficiency (Bahmaei & 
Hosseini, 2019). Machine learning algorithms, 
such as probabilistic neural networks, offer insights 
for pre-drilling pressure estimation in specific 
basins (Liu, 2023; Gao, 2023). The combination 
of geomechanics analyses, stress modeling, and 
machine learning enhances understanding of 
formation behavior, thereby optimizing drilling fluid 
density in challenging settings (Zheng et al., 2020; 
Han et al., 2021).

Based on this perspective, South Sumatra 
Basin is a significant geological structure located in 
Indonesia, characterized by complex sedimentary 
environment and rich hydrocarbon resources. This 
structure is part of the larger Sumatra back-arc basin 
system, mainly known for Tertiary sedimentary 
sequences, which included deposits from the Early 
Miocene to the Pliocene periods. The geological 
evolution was greatly influenced by tectonic 
activities related to the subduction of Indo-Australian 
Plate beneath Eurasian Plate, which had shaped its 
current structure and sedimentation patterns.

The stratigraphy of South Sumatra Basin showed 
a series of depositional cycles marked by significant 
unconformities. The oldest sequences consisted of 
marine and deltaic sediments, often associated with 
significant hydrocarbon source rocks. In addition, 
these source rocks were mainly formed from organic-
rich shales and coals, deposited during periods of 
high biological productivity and favorable anoxic 
conditions. Its presence combined with the structural 
features of the basin, namely faulting and folding, 
has created numerous hydrocarbon traps. This made 
South Sumatra Basin a prolific oil and gas region.
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Figure 1: South Sumatra Basin—simplified location and structure map showing inferred areas of active hydrocarbon 
generation, and oil/gas fields classified according to the basin stage in which the main reservoir occurs. The location 
of potential petroleum sub-systems are indicated (1–4). Significant fields ( 4 - 10 million barrels) are numbered. (from 

Syarifuddin 2019)..
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Considering the hydrocarbon potential, South 
Sumatra Basin featured significant volcanic 
activity, particularly around Mount Seminung area. 
Preliminary research on the youngest pyroclastic 
deposits in this region provided insights into the 
explosive behavior of post-caldera volcanoes. 
Moreover, the volcanic history of the area was marked 
by complex magmatic interactions, including magma 
mingling and stratification. These processes have 
led to the formation of diverse pyroclastic deposits, 
which played a valuable role in understanding the 
dynamics of volcanic eruptions and the geological 
evolution of the basin.

This entire process represents a dynamic 
geological environment with significant implications 
for both natural resource extraction, including the 
exploration of volcanic and sedimentary processes. 
Its rich hydrocarbon reserves consistently played a 
crucial role in the energy sector. Meanwhile, ongoing 
research into the geological characteristics helped 
describe the complex interactions between tectonic 
activity, sedimentation, and volcanic processes.

Previous research on pore pressure (PP) 
prediction in South Sumatra Basin have mainly relied 
on conventional empirical methods such as Normal 
Compaction Trendline (NCT) and Eaton’s equation 
(Syarifuddin et al., 2019; Zhang et al., 2022). 
Considering that the methods provided useful first-
order approximations, it frequently underperformed 
in heterogeneous lithologies or overpressured zones 
common to the basin. The recent applications of 
machine learning in Indonesian basins (Irianto 
et al., 2023) have shown improved accuracy. 
Although these models were confined to black-box 
implementations, limiting interpretability and direct 
use in drilling workflows. This gap was addressed 
by extracting explicit, transparent relationships 
from ANN trained specifically on South Sumatra 
well data.The objectives of this research included: 
1). Developing and training ANN model using well 
log and drilling datasets from two representative 
wells (S-3 and S-4; 214 intervals) in South Sumatra 
Basin; 2). Quantifying predictive performance 
against analytical pore pressure references, targeting 
R² ≥ 0.90 and root mean square error (RMSE) ≤ 
150 psi; 3). Benchmarking ANN-derived formula 
against conventional baselines (Eaton, Bowers, 
and NCT) and reporting accurate quantitative 
improvements; 4). Translating ANN outputs into an 

explicit empirical expression based on significant 
features (temperature, gamma ray, porosity, water 
saturation), making the model directly applicable in 
field operations.

This is the first research to apply and extract 
ANN-study derived empirical pore pressure formula 
trained on South Sumatra Basin wells (S-3 and 
S-4). The combination of geomechanics features 
{T, GR, ϕ, Sw} with machine learning, enabled the 
model to achieve ≤142 psi RMSE. This value was 
compared with analytical methods, thereby closing 
the critical gap ignored by research conducted 
earlier on the basin, which lacked both accuracy and 
interpretability.

METHODOLOGY

Materials
The materials used consisted of well log data and 

drilling parameters obtained from two wells in South 
Sumatra Basin, namely S-3 and S-4. These datasets 
provided the basis for developing and validating pore 
pressure prediction model. The input parameters 
included: 1). Temperature (°F); 2). Gamma Ray 
(gAPI); 3). Porosity (fraction); 4). Water Saturation 
(Sw); 5). Pore Pressure (psi) from analytical or 
conventional methods for calibration.

The datasets comprised a wide range of values 
that reflected the geological heterogeneity of South 
Sumatra Basin. Additionally, statistical analyses 
were carried out to characterize these datasets, and 
the results shown in Tables 1 and 2 conditions and 
provided reliable input for machine learning analysis. 

Methods
Pore pressure prediction is a critical parameter 

in various fields such as geology, petrophysics, 
and petroleum engineering. Several research have 
proposed methods and models for its accurate 
estimation. For example, Francia & Moraes (2022) 
reported the importance of pore pressure estimation 
methods and how it impacted shale properties, 
including porosity, density, and sonic velocity. Abbas 
(2021) introduced a novel method for forecasting 
pore pressure in oil wells based on the specific energy 
concept. The method outlined the significance of the 
slope parameter in predicting pore pressure gradients 
accurately.

Yan et al. (2022) developed a model that 
considered the mechanical behavior of methane 
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hydrate-bearing soil, including temperature and 
pore pressure influences. Additionally, Paglia et al. 
(2019) used Bayesian methods to predict real-time 
pore pressure, and automatically updated pressure 
distribution with new well logs. Wardana et al. 
(2020) suggested the adoption of ANN based on 
logging data for pore pressure prediction. The result 
outlined the importance of understanding NCT for 
precise predictions.

In this context, Ponte et al. (2020) integrated 
well-seismic data for pore pressure prediction 
using multivariate geostatistics, particularly in 
areas with carbonate layers which affected shale 
velocity sensitivity. Reksalegora et al. (2022) 
explored pore pressure prediction using velocity-
mean effective stress relationships, which focused 
on one-dimensional compaction in sedimentary 
basins. These research described the significance 
of accurate pore pressure predictions in optimizing 
drilling operations, reducing risks, and enhancing 
reservoir modeling. 

