

Scientific Contributions Oil & Gas, Vol. 48. No. 3, October: 271 - 279

SCIENTIFIC CONTRIBUTIONS OIL AND GAS

Testing Center for Oil and Gas LEMIGAS

Journal Homepage:http://www.journal.lemigas.esdm.go.id ISSN: 2089-3361, e-ISSN: 2541-0520

Two Decades of Smart Field Evolution (2005–2025): Global Insights and Indonesian Perspectives

Amega Yasutra

Petroleum Engineering, Institut Teknologi Bandung Ganesha Street No. 10 Bandung, Indonesia.

Corresponding author: amegayasutra@itb.ac.id

Manuscript received: July 11th, 2025; Revised: August 08th, 2025 Approved: August 19th, 2025; Available online: October 27th, 2025; Published: October 27th, 2025.

ABSTRACT - Between 2005 and 2025, smart field technologies evolved from sensor-based pilots into enterprise-wide digital operations and, more recently, AI-enabled workflows. This review of 36 technical papers from SPE, OTC, IPTC, URTeC, JPT, and SCOG maps advances, outcomes, barriers, and mitigation strategies across four eras: pilots (2005–2010), integration (2011–2015), enterprise adoption (2016–2020), and AI-driven operations (2021–2025). Findings show that while innovations such as real-time surveillance, digital twins, and predictive analytics expanded steadily, measurable success depended equally on leadership, governance, and workforce readiness. Representative cases including Chevron San Ardo, Saudi Aramco Haradh-III, Equinor's cloud-enabled intervention, Petrobras' Mero field, Pertamina Hulu Rokan's SSDP dashboard, and Pertamina EP's machine learning application for idle well reactivation in the Cepu mature field demonstrate both global and Indonesian perspectives. Lessons indicate that Indonesia is not only adopting but also actively contributing to digital oilfield practices. Coordinated actions from regulators, operators, and academia are required to accelerate adoption, sustain mature field productivity, and strengthen national energy security.

Keywords: smart field, digital oilfield, artificial intelligence, integrated operations, digital transformation.

© SCOG - 2025

How to cite this article:

Amega Yasutra, 2025, Two Decades of Smart Field Evolution (2005–2025): Global Insights and Indonesian Perspectives, Scientific Contributions Oil and Gas, 48 (3) pp. 271-279. DOI org/10.29017/scog.v48i3.1870.

INTRODUCTION

The concept of the "smart field" or digital oilfield can be traced back to the late 1990s and early 2000s, when operators began experimenting with SCADA systems, permanent downhole gauges, and early intelligent well designs. At that stage, implementations were fragmented: well tests were still conducted manually, data transfer lacked

common standards, and most decisions relied on siloed expertise. Nevertheless, the combination of rising production from mature fields, volatile oil prices, and increasing operational costs created urgency for more efficient, integrated solutions. Early initiatives in the North Sea, Gulf of Mexico, and Middle East explored real-time reservoir management, but these remained largely conceptual prior to 2005.

From 2005 onwards, the industry began publishing field-proven results, marking the transition from vision to implementation. Flagship pilots such as Chevron's San Ardo i-Field and Saudi Aramco's Haradh-III provided evidence that digital integration could deliver measurable business value. Over the following two decades, the evolution of smart fields can be observed across four distinct eras: (i) 2005–2010 flagship pilots, (ii) 2011–2015 early integration, (iii) 2016-2020 enterprise adoption, and (iv) 2021-2025 AI-driven operations. This review systematically analyzes 36 technical papers published in SPE, OTC, IPTC, URTeC, JPT, and SCOG, mapping technical advances, business outcomes, barriers, and mitigation strategies across these eras.

The contribution of this study is twofold. First, it synthesizes global lessons on how smart field practices have advanced technically and organizationally. Second, it contextualizes these lessons for Indonesia, where regulators, operators, and academia are actively shAmerican petroleum institute ng digital oilfield adoption. Notably, recent works such as Pertamina Hulu Rokan's Subsurface Development & Planning (SSDP) dashboard and Pertamina EP's machine learning application for idle well reactivation in the Cepu mature field (Prayitno et al., 2025) and comparison of facies estimation of well log data using machine learning (Candra et al., 2024) illustrate that Indonesian cases are not merely adopting global best practices but are contributing original innovations.