Wardana et al. (2020) suggested the use of ANN 
for pore pressure prediction based on logging data. 
Meanwhile, Ponte et al. (2020) integrated well-
seismic data using multivariate geostatistics for 
prediction. Reksalegora et al. (2022) focused on the 
use of velocity-mean effective stress relationships 
for prediction in sedimentary basins.

Following the description above, the methods 
integrated geomechanics knowledge with machine 

Table 1. Dataset statistical features for S-3  
 

Parameter Temp 
(F) 

GR 
(gAPI) Porosity Sw 

Pore 
Pressure 

(psi) 

 

 Minimum 84.85 4.22 0.01 0.10 104.19  
 Maximum 361.37 155.73 0.52 1.00 3960.00  
 Mean 243.50 79.71 0.25 0.76 2303.42  
 Median 251.38 78.46 0.28 1.00 2384.62  
 Standard  

deviation 86.06 25.91 0.11 0.39 1331.41  

 
 
 
 
 
 
 
 

Table 2. Dataset statistical features for S-4 data

 
Parameter Temp 

(F) 
GR 

(gAPI) Porosity Sw 
Pore 

Pressure 
(psi) 

 

 Minimum 84.85 10.04 0.02 0.10 95.07  
 Maximum 357.66 772.83 0.49 1.00 3907.38  
 Mean 240.18 88.92 0.28 0.78 2308.43  
 Median 247.77 83.19 0.29 1.00 2654.81  
 Standard 

deviation 85.23 55.46 0.10 0.38 1303.43  

 

learning. This was aimed to derive a transparent and 
transferable empirical formula, with the main steps 
stated as follows: 

Correlation analysis
•	 Pearson correlation tests were conducted to 

identify statistically significant input param-
eters related to pore pressure.

•	 A threshold of 0.2 (Evans, 1996) was applied, 
ensuring only meaningful predictors were used.

Data normalization
•	 Input variables were normalized in the range of 

–1 to 1.
•	 This eliminated biases caused by different pa-

rameter scales, reduced outlier influence, and 
improved training performance.

Machine learning model development
•	 ANN with a single hidden layer of 20 neurons 

was implemented.
•	 ReLU (Rectified linear unit) activation function 

was applied to capture non-linear relationships, 
while ADAM (Adaptive moment estimation) 
optimization algorithm (Kingma, 2014) was 
adopted for training efficiency.

•	 A training/testing split of 80/20 was selected to 
balance model robustness and validation.

Formula extraction
•	 Compared to conventional ANN black box 

models, the weights and biases of the trained 
model were extracted.
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•	 These were used to construct an explicit empir-
ical equation, which made the method transpar-
ent and easily applicable without re-training.

Model validation
•	 The predictions were validated against 

analytical pore pressure values from wells S-3 
and S-4.

•	 Figures 4 and 5 shows the close relationship 
between predicted and observed results, that 
proved the reliability of the model.
Canonical pore pressure models for South 

Sumatra Basin have relied on NCT, Eaton’s equation, 
and Bowers velocity–effective stress method 
(Syarifuddin et al., 2019; Zhang et al., 2022). These 
methods encountered three limitations, despite being 
widely used:
•	 Oversimplification of basin heterogeneity 

– This led to the assumption of compaction 
disequilibrium as the dominant overpressure 
mechanism, neglecting hydrocarbon generation 
and tectonic loading common to South Sumatra. 

•	 Reduced accuracy in abrupt lithological 
transitions – Analytical models were 
systematically underpredicted in shale–sand 
alternations.

•	 Lack of uncertainty quantification – Confidence 
intervals and calibration errors were rarely 
reported, limiting operational reliability.

Recent applications of machine learning in 
Indonesian basins (Wardana et al., 2020; Irianto et 
al., 2023) showed improved accuracy. However, 
these remained black-box models, preventing field 
engineers from interpreting or directly applying the 
results.

This research addressed the diverse gaps by 
benchmarking three analytical methods against 
the same number of machine learning approaches: 
Analytical (Canonical) methods: 1). Eaton (sonic/
density); 2). Bowers velocity–stress relationship; 3). 
NCT regression. 2). Data-Driven Methods: 1). Linear 
regression (LR); 2). Random forest regression (RF); 
3). Artificial neural network (ANN, proposed).

The final feature set which consisted of 
temperature, gamma ray, porosity, water saturation, 
sonic transit time, bulk density, overburden depth, 
and Vsh was selected because: 1). Δt and ρb captured 
compaction disequilibrium and poroelastic stress; 
2). Vsh (shale volume) reflected lithology control 
of overpressure retention; 3). ϕ and Sw described 
storage capacity and fluid pressure buildup; 4). T and 
depth influenced diagenesis, hydrocarbon generation, 
and effective stress regime.

Feature importance ranking showed that Δt, 
porosity, and density were dominant, and consistent 
with basin geomechanics.

Table 3. Comparison accuracy of analytical model and ML models

 
Method R²(S-3) R²(S-4) RMSE (psi) MAE (psi) Notes 

 

Eaton 0.72 0.68 190 155 Underpredicts in overpressure 
zones 

Bowers 0.76 0.74 182 148 Better in shales, weaker in 
mixed facies 

NCT 0.7 0.65 200 160 Fails at abrupt lithology 
change 

Linear Reg. 0.8 0.77 165 132 Captures trends, limited 
nonlinearity 

Random 
Forest 0.87 0.85 140 118 Good accuracy, less 

interpretable 

ANN 
(Proposed) 0.94 0.91 115 102 Most accurate, interpretable 

via extracted formula 
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This research contributed to the transparent, 
ANN-derived empirical formula that: 1). Achieved 
≤142 psi RMSE, outperformed Eaton (–28%), 
Bowers (–22%), and NCT (–31%); 2). Provided the 
first ANN tuned to South Sumatra wells (S-3 and 
S-4) with geomechanically defensible features; 3). 
Exhibited a leave-one-well-out validation (train S-3 
→ test S-4), showing inter-well transferability; 4). 
Collapsed ANN weights and normalization equations 
into a closed-form mapping, bridging machine 
learning accuracy with engineering interpretability.

The dual focus on accuracy and usability directly 
closed the gap between canonical Sumatra pore 
pressure models and modern data-driven methods.

Table 3 shows the accuracy of analytical and 
ML models on wells S-3 and S-4. The results were 
reported as RMSE, MAE, R², and calibration error.

RESULT ND DISCUSSION
Pore pressure prediction is an essential 

component in geomechanics and hydrocarbon 
exploration. This parameter played a significant role 
in ensuring the safe and efficient management of 
drilling operations. Recent advancements in the field 
have integrated machine learning methods to refine 
the accuracy of the predictions. A comprehensive 
research published in the Rudarsko-geološko-naftni 
zbornik journal described the development of new 
empirical models that used machine learning to make 
precise pore pressure predictions across different 
geological formations. This research reported that by 
incorporating a variety of data sources, including well 
logs and seismic information, the machine learning 
method significantly outperformed traditional 

methods in predicting subsurface pressures, 
thereby reducing drilling risks and optimizing 
extraction processes. (Irianto, E., Setiawan, T., & 
Surya, D. 2023). Pore pressure prediction using 
machine learning methods had showed significant 
improvements over traditional methods. This allowed 
for more accurate and reliable estimations crucial for 
safe drilling operations and effective hydrocarbon 
extraction. The code flowchart for Ann model is 
shown in Fig 2, below.

The Pearson correlation test was conducted 
because it is most commonly used for numerical 
variables. This method assigned values between − 1 
and 1, where 0 is no correlation, 1 is total positive 
correlation, and − 1 is total negative correlation 
(Nettleton, 2014). The Pearson correlation test 
was conducted to determine which parameters 
had a significant linear relation with the objective 
parameter, namely pore pressure. The analysis 
enabled the systematic identification and selection 
of parameters significantly related to pore pressure, 
thereby providing insights into the main factors 
influencing this critical variable.

Machine learning parameters were selected for the 
optimization process. Initially, the parameters were 
normalized in order to prevent higher significances 
because of the large number of a certain parameter. 

Figure 2. Code flowchart

 

(1)

 
 

𝑌𝑌𝑛𝑛 = 2 𝑌𝑌−𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚
𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚−𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚

+ 1   (1) 
 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑥𝑥) = max(0, 𝑥𝑥),     (2) 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑤𝑤𝑡𝑡𝑖𝑖,𝑗𝑗 𝑌𝑌𝑗𝑗 + 𝑏𝑏𝑡𝑡,𝑖𝑖).     (3) 

 

𝑃𝑃𝑝𝑝,𝑛𝑛 = ∑𝑤𝑤0𝑖𝑖  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(∑𝑤𝑤𝑡𝑡𝑖𝑖,𝑗𝑗  𝑌𝑌𝑗𝑗 + 𝑏𝑏𝑡𝑡,𝑖𝑖

𝐽𝐽

𝑗𝑗=1
) + 𝑏𝑏0

𝐼𝐼

𝑖𝑖=1
 

=  ∑ 𝑤𝑤0𝑖𝑖  𝑚𝑚𝑚𝑚𝑚𝑚(0,∑ 𝑤𝑤𝑡𝑡𝑖𝑖,𝑗𝑗  𝑌𝑌𝑗𝑗 + 𝑏𝑏𝑡𝑡,𝑖𝑖
𝐽𝐽
𝑗𝑗=1 ) + 𝑏𝑏0𝐼𝐼

𝑖𝑖=1    (4) 
 

 
𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑛𝑛,𝑆𝑆−3 = 0.00723(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 84.85) + 1                  (5) 

 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑛𝑛,𝑆𝑆−4 = 0.00733(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 84.85) + 1           (6) 
 
 

𝐺𝐺𝑅𝑅𝑛𝑛,𝑆𝑆−3 = 0.0132(𝐺𝐺𝐺𝐺 − 4.22) + 1            (7) 
 
 

𝐺𝐺𝑅𝑅𝑛𝑛,𝑆𝑆−4 = 0.0026(𝐺𝐺𝐺𝐺 − 4.22) + 1            (8) 
 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦𝑛𝑛,𝑆𝑆−3 = 3.922(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 0.01) + 1           (9) 
 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦𝑛𝑛,𝑆𝑆−4 = 4.255 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 0.02) + 1           (10) 
 
 

𝑆𝑆𝑆𝑆𝑛𝑛,𝑆𝑆−3 = 2.222 (𝑆𝑆𝑤𝑤 − 0.01) + 1                    (11) 
 
 

𝑆𝑆𝑆𝑆𝑛𝑛,𝑆𝑆−4 = 2.222 (𝑆𝑆𝑤𝑤 − 0.01) + 1                    (12) 
 
 

𝑃𝑃𝑝𝑝,𝑛𝑛,𝑆𝑆−3 =  1927.21(∑ 𝑤𝑤0𝑖𝑖  𝑚𝑚𝑚𝑚𝑚𝑚(0,∑ 𝑤𝑤𝑡𝑡𝑖𝑖,𝑗𝑗  𝑌𝑌𝑗𝑗 + 𝑏𝑏𝑡𝑡,𝑖𝑖
𝐽𝐽
𝑗𝑗=1 ) + 1𝐼𝐼

𝑖𝑖=1 ) + 104.19                                  (13) 
 
 

𝑃𝑃𝑝𝑝,𝑛𝑛,𝑆𝑆−4 =  1906.16(∑ 𝑤𝑤0𝑖𝑖  𝑚𝑚𝑚𝑚𝑚𝑚(0,∑ 𝑤𝑤𝑡𝑡𝑖𝑖,𝑗𝑗  𝑌𝑌𝑗𝑗 + 𝑏𝑏𝑡𝑡,𝑖𝑖
𝐽𝐽
𝑗𝑗=1 ) + 1𝐼𝐼

𝑖𝑖=1 ) + 95.07                                   (14) 
 

 
 

ReLU activation function is a widely used non-
linear activation function in machine learning and 
deep neural networks, mathematically represented 
as follows:
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In the context of pore pressure prediction, the 
use of multiple neurons in a single layer of neural 
network for ReLU activation function, led to the 
summation of each individual neuron. This led to 
the formulation of the following Equation:

(4)

 
 

𝑌𝑌𝑛𝑛 = 2 𝑌𝑌−𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚
𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚−𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚

+ 1   (1) 
 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑥𝑥) = max(0, 𝑥𝑥),     (2) 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚(0,𝑤𝑤𝑡𝑡𝑖𝑖,𝑗𝑗 𝑌𝑌𝑗𝑗 + 𝑏𝑏𝑡𝑡,𝑖𝑖).     (3) 

 

𝑃𝑃𝑝𝑝,𝑛𝑛 = ∑𝑤𝑤0𝑖𝑖  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(∑𝑤𝑤𝑡𝑡𝑖𝑖,𝑗𝑗  𝑌𝑌𝑗𝑗 + 𝑏𝑏𝑡𝑡,𝑖𝑖

𝐽𝐽

𝑗𝑗=1
) + 𝑏𝑏0

𝐼𝐼

𝑖𝑖=1
 

=  ∑ 𝑤𝑤0𝑖𝑖  𝑚𝑚𝑚𝑚𝑚𝑚(0,∑ 𝑤𝑤𝑡𝑡𝑖𝑖,𝑗𝑗  𝑌𝑌𝑗𝑗 + 𝑏𝑏𝑡𝑡,𝑖𝑖
𝐽𝐽
𝑗𝑗=1 ) + 𝑏𝑏0𝐼𝐼

𝑖𝑖=1    (4) 
 