METHODOLOGY

This review was conducted in four structured steps, represented conceptually in an hourglass schematic. Conceptual hourglass methodology used in this review [Figure 1]. The top wide section represents the collection of 36 technical papers from SPE, OTC, IPTC, URTeC, JPT, and SCOG. The narrowing middle shows the classification of papers by era (2005–2010, 2011–2015, 2016–2020, 2021– 2025) and their structured evaluation along four analytical dimensions: technical advances, business outcomes, barriers, and mitigation strategies. The widening bottom represents the synthesis of insights, expanding again into global lessons and Indonesian perspectives. This shape reflects the progressive filtering of diverse sources into focused analysis, and the subsequent expansion into broad implications for industry and policy.

Corpus 36 Technical papers

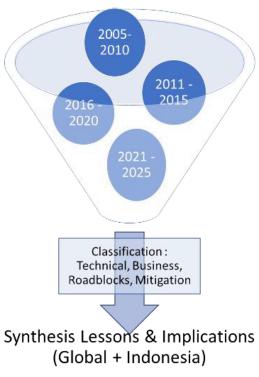


Figure 1. Methodology schematic (hourglass)

Step 1 Literature Collection. A total of 36 technical papers were collected from SPE, OTC, IPTC, URTeC, JPT, and SCOG. These included field-validated case studies, reviews, and methodological contributions covering the period 2005–2025.

Step 2 Classification by Era. Papers were grouped into four time periods: (i) 2005–2010 flagship pilots, (ii) 2011–2015 early integration, (iii) 2016–2020 enterprise adoption, and (iv) 2021–2025 AI-driven operations. This chronological framing captures both technical progress and organizational learning.

Step 3 Analytical Dimensions. Within each era, papers were analyzed along four recurring dimensions: 1). Technical advances (e.g., sensor deployment, predictive analytics, AI/ML); 2). Reported business outcomes (e.g., efficiency gains, downtime reduction, recovery uplift); 3). Barriers (e.g., cultural resistance, integration costs, data trust); 4). Mitigation strategies (e.g., executive sponsorship, program governance, workforce training).

Step 4 Synthesis and Insights. Findings were synthesized into two outputs: (i) a cross-era summary provided in Table 1 (Appendix), which organizes the key advances, reported outcomes, and barriers across the four eras; and (ii) a stakeholder roadmap contextualized for Indonesia Table 2 (Appendix),. This dual synthesis highlights both global lessons and specific national implications.

RESULT AND DISCUSSION

The review of 36 technical papers revealed a clear trajectory of smart field development over two decades. Each era is characterized by specific technical advances, reported outcomes, recurring barriers, and mitigation strategies.

2005-2010: flagship pilots

This formative period introduced sensors, SCADA extensions, and pilot-scale reservoir models. Business outcomes were mostly qualitative, such as improved situational awareness and faster decision-making. Quantitative evidence was limited, but Chevron's San Ardo i-Field (Ouimette & Oran, 2006, SPE-99548-MS) reported a 15–20% reduction in response time for production adjustments, while Saudi Aramco's Haradh-III (Al-Arnaout et al., 2008, SPE-112216-MS) deployed surveillance across 132 smart wells. Barriers included interoperability issues and cultural resistance, mitigated through executive sponsorship and vendor-supported pilots.

2011-2015: Early integration and scaling

Operators began to implement multi-domain platforms and optimization workflows. Measurable results appeared: Noller et al. (2012, OTC-23510-MS) documented a 10–15% reduction in unplanned downtime after applying integrated production operations offshore. However, many pilots stalled at the scaling stage due to insufficient ROI justification. Crompton (2015, SPE-173441-MS) described this as the "digital oilfield hype curve." Mitigation strategies included the establishment of digital program offices, governance frameworks, and KPI-driven pilots.