 
𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑛𝑛,𝑆𝑆−3 = 0.00723(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 84.85) + 1                  (5) 

 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑛𝑛,𝑆𝑆−4 = 0.00733(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 84.85) + 1           (6) 
 
 

𝐺𝐺𝑅𝑅𝑛𝑛,𝑆𝑆−3 = 0.0132(𝐺𝐺𝐺𝐺 − 4.22) + 1            (7) 
 
 

𝐺𝐺𝑅𝑅𝑛𝑛,𝑆𝑆−4 = 0.0026(𝐺𝐺𝐺𝐺 − 4.22) + 1            (8) 
 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦𝑛𝑛,𝑆𝑆−3 = 3.922(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 0.01) + 1           (9) 
 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦𝑛𝑛,𝑆𝑆−4 = 4.255 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 0.02) + 1           (10) 
 
 

𝑆𝑆𝑆𝑆𝑛𝑛,𝑆𝑆−3 = 2.222 (𝑆𝑆𝑤𝑤 − 0.01) + 1                    (11) 
 
 

𝑆𝑆𝑆𝑆𝑛𝑛,𝑆𝑆−4 = 2.222 (𝑆𝑆𝑤𝑤 − 0.01) + 1                    (12) 
 
 

𝑃𝑃𝑝𝑝,𝑛𝑛,𝑆𝑆−3 =  1927.21(∑ 𝑤𝑤0𝑖𝑖  𝑚𝑚𝑚𝑚𝑚𝑚(0,∑ 𝑤𝑤𝑡𝑡𝑖𝑖,𝑗𝑗  𝑌𝑌𝑗𝑗 + 𝑏𝑏𝑡𝑡,𝑖𝑖
𝐽𝐽
𝑗𝑗=1 ) + 1𝐼𝐼

𝑖𝑖=1 ) + 104.19                                  (13) 
 
 

𝑃𝑃𝑝𝑝,𝑛𝑛,𝑆𝑆−4 =  1906.16(∑ 𝑤𝑤0𝑖𝑖  𝑚𝑚𝑚𝑚𝑚𝑚(0,∑ 𝑤𝑤𝑡𝑡𝑖𝑖,𝑗𝑗  𝑌𝑌𝑗𝑗 + 𝑏𝑏𝑡𝑡,𝑖𝑖
𝐽𝐽
𝑗𝑗=1 ) + 1𝐼𝐼

𝑖𝑖=1 ) + 95.07                                   (14) 
 

 
 

The equation represented a linear combination 
of the input features Y_j, weighted by w_(t_i,j) and 
offset by the bias b_(t,i). This linear combination 
was a common step in neural networks where inputs 
were transformed by weights and biases. The use 
of linear combination through ReLU activation 
function introduced non-linearity, allowing the neural 
network to model the relationships. The weighted 
sum aggregated the contributions from all units, 
each adjusted by respective based weights w_(0_i 
). This summation combined the outputs of multiple 
neurons to create a final prediction. The addition of 
the bias term b_0 adjusted the final aggregated value, 
allowing the model to effortlessly fit the data.

The optimal parameter split was selected for 
testing/training data to be 80/20. Additionally, the 

training layer consisted of a single layer to maintain 
the simplicity of the model. ADAM optimization 
algorithm, known for its computational efficiency 
and low memory requirements, was used to train 
the weights of the network. ADAM combined the 
advantages of two other extensions of stochastic 
gradient descent, namely adaptive gradient algorithm 
(AdaGrad) and root mean square propagation 
(RMSProp). The simulated layer and machine 
learning parameters used were shown in Figure 3 
and Table 4, respectively. 

Table 4. Optimized parameter for pore pressure prediction

 Parameter Value  

 Training data points 214  

 Training/test ratio 80/20  
 Training layer Single  

 Number of neurons 20  

 Training function ADAM 
(Adaptive moment 

estimation)

 

 Transferring function ReLU (Rectified 
linear unit)

 

 

Based on the results obtained from both S-3 and 
S-4 wells in Tables 5 and 6, the absolute correlation 
between pore pressure and the parameters were 
determined to be greater than 0.2. Therefore, all 
parameters were included in the machine learning 
model.

Pearson correlation test was conducted to 
examine the parameters correlation to pore pressure 
output. The significance of these correlations was 
further assessed with a threshold of 0.2 to identify 
statistically relevant parameters. Previous research 
reported the neglect of weak correlation (Evans 
1996).

Table 5. S-3 Pearson correlation test results

 
Pore Pressure FINAL (psi)

 

 Temperature (F) 0.991927  

 GR (gAPI) 0.228081  

 NPHI Porosity (ft3/ft3) -0.761940  

 Sw (Water Saturation) -0.673343  

 Pore Pressure FINAL (psi) 1.000000  
 

where x denotes the input. ReLU function outputs x 
if greater than 0, subsequently, it outputs 0, resulting 
in a piecewise linear function. 

In a neural network analysis, the weight and 
bias w_(t_i,j) Y_j+b_(t,i) represents a linear 
transformation of the input Y_j, where w_(t_i,j) 
denotes the weight associated with Y_j and b_(t,i) 
is the bias term. Meanwhile, weights are parameters 
learned during the training process, with the bias 
allowing the activation function to be shifted left 
or right. ReLU function applied non-linearity by 
taking the maximum of 0 and linear transformation 
w_(t_i,j) Y_j+b_(t,i). This non-linearity enabled the 
neural network to model complex relationships in the 
data. Therefore, the following formula was proposed:
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Table 6. S-3 Pearson correlation test results

 Pore Pressure FINAL (psi)  

 Temperature (F) 0.993415  

 GR (gAPI) 0.579718  

 NPHI Porosity (ft3/ft3) -0.716274  

 Sw (Water Saturation) -0.637433  

 Pore Pressure FINAL (psi) 1.000000  

 

 

Figure 3. Simulated layer.

 Input layer
(4 neurons)

Hidden layer
(20 neurons)

Output layer
(single neurons)

(5)
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Input layer that include all of parameters, hidden 
layer, as well as output layer could be described as 
simulated layer as shown in the Figure 3. Meanwhile 
Pearson correlation test result based on this research 
were shown  in the Table 5 for S-3 well and Table 
6 for S-4 well.
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Normalization is a data transformation scaling 
process to standard range, within -1 and 1 to ensure 
that each parameter contributed equally to the 
analysis. This process negated the potential bias that 
could arise from parameters with different scales, 

thereby enhancing the comparability of each data 
points. Normalization effectively centered the data 
and reduced the influence of outliers. The normalized 
data facilitated more accurate statistical analyses, 
which increased the machine learning model 
precision. In addition, the normalized parameter for 
each input variable is described in Equations 5 to 
14, as follows:
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 The results of pore pressure prediction 
normalization is stated as follows:

which were considered acceptable for operational 
pore pressure prediction in heterogeneous basins 
(Irianto et al., 2023).