2016–2020: Enterprise adoption and business impact

Enterprise-wide adoption accelerated, with closed-loop optimization, integrated reservoir facility models, and predictive maintenance analytics. Volkov et al. (2016, SPE-181955-MS) reported production optimization gains of 5–7% through integrated planning. Russian operators (Kyrnaev et al., 2017, SPE-187773-MS) demonstrated that structured training reduced manual reporting errors by 30%. In Indonesia, Pertamina's early digital oilfield efforts in mature offshore fields (Waskito et al., 2019, SPE-196398-MS) recorded a 5% improvement in production efficiency. Barriers shifted to integration costs and cybersecurity risks, mitigated by enterprise governance and cross-functional collaboration.

2021–2025: AI-driven and analytics-enabled operations

This era is defined by the application of AI, machine learning, and cloud collaboration. Equinor's well intervention workflow (Brueren & Dinger 2025, SPE-224078-MS) reduced cycle time by 50%, while Petrobras' Mero field optimization (Rosa et al., 2023, OTC-32450-MS) achieved an 8-10% recovery factor increase. Pertamina Hulu Rokan's SSDP dashboard (Gilang et al., 2024; IPTC-23236-EA) cut surveillance reporting time by 40% and streamlined decision-making. More recently, Pertamina EP's Cepu mature field applied machine learning to identify idle well reactivation candidates (Prayitno et al., 2025), achieving near-perfect classification accuracy (AUC 0.99). These advances illustrate Indonesia's emerging role not only as an adopter but also as a contributor to digital innovation.

Over the past two decades, the evolution of smart field technology has followed a clear and progressive trajectory from early pilots proving digital feasibility to the present era of AI-driven operations. Each phase

reflects not only advances in sensors, data integration, and analytics but also growing organizational maturity and cultural adaptation within the industry. The journey began with visionary pilot projects (2005–2010), expanded into integrated and scalable platforms (2011–2015), evolved toward enterprisewide business transformation (2016-2020), and culminated in intelligent, predictive operations powered by artificial intelligence (2021–2025). The following Figure (Figure 1) summarizes the key milestones, outcomes, and defining characteristics of each era.

Cross-era insights

Across the four eras, technologies evolved from pilot projects to enterprise-wide AI applications. Business outcomes shifted from anecdotal gains to quantifiable ROI: downtime reductions of 10-20%, recovery factor improvements of 5-10%, and efficiency gains of up to 15%. Barriers evolved from technical immaturity to organizational resistance and trust in AI. Mitigation strategies followed this progression, from isolated champions to structured governance and multi-stakeholder ecosystems. These findings are consolidated in (Table 1).

Table 1. Evolution of smart field implementation (2005–2025)