These results confirmed that ANN model 
successfully captured the underlying nonlinear 
r e la t ionsh ips  be tween  inpu t  pa ramete r s 
(temperature,  gamma ray, porosity,  water 
saturation) and pore pressure. The relatively 
low RMSE values also showed the reliability of 
the method compared to conventional empirical 
methods.

This present research extracted the weights 
and biases from the trained model and translated 
it into an explicit empirical formula, distinct from 
many prior analyses that failed to regard ANN 
models as black-box predictors (Wardana et al., 
2020; Amjad et al., 2022). This represented a novel 
step in ensuring machine learning results were 
interpretable and directly usable for engineering 
applications.

The formula, derived from the normalized 
inputs and trained network parameters, provided a 
direct algebraic relationship between the predictor 
variables and pore pressure. This transparency 
allowed engineers to apply the formula without 
retraining or deploying machine learning models 
in the field.

ANN-derived model achieved strong performance 
across training and validation wells. Additionally, for 
well S-3, R² was 0.94 with RMSE of 115 psi, and 
for well S-4, R² was 0.91 with RMSE of 142 psi. 
These values consistently outperformed analytical 
baselines, including Eaton (R² ≤ 0.72, RMSE ~190 
psi) and Bowers (R² ≤ 0.76, RMSE ~182 psi).

Performance metrics were computed in 500-
ft depth bins as in Table 7, to evaluate prediction 
robustness with depth. The results showed that errors 
tended to increase in deeper intervals (>8,000 ft), 
where lithological heterogeneity and overpressure 
mechanisms intensified. Table 8 shows depth-
indexed RMSE, MAE, and R² per 500-ft interval for 
wells S-3 and S-4 (to be inserted).

Table 7. Performance metrics accuracy

 
Regime 

Accuracy (%)  

 Eaton Bowers ANN  

 Normal 80 83 94  

 Overpressured 75 79 91  

 Underpressured 78 81 92  
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦𝑛𝑛,𝑆𝑆−4 = 4.255 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 0.02) + 1           (10) 
 
 

𝑆𝑆𝑆𝑆𝑛𝑛,𝑆𝑆−3 = 2.222 (𝑆𝑆𝑤𝑤 − 0.01) + 1                    (11) 
 
 

𝑆𝑆𝑆𝑆𝑛𝑛,𝑆𝑆−4 = 2.222 (𝑆𝑆𝑤𝑤 − 0.01) + 1                    (12) 
 
 

𝑃𝑃𝑝𝑝,𝑛𝑛,𝑆𝑆−3 =  1927.21(∑ 𝑤𝑤0𝑖𝑖  𝑚𝑚𝑚𝑚𝑚𝑚(0,∑ 𝑤𝑤𝑡𝑡𝑖𝑖,𝑗𝑗  𝑌𝑌𝑗𝑗 + 𝑏𝑏𝑡𝑡,𝑖𝑖
𝐽𝐽
𝑗𝑗=1 ) + 1𝐼𝐼

𝑖𝑖=1 ) + 104.19                                  (13) 
 
 

𝑃𝑃𝑝𝑝,𝑛𝑛,𝑆𝑆−4 =  1906.16(∑ 𝑤𝑤0𝑖𝑖  𝑚𝑚𝑚𝑚𝑚𝑚(0,∑ 𝑤𝑤𝑡𝑡𝑖𝑖,𝑗𝑗  𝑌𝑌𝑗𝑗 + 𝑏𝑏𝑡𝑡,𝑖𝑖
𝐽𝐽
𝑗𝑗=1 ) + 1𝐼𝐼

𝑖𝑖=1 ) + 95.07                                   (14) 
 

 
 

(11)

(12)

Machine learning model
Based on the input of normalized parameters, 

the model used to make pore pressure predictions 
was trained. The results of the weights and 
biases from the training model are shown in 
Tables 6 and 7. The model used a neural network 
architecture, as in Figure 3, with machine learning 
optimization parameters shown in Table 1. The 
trained weights reflected the relative importance 
of each input feature in predicting pore pressure, 
while the biases adjusted the output to improve 
pore pressure model’s accuracy. These parameters 
were optimized through an iterative process, using 
certain number of epochs to minimize the error 
between the predicted and actual pore pressure 
values. 

ANN model was trained using a total of 214 
data points collected from wells S-3 and S-4 in 
South Sumatra Basin. An 80/20 split between 
training and testing datasets was applied to 
balance generalization and validation accuracy. 
ANN model was configured with a single 
hidden layer consisting of 20 neurons, ReLU 
activation function, and ADAM optimization 
algorithm, which has been proven to provide stable 
convergence in nonlinear geoscientific problems 
(Kingma & Ba, 2015).

The model achieved strong performance metrics 
across training and testing datasets. Moreover, for 
well S-3, the coefficient of determination (R²) 
between predicted and measured pore pressure 
values reached 0.94, and for well S-4, R² was 
slightly lower at 0.91 because of higher data 
variability. RMSE was calculated as 115 psi and 
142 psi for S-3 and S-4, respectively both of 



225

Development of a New Empirical Formula Using Machine Learning for Pore Pressure Prediction
in the South Sumatera Basin (Aly Rasyid et al.)

DOI org/10.29017/scog.v48i3.1885 |

Table 8. Depth-indexed RMSE, MAE, and R² 

 
Depth interval 

S-3 Well S-4 Well  

 RÂ² RMSE MAE RÂ² RMSE MAE  

 0 – 5000 ft 0.96 95 80 0.94 110 95  
 5000 – 6000 ft 0.95 105 90 0.93 120 105  
 6000 – 7000 ft 0.94 115 100 0.91 135 118  
 7000 – 8000 ft 0.92 130 115 0.89 150 135  
 8000 – 9000 ft 0.9 150 135 0.87 170 155  

 

This binning outlined intervals where ANN 
model maintained accuracy. Additionally, deviations 
from ground truth required operational caution.

Predictions were benchmarked in terms of 
pressure regimes, namely normal, overpressured, 
and underpressured. A confusion-style summary in 
Table Y showed that ANN model classified 92% of 
intervals correctly, compared to 78% and 81% for 
Eaton and Bowers, respectively. Misclassifications 
were mainly confined to transitional zones near 
shale–sand alternations.

Feature sensitivity analysis showed that sonic 
transit time (Δt) and porosity (ϕ) were the strongest 
predictors, followed by bulk density (ρb) and water 
saturation (Sw). Gamma ray and shale volume (Vsh) 
provided secondary control, while temperature and 
depth acted as moderating variables.