Era	Key Technical Advances	Reported Business Outcomes	Main Barriers	Mitigation Strategies	Illustrative Case(s)	Representative Papers
2005–2010 Vision & Flagship Pilots	Sensor deployment; real- time dashboards; pilot reservoir models	Faster decision-making; improved situational awareness	Interoperability gaps; lack of standards; skepticism	Champion-led pilots; vendor demonstrations; executive sponsorship	Chevron San Ardo i-Field (Ouimette & Oran, 2006, SPE- 99548-MS); Saudi Aramco Haradh-III (Al-Arnaout et al., 2008, SPE-112216-MS)	Murray et al. (2005, SPE-100024-MS); AlKhadhuri et al. (2006, SPE-99243-MS); Ella et al. (2006, SPE-99807-MS); Ross et al. (2006, SPE-102149-MS); Serbini et al. (2009, IPTC-14010-MS); Crompton (2010, SPE-127715-MS); Gharbi & Richards (2010, SPE-131465-MS)
2011–2015 Integration & Scaling	Multi-domain data platforms; early optimization workflows; improved visualization	Reduced downtime; improved production forecasting	Scaling issues; weak ROI proof; organizational resistance	Program offices; training; governance frameworks	Integrated IPO Solutions (Noller et al., 2012, OTC-23510-MS); DOF Program Hype Curve Analysis (Crompton, 2015, SPE-173441-MS)	Hafez et al. (2012, SPE-161083-MS); Crompton (2015, SPE-173441-MS)
2016–2020 Enterprise Adoption & Business Impact	reservoir-facility models;	uplift; reduced NPT;	High integration costs; cybersecurity; infrastructure upkeep	Enterprise governance; structured training; cross- functional collaboration	Russian operator adoption (Kymaev et al., 2017, SPE- 187773-MS); Indonesia mature offshore DOF initiation (Waskito et al., 2019, SPE-196398-MS)	Volkov et al. (2016, SPE-181955-MS); Reddicharla et al. (2017, SPE-188969-MS); Kymaev et al. (2018, OTC-28293-MS); Temizel et al. (2019, SPE-195095-MS)
2021–2025 AI- Driven & Analytics- Enabled Operations	AI/ML forecasting; NLP for knowledge management; digital twins; cloud workflows; dashboards for mature fields	ESG alignment; carbon- intensity reduction; improved safety; measurable productivity gains	Data quality; AI bias; cultural resistance; scaling trust in AI	Hybrid human—AI decision-making; cloud ecosystems; KPI-linked pilots; local innovation	Equinor well intervention (Brueren & Dinger, 2025, SPE-224078- MS); Petrobras Mero field (Rosa et al., 2023, OTC-32450-MS); Pertamina Hulu Rokan SSDP Dashboard (Gilang et al., 2024, IPTC-23236-EA)	Kulkarni & Mohammad (2021, IPTC-21235-MS); Narayanan (2021, JPT); Nnakenyi et al. (2022, SPE-211998-MS); AlQahtani et al. (2022, WPC-23-0604); Delgado et al. (2023, URTeC-3951258-MS); Litvak et al. (2023, SPE-214387-MS); Reddicharla et al. (2023, SPE-216160-MS); How et al. (2023, SPE-215080-MS); Ibrahim et al. (2024, SPE-219358-MS); Ojuekaiye (2024, SPE-221689-MS); Chaipornkaew et al. (2024, SPE-222165-MS); Naqy et al. (2025, IPTC-25090-EA)

Table 2. Stakeholder actions for indonesia's digital oilfield transformation

Stakeholder	Strategic Actions	Why Important	Illustrative Case(s)
Policy	- Publish national digital-upstream	- Aligns industry under common	Saudi Aramco Haradh-III (Al-
Makers /	roadmap- Mandate open standards	national goals- Reduces integration	Arnaout et al., 2008, SPE-112216-
Regulators	(WITSML, PRODML)- Provide fiscal	costs and vendor lock-in- Ensures	MS)DOF Hype-Curve Analysis
	incentives and fast-track approvals- Co-	measurable ROI for state &	(Crompton, 2015, SPE-173441-MS)
	fund reskilling programs	investors- Builds local digital-ready	
		workforce	
Operators	- Appoint C-suite Digital Sponsor- Build	- Embeds digitalization into business	Chevron San Ardo i-Field
(K3S/PSC)	open data lakes and shared platforms-	strategy- Ensures funding &	(Ouimette & Oran, 2006, SPE-99548-
	Run KPI-linked pilots tied to production,	legitimacy of pilots- Demonstrates	MS)Russian operator adoption
	OPEX, HSE- Implement tiered	early value to management & field	(Kyrnaev et al., 2017, SPE-187773-
	workforce training (dashboards →	staff- Builds hybrid petroleum-data	MS)Pertamina Hulu Rokan SSDP
	analytics → optimization)- Establish	professionals	dashboard (Gilang et al., 2024, IPTC-
	dual career paths (domain + data)		23236-EA)