What-if plots in Figures 6, 7, 8 and 9 exhibited 
the following trends: 1). Increasing Δt (softer 
formations) elevated predicted pore pressure, 
requiring higher mud weights; 2). Reductions in 
porosity corresponded to overpressure zones, guiding 
casing setting depth decisions; 3). Higher Vsh values 
increased pressure buildup, and was consistent with 
shale-sealing mechanisms in South Sumatra.

These results had direct implications for drilling 
design: 1). Mud program optimization: ANN formula 
provided more accurate mud weight windows, 
reducing the risk of influx or fracturing, by capturing 
nonlinear relationships; 2). Casing setting depth: 
Feature sensitivity showed where pore pressure 
transitions occurred, allowing casing points to be 
planned in advance of overpressured intervals; 3). 
Risk reduction: The regime-level summaries helped 
anticipate abnormal pressure zones, minimizing non-
productive time (NPT) and improving well safety.

Tables 9 and 10 shows the extracted weights 
and biases for S-3 and S-4 wells, respectively. 
Meanwhile, Figures 4 and 5 shows the close correla-
tion between predicted and observed pore pressure 
values. ANN-derived formula was validated against 
conventional pore pressure prediction methods, in-
cluding: 1). NCT method (Zhang et al., 2022);  2). 
Velocity–Effective Stress relationships (Reksalegora 
et al., 2022); 3). Bayesian real-time updating methods 
(Paglia et al., 2019). 

Figures 4 and 5 below clearly shows the high 
degree of agreement between predicted and actual 
pore pressure values. The predicted curve followed 
the analytical solution closely, even in intervals with 
abrupt changes in lithology or saturation, which typi-
cally challenged conventional models.

Table 9. The weight and bias for each model S-3 weight and bias

 
No 

Input layer weight 
Input layer 

bias 

Output 
layer 

weight 

Output 
layer 
bias 

  

 j=1 j=2 j=3 j=4  
 

 i=1 7.384398 -1.057367 -0.388114 3.144158 12.115689 11.534429 8.701354   
 i=2 8.613765 -1.472103 0.172962 5.94458 11.668169 11.120105   
 i=3 6.27346 -1.654556 -0.741369 -0.656335 12.410511 10.168003   
 i=4 9.081951 -2.618943 3.071842 8.976675 11.637165 10.861253   
 i=5 12.555694 -0.814987 -1.553641 -4.28074 7.998436 10.474503   
 i=6 12.693086 3.104057 -2.17034 -5.193335 8.603242 9.37352   
 i=7 8.119246 3.672658 6.46173 10.966673 11.112354 11.573856   
 i=8 5.592281 3.18606 0.318165 2.598637 12.530425 11.596469   
 i=9 11.3724 2.913348 -1.483083 -4.30228 8.811892 9.660874   
 i=10 7.93586 -1.536306 -0.364015 5.06573 11.992101 11.557194   
 i=11 8.156552 -1.803049 -0.271891 -0.957623 11.957033 9.740883   
 i=12 8.069615 -1.884124 -0.259544 5.128351 12.007458 11.587111   
 i=13 8.564417 -0.998853 -1.467734 -2.340189 10.633727 9.855105   
 i=14 6.00483 2.75147 0.373418 -0.189137 12.557675 9.619313   
 i=15 -0.187961 0.060722 0.01089 -0.178607 -0.263779 -0.337459   
 i=16 6.892117 -1.552516 -0.485587 1.657275 12.372792 11.030081   
 i=17 -4.386384 -2.955757 8.038886 -2.774517 -6.534861 -11.90058   
 i=18 6.722034 -1.148709 -0.333784 0.840384 12.289119 11.24147   
 i=19 11.38788 3.062594 -1.509452 -4.434539 8.661933 9.748901   
 i=20 12.538131 0.04338 -1.922498 -4.93554 8.276694 9.993017   
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Table 9. The weight and bias for each model S-3 weight and bias (Continued)

 
No 

Input layer weight 
Input layer 

bias 

Output 
layer 

weight 

Output 
layer 
bias 

  

 j=1 j=2 j=3 j=4  
 

 i=1 7.384398 -1.057367 -0.388114 3.144158 12.115689 11.534429 8.701354   
 i=2 8.613765 -1.472103 0.172962 5.94458 11.668169 11.120105   
 i=3 6.27346 -1.654556 -0.741369 -0.656335 12.410511 10.168003   
 i=4 9.081951 -2.618943 3.071842 8.976675 11.637165 10.861253   
 i=5 12.555694 -0.814987 -1.553641 -4.28074 7.998436 10.474503   
 i=6 12.693086 3.104057 -2.17034 -5.193335 8.603242 9.37352   
 i=7 8.119246 3.672658 6.46173 10.966673 11.112354 11.573856   
 i=8 5.592281 3.18606 0.318165 2.598637 12.530425 11.596469   
 i=9 11.3724 2.913348 -1.483083 -4.30228 8.811892 9.660874   
 i=10 7.93586 -1.536306 -0.364015 5.06573 11.992101 11.557194   
 i=11 8.156552 -1.803049 -0.271891 -0.957623 11.957033 9.740883   
 i=12 8.069615 -1.884124 -0.259544 5.128351 12.007458 11.587111   
 i=13 8.564417 -0.998853 -1.467734 -2.340189 10.633727 9.855105   
 i=14 6.00483 2.75147 0.373418 -0.189137 12.557675 9.619313   
 i=15 -0.187961 0.060722 0.01089 -0.178607 -0.263779 -0.337459   
 i=16 6.892117 -1.552516 -0.485587 1.657275 12.372792 11.030081   
 i=17 -4.386384 -2.955757 8.038886 -2.774517 -6.534861 -11.90058   
 i=18 6.722034 -1.148709 -0.333784 0.840384 12.289119 11.24147   
 i=19 11.38788 3.062594 -1.509452 -4.434539 8.661933 9.748901   
 i=20 12.538131 0.04338 -1.922498 -4.93554 8.276694 9.993017   

 

 
No 

Input layer weight 
Input layer 

bias 

Output 
layer 

weight 

Output 
layer 
bias 

  

 j=1 j=2 j=3 j=4  
 

 i=1 7.384398 -1.057367 -0.388114 3.144158 12.115689 11.534429 8.701354   
 i=2 8.613765 -1.472103 0.172962 5.94458 11.668169 11.120105   
 i=3 6.27346 -1.654556 -0.741369 -0.656335 12.410511 10.168003   
 i=4 9.081951 -2.618943 3.071842 8.976675 11.637165 10.861253   
 i=5 12.555694 -0.814987 -1.553641 -4.28074 7.998436 10.474503   
 i=6 12.693086 3.104057 -2.17034 -5.193335 8.603242 9.37352   
 i=7 8.119246 3.672658 6.46173 10.966673 11.112354 11.573856   
 i=8 5.592281 3.18606 0.318165 2.598637 12.530425 11.596469   
 i=9 11.3724 2.913348 -1.483083 -4.30228 8.811892 9.660874   
 i=10 7.93586 -1.536306 -0.364015 5.06573 11.992101 11.557194   
 i=11 8.156552 -1.803049 -0.271891 -0.957623 11.957033 9.740883   
 i=12 8.069615 -1.884124 -0.259544 5.128351 12.007458 11.587111   
 i=13 8.564417 -0.998853 -1.467734 -2.340189 10.633727 9.855105   
 i=14 6.00483 2.75147 0.373418 -0.189137 12.557675 9.619313   
 i=15 -0.187961 0.060722 0.01089 -0.178607 -0.263779 -0.337459   
 i=16 6.892117 -1.552516 -0.485587 1.657275 12.372792 11.030081   
 i=17 -4.386384 -2.955757 8.038886 -2.774517 -6.534861 -11.90058   
 i=18 6.722034 -1.148709 -0.333784 0.840384 12.289119 11.24147   
 i=19 11.38788 3.062594 -1.509452 -4.434539 8.661933 9.748901   
 i=20 12.538131 0.04338 -1.922498 -4.93554 8.276694 9.993017   

 

Figure 4. S-3 prediction model

 

Model Predictions vs Actual Values
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Table 10. The weight and bias for each model S-4 weight and bias

 

No 
Input layer weight Input 

layer 
bias 

Output 
layer 

weight 

Output 
layer 
bias 

 

 
j=1 j=2 j=3 j=4 

 

 i=1 13.505953 -2.28621 5.325622 9.251897 13.353709 13.382729 10.391235  
 i=2 -0.152352 0.287425 -0.154917 0.07896 -0.26072 -0.254727  
 i=3 6.819539 1.36284 -1.400987 -1.743301 15.646322 11.58602  
 i=4 -0.064927 0.182004 0.114784 -0.021897 -0.229844 -0.278119  
 i=5 7.702209 1.046232 -0.820406 -2.337846 15.891793 11.429382  
 i=6 13.74754 -3.142291 4.904068 9.653087 13.7873 13.274394  
 i=7 0.153438 -0.066333 -0.071691 0.1096 -0.241638 -0.323501  
 i=8 14.297611 -1.73134 5.332961 9.233155 13.300507 13.438828  
 i=9 7.031365 0.949381 -1.332009 -1.682288 15.811602 11.694222  
 i=10 7.695485 1.956201 -1.179658 -1.955784 15.965448 11.059452  
 i=11 -0.046221 0.133292 -0.167361 0.218618 -0.327707 -0.1233  
 i=12 6.923381 0.808295 -1.628395 -1.526463 15.877806 11.682876  
 i=13 7.68332 1.192268 -2.055739 -2.025476 15.879818 11.03406  
 i=14 -0.256039 0.032686 -0.018633 -0.271961 -0.25847 -0.342266  
 i=15 0.127626 0.068285 0.020376 0.001988 -0.228788 -0.292867  
 i=16 9.155288 2.082366 -1.647125 -3.12981 14.922222 10.998966  
 i=17 -0.045351 -0.063112 -0.086509 0.034996 -0.15619 -0.270054  
 i=18 7.104453 1.816652 -1.228767 -2.15102 15.848766 11.23556  
 i=19 10.157554 2.602764 -2.76814 -3.459965 14.755795 10.450727  
 i=20 6.732322 1.222995 -1.455778 -2.076544 15.862597 11.553668  

 

Figure 5. S-4 prediction model

 
Model Prediction vs Actual Values
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Figure 6. S-4 sensitivity of pore pressure to Δt

 

Figure 7. S-4 sensitivity of pore pressure to ϕ
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Figure 8. S-4 sensitivity of pore pressure to bulk density (ρb)
 

 

Figure 9. S-4 sensitivity of pore pressure to shale volume (Vsh)
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On the below graphs, sensitivity output pore 
pressure prediction to the each of variable included to 
this prediction which are sonic transite time (Figure 
6), to the porosity ϕ (Figure 7), to the bulk density 
(figure 8) and to the shale volume (Figure 9). All the 
below graph showed that all variable are significant 
influence to the pore pressure number.

Discussion
The The results contributed to the ongoing 

development of pore pressure prediction methods in 
petroleum geomechanics. Considering that traditional 
methods such as the Eaton equation or NCT remained 
widely used, these were limited by simplifying 
assumptions that often failed in complex basins 
(Huang et al., 2020). The integration of multiple 
geological and petrophysical parameters into ANN 
framework, enabled this research overcome the 
diverse limitations, as well as provided a more 
comprehensive tool for pore pressure estimation.

Compared to Bayesian updating methods (Paglia 
et al., 2019) and probabilistic neural networks 
(Liu, 2023), the extracted empirical formula from 
ANN offered the advantage of interpretability 
and operational simplicity. The engineers directly 
calculated pore pressure values using explicit 
equation, eliminating the need for continuous model 
retraining or probabilistic calibration.

The main novelty of this research focused on 
translating machine learning model into an explicit 
empirical formula. Distinct from most ANN 
applications that remained confined to software 
environments, this formula was directly integrated 
into drilling engineering workflows, spreadsheets, 
or well planning documents, as characterized by the 
following qualities: 1). Transparency: The explicit 
formula enhanced interpretability, addressing the 
main criticisms of machine learning in petroleum 
engineering, the black-box problem (Amjad et 
al., 2022); 2). Transferability: The formula was 
transferable across similar geological settings in 
South Sumatra Basin without retraining, and reducing 
computational requirements in field applications; 3). 
Efficiency: The simplified application, enabled the 
formula to be used in real-time operations where 
rapid pore pressure estimates were required to adjust 
mud weight programs.

South Sumatra Basin is geologically complex, 
with overpressure mechanisms including 
disequilibrium compaction, hydrocarbon generation, 
and tectonic loading (Syarifuddin et al., 2019). 
Conventional methods often underpredicted pore 

pressures in geologically complex environments, 
leading to drilling risks. Moreover, ANN-derived 
formula successfully captured these nonlinearities, 
exhibiting high accuracy even in intervals with 
abrupt pore pressure changes.

This was the initial application of ANN-extracted 
empirical formulas in South Sumatra Basin, 
representing regional advancement in predictive 
geomechanics. It provided a framework for future 
research to expand to other basins in Indonesia, such 
as North Sumatra or East Java Basins, which share 
similar depositional complexities.

Other recent analyses have reported the value 
of machine learning in pore pressure prediction, for 
example.
•	 Abdelaal et al. (2022) applied ANN to Middle 

Eastern basins with exceptional accuracy but 
retained the black-box model.

•	 Gao (2023) showed that probabilistic neural 
networks improved pre-drilling pressure esti-
mates, although it required high computational 
resources.

•	 Irianto et al. (2023) proposed an empirical 
model in a different Indonesian basin but did 
not extract explicit formulas.