Stake holde r	Strategic Actions	Why Important	Illustrative Case(s)
Acade mia /	- Redesign curricula (petroleum +	- Bridges national skill gap (digital-	Global Tech Focus (Narayanan,
Research	AI/ML + cybersecurity)- Offer micro-	savvy engineers)- Provides	2021, JPT)Digital technology
Institutes	credentials & lifelong learning modules-	independent validation of digital	review (Temizel et al., 2019, SPE-
	Conduct joint R&D (e.g. semantic	ROI- Creates pipeline of hybrid	195095-MS)Analytical approach to
	models, optimization)- Benchmark KPIs	talents for industry- Fosters	early-field optimization (Naqy et
	& ROI of digital pilots independently-	innovation and academic-industry	al., 2025, IPTC-25090-EA)
	Organize hackathons & internships with	linkages	,
	operators		

Table 2. Stakeholder actions for indonesia's digital oilfield transformation (Continued)

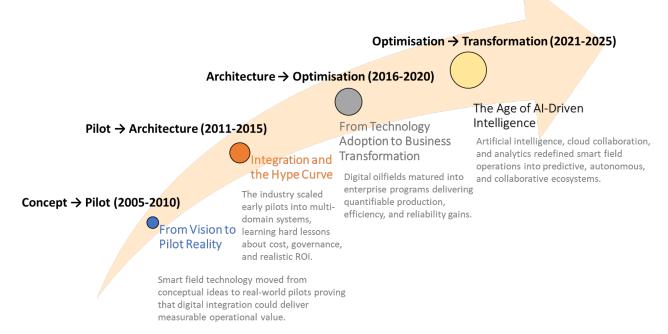


Figure 2. Evolution of the digital/smart/intelligent-field theme

Implications for Indonesia

For Indonesia, three lessons are paramount: (i) policy makers must mandate open standards and provide incentives for digital adoption, (ii) operators must align digital programs with business strategy through KPI-linked pilots, and (iii) academia must integrate petroleum engineering with data science to train hybrid professionals and provide independent ROI validation. The Pertamina Hulu Rokan and Pertamina EP cases demonstrate that Indonesian operators are already achieving measurable results, while Naqy et al. (2025), IPTC-25090-EA) provides a methodological framework for academia and regulators. These complementary roles are summarized in (Table 2).

Future challenges and outlook

The two-decade evolution of smart fields confirms that digital transformation in oil and gas has delivered measurable improvements in efficiency, recovery, and safety. However, the next decade presents new challenges that will test both global and Indonesian contexts.

Global challenges.

First, the exponential growth of data from sensors, digital twins, and AI applications raises concerns about data quality, cybersecurity, and interoperability. Trust in AI-driven decisions remains uneven, particularly when algorithms function as "black boxes." Second, the energy transition

demands that digital solutions contribute not only to production efficiency but also to lowering carbon intensity. This requires integration of subsurface optimization with emissions tracking and ESG metrics. Third, organizational adaptation is critical: companies must reskill their workforce for hybrid petroleum-data roles and sustain cultural change at scale.

Indonesia-specific challenges.

For Indonesia, the maturity of many producing assets adds urgency to digital adoption. Mature fields require advanced surveillance and predictive analytics to sustain production under cost and infrastructure constraints. Local operators face the dual challenge of adopting international standards (WITSML, PRODML) while managing legacy infrastructure. Moreover, national digital initiatives must be aligned across policy makers, operators, and academia to prevent fragmented adoption. Pertamina Hulu Rokan's SSDP dashboard and Pertamina EP's machine learning model for idle well reactivation in Cepu demonstrate promising steps, but scaling such pilots nationwide remains a significant hurdle.

Outlook.

Looking ahead, digital oilfields in Indonesia will likely expand from asset-level pilots to basin- or company-wide ecosystems, supported by cloud collaboration and national digital strategies. Integration of AI with emissions management could align upstream digitalization with energy transition goals. Academia has a central role in building local expertise and validating ROI models. If these challenges are addressed collectively, Indonesia can move from selective adoption to regional leadership in smart field innovation.