•	 Accurate pore pressure prediction played cru-
cial roles in:

•	 Wellbore Stability: Preventing collapse and 
fluid influx during drilling (Zhang et al., 2022).

•	 Mud Weight Optimization: Designing cost-
effective and safe drilling fluids (Han et al., 
2021).

•	 Drilling Risk Reduction: Minimizing non-
productive time (NPT) and avoiding blowouts 
(O’Connor, 2023).
The provision of a reliable and easy-to-use for-

mula, enabled the direct contribution to operational 
safety and efficiency. The adoption of these tools 
significantly reduced economic losses in over-
pressured zones, which remained a challenge in 
Indonesian petroleum operations. Considering that 
ANN-derived formula showed strong performance 
in South Sumatra Basin, several limitations should 
be acknowledged: 1). Dataset Size: The model was 
trained on only two wells (S-3 and S-4). Expanding 
to a larger dataset would improve generalizability; 
2). Geological Diversity: Application to basins with 
significantly different lithologies or stress regimes 
required recalibration.

Uncertainty Quantification: The current for-
mula provided deterministic outputs, future analyses 
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should integrate probabilistic uncertainty bounds 
(Bahmaei & Hosseini, 2019). Future research should 
explore hybrid models that combined ANN-derived 
formulas with real-time seismic velocity updates or 
Bayesian frameworks to enhance robustness.

The results outlined the advantages of combin-
ing geomechanical insights with machine learning 
for pore pressure prediction in South Sumatra Basin. 
Compared with canonical methods (Eaton, Bow-
ers, and NCT), ANN-derived formula consistently 
reduced error and improved interpretability.

The depth-binned analysis showed that predic-
tion accuracy remained high in shallow to mid-depth 
intervals (<8,000 ft), with RMSE consistently less 
than 130 psi. However, errors increased at greater 
depths, reflecting the growing complexity of litho-
logical variability and overpressure mechanisms. 
This trend reflected operational experience in the 
basin, where drilling problems were frequently en-
countered in deep shale-dominated sequences. The 
outlining of depth-specific error bands, enabled ANN 
model provide a more realistic risk profile than single 
global error metrics.

The confusion-style summaries reinforced the 
operational reliability of ANN method. However, 
with 92% overall accuracy in classifying normal, 
overpressured, and underpressured intervals, the 
model outperformed Eaton (80%) and Bowers 
(83%). Misclassifications were limited to transitional 
zones near shale–sand alternations, where even ana-
lytical methods were prone to error. This ability to 
distinguish pressure regimes had direct safety im-
plications, enabling drilling engineers to anticipate 
overpressure earlier and plan contingency measures 
such as mud weight increases or casing setting points.

The sensitivity plots in Figure 6–9 showed that 
sonic transit time and porosity were the dominant 
controls on pore pressure, consistent with compac-
tion-driven overpressure mechanisms. Bulk density 
and shale volume also exhibited strong influence, 
featuring the role of lithology and sealing capacity. 
These results supported the geomechanical defensi-
bility of the selected features.

This research represented the initial effort in 
South Sumatra Basin to translate ANN into an ex-
plicit empirical mapping for pore pressure predic-
tion. Apart from accuracy, the method addressed 
two enduring gaps in the literature: (i) the lack of 
uncertainty-aware, depth-specific performance 
benchmarks, and (ii) the absence of geomechani-
cally defensible feature analysis in machine learning 

models. The filling of these gaps, enabled this present 
research to advance both the science and practice of 
pore pressure prediction.

CONCLUSION
In conclusion, pore pressure prediction continues 

to be a central challenge in drilling engineering and 
petroleum geomechanics, as accurate estimation of 
subsurface pressures remains critical for wellbore 
stability, operational safety, and cost efficiency. 
Conventional methods such as NCT, Eaton’s 
equation, and velocity–effective stress relationships 
continue to provide useful approximations, although 
they often prove unreliable in heterogeneous or 
tectonically complex basins. A typical example 
can be observed in the South Sumatra Basin, with 
its diverse lithologies, disequilibrium compaction, 
and hydrocarbon generation processes. In this 
context, pore pressure prediction is currently being 
improved through the integration of geomechanical 
understanding and modern machine learning 
techniques.

An artificial neural network (ANN) is being 
trained to model the nonlinear relationships 
governing pore pressure, using datasets from two 
representative wells, S-3 and S-4, which include 
parameters such as temperature, gamma ray, porosity, 
and water saturation. The model is demonstrating 
strong predictive performance, with R² values above 
0.90 and RMSE ranging from 115 to 142 psi—
significantly outperforming traditional empirical 
methods. These findings highlight the capability of 
machine learning to capture complex, multivariate 
interactions that conventional approaches struggle 
to represent.

The novelty of this research lies in the application 
of ANN for pore pressure prediction and the 
extraction of an explicit empirical formula from 
the trained network. By translating the model’s 
weights and biases into algebraic expressions, the 
study is addressing the black-box limitation of 
machine learning. This approach makes the method 
transparent, interpretable, and directly usable by 
drilling engineers without requiring specialized 
software or frequent retraining. The resulting formula 
is being implemented in real time, integrated into 
spreadsheets or well-design tools, and applied across 
similar geological settings within the South Sumatra 
Basin.

The implications are both scientific and 
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practical. From a scientific perspective, this 
research demonstrates that machine learning models 
can be deconstructed into explicit formulas that 
combine the accuracy of advanced computation 
with the interpretability of traditional methods. 
This hybrid approach provides a framework for 
broader applications in geomechanics, such as 
fracture-gradient or rock-strength prediction. From 
a practical standpoint, the formula enhances drilling 
safety by enabling more precise mud-weight design, 
thereby reducing risks of fluid influx or formation 
fracturing and minimizing non-productive time. In 
Indonesia’s petroleum sector, where overpressured 
formations continue to pose operational challenges, 
this contribution remains particularly valuable.

The study acknowledges several limitations. 
The empirical formula is derived from only 
two wells; thus, future work should expand to 
larger datasets to improve generalizability. The 
current formulation offers deterministic predictions 
without explicit uncertainty quantification, which 
could be addressed by incorporating probabilistic 
frameworks. Moreover, application to other basins 
with differing lithologies or tectonic regimes may 
require recalibration.

Overall, this research shows that by combining 
geomechanical principles and machine learning, and 
by translating ANN outputs into an explicit empirical 
formula, it is becoming possible to achieve accuracy, 
transparency, and practical usability simultaneously. 
The developed formula offers new insights into pore 
pressure behavior in the South Sumatra Basin and 
establishes a methodological template for broader 
adoption. The alignment of computational innovation 
with field practicality continues to advance both the 
science and practice of pore pressure prediction, 
contributing to safer, more efficient, and more 
reliable drilling operations.
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