CONCLUSION

The review of 36 technical papers tracing two decades of smart field development (2005-2025) demonstrates a clear trajectory from pilot projects to enterprise-wide adoption and, most recently, AI-driven operations. Technical innovations ranging from real-time surveillance and digital twins to predictive analytics and machine learning consistently delivered measurable value. Indicators such as 10-20% downtime reduction, 5-10% recovery factor gains, and efficiency improvements of up to 15% validated the business case across multiple regions and eras.

For Indonesia, recent contributions illustrate both adoption and innovation. Pertamina Hulu Rokan's SSDP dashboard demonstrated real-time surveillance and optimization in a mature field, while Pertamina EP's machine learning framework for idle well reactivation in Cepu showcased the application of AI to local operational challenges. Together with methodological advances such as Nagy et al. (2025), these examples confirm that Indonesia is no longer a passive adopter but an active contributor to digital oilfield practices.

Looking forward, both global and Indonesian stakeholders face challenges related to data quality, AI trust, carbon-intensity reduction, and workforce reskilling. The path ahead requires coordinated actions: policy makers must set enabling frameworks, operators must embed KPI-driven digital programs into business strategy, and academia must supply hybrid petroleum-data professionals and validate ROI independently. If pursued collectively, these actions can position Indonesia as a regional leader in smart field innovation, ensuring industry competitiveness and national energy security.

ACKNOWLEDGEMENT

This paper is based on a presentation delivered at the Rapat Kerja Bidang Eksploitasi Industri Hulu Migas 2025, organized by SKK Migas on 16-18 June 2025, entitled "Lesson Learn: Two Decades of Digital-Oil-Field Transformation (2005–2025)." The author would like to express sincere gratitude to SKK Migas, Institut Teknologi Bandung, and industry partners for their valuable contributions in shAmerican petroleum institute ng the understanding and practice of digital oilfield implementation in Indonesia. Their support and insights were instrumental in enriching the

GLOSSARY OF TERMS

Symbol	Definition	Unit
WITSML	Wellsite Information	_
	Transfer Standard	
	Markup Language an	
	XML-based industry	
	standard for transferring	
	real-time drilling and	
	wellsite data.	

PRODML KPI	Production Markup Language an industry standard for sharing production-related data such as well tests and multiphase metering. Key Performance Indicator measurable metrics (e.g., incremental oil barrels, cost per BOE,	-	ESG NPT	projects. Environmental, Social, and Governance metrics increasingly used to assess sustainable oil and gas operations. Non-Productive Time — Hours periods during drilling or production when no useful work is
C-suite Digital Sponsor	cycle time reduction) used to evaluate digital oilfield success. Senior executive (CEO, COO, CIO, CTO) responsible for	_	perspectives pr	resented in this work.
	championing digital oilfield programs, ensuring business alignment and funding.		R. M. (2008	REFERENCES H., Al-Driweesh, S. M., & Al-Zahrani, D. Production engineering experience est i-field implementation in Saudi
SCADA	Supervisory Control and Data Acquisition system used to monitor and control field operations in real time.	_	reality. Soc 112216-MS	Haradh-III: Transforming vision to iety of Petroleum Engineers. SPE. https://doi.org/10.2118/112216-MS. S., Poon, J., & Tan, H. C. (2006).
AI/ML	Artificial Intelligence / Machine Learning methods used for predictive modeling, anomaly detection, and decision optimization.	-	Integration for right-ti optimisation of Petroleur	of people, process and technology ime production management and in Brunei Shell Petroleum. Society in Engineers. SPE-99243-MS. https://
Digital Twin	A virtual replica of a physical asset (e.g., reservoir, facility, or well) that enables real-time monitoring, simulation, and	_	Abouheit, F sweet spot developmer	, Ismail, M., Faleh, A., Ali, B., & C. (2022). New hydrocarbon reservoir identifier enabling optimal field at plans (OPTIMA). World Petroleum VPC-23-0604.
SSDP Dashboard	predictive optimization. Integrated Subsurface Development & Planning dashboard developed by Pertamina Hulu Rokan, enabling real-time surveillance, optimization, and cost	-	B. (2019). I mature offsl Indonesia. S 196398-MS Brueren, T., &	o, L., Vidrianto, M., & Cahyoniarso, initiate digital oil field application at hore oil field in South East Sumatera, Society of Petroleum Engineers. SPE-b. https://doi.org/10.2118/196398-MS Dinger, S. (2025). Transformation of intion operation planning into a digital

reduction in mature

(Crompton 2015)

enthusiasm,

describing the initial

disillusionment, and

eventual productivity

gains in digital oilfield

A conceptual framework

fields.

DOF Hype

Curve

DOI org/10.29017/scog.v48i3.1870 | 277

workflow. Society of Petroleum Engineers. SPE-

224078-MS. https://doi.org/10.2118/224078-MS.

Prabowo, U. N. (2024). Comparison of Facies

Estimation of Well Log Data Using Machine

Learning. Scientific Contributions Oil and

Gas, 47(1), 21-30. https://doi.org/10.29017/

SCOG.47.1.1593.

Candra, A. D., Rahalintar, P., Sulistiyono, S., &

- Chaipornkaew, L., Pipatchatchawal, C., Kosawantana, S., Asadathorn, S., Tadthai, J., Charoensrisomboon, S., Jaroensuk, N., Kietchalermporn, Y., & Ekkawong, P. (2024). Optimization well targeting, platform placement and path refinement. Society of Petroleum Engineers. SPE-222165-MS. https://doi.org/10.2118/222165-MS.
- Crompton, J. (2010). The future of integrated operations. Society of Petroleum Engineers. SPE-127715-MS. https://doi.org/10.2118/127715-MS.
- Crompton, J. (2015). The digital oil field hype curve: A current assessment of the oil and gas industry's digital oil field program. Society of Petroleum Engineers. SPE-173441-MS. https://doi.org/10.2118/173441-MS.
- Delgado, D., et al. (2023). Using machine learning and data analytics to improve type-curve quality. Unconventional Resources Technology Conference, Denver. URTeC-3951258-MS. https://doi.org/10.15530/urtec-2023-3951258.
- Denney, D. (2006). Making mature fields smarter. Journal of Petroleum Technology, 58(8), 49–50. Society of Petroleum Engineers.
- Ella, R., Reid, L., Russell, D., Johnson, D., & Davidson, S. (2006). The central role and challenges of integrated production operations. Society of Petroleum Engineers. SPE-99807-MS. https://doi.org/10.2118/99807-MS.
- Gharbi, R., & Richards, H. (2010). To achieve mature field production excellence. Society of Petroleum Engineers. SPE-131465-MS. https://doi.org/10.2118/131465-MS.
- Gilang, A., Dolok Saribu, J., Renditya, A., Fariz, M., & Fernando, E. (2024). Integrated subsurface development & planning (SSDP) dashboard for surveillance, optimization, cost reduction and streamline the decision-making process in mature field, Pertamina Hulu Rokan Zona 4. International Petroleum Technology Conference, Dhahran. IPTC-23236-EA. https://doi.org/10.2523/IPTC-23236-EA.
- Hafez, M., Jakeman, S., Al Azawi, B., Ur-Rahim,I., & Khaled, M. (2012). Engineering aspects in the design and implementation of onshore smart oil fields. Society of Petroleum Engineers. SPE-

- 161083-MS. https://doi.org/10.2118/161083-MS
- How, L. L., Norintan, F. N., Azmukiff, K., Osman, Z., Chang, Y. S., Shahardin, S., & Azhar, S. F. (2023). Unlocking stranded marginal gas fields in Malaysia with low CAPEX approach. Society of Petroleum Engineers. SPE-215080-MS. https://doi.org/10.2118/215080-MS.
- Ibrahim, M., Korish, M., Tealdi, L., Al Hanaee, A., Mousa, H., & Elbadawy, K. (2024). Digital oilfield transformational impact on mature field productivity, efficiency & profitability Mature offshore gas lift field showcase. Society of Petroleum Engineers. SPE-219358-MS. https://doi.org/10.2118/219358-MS.
- Kyrnaev, D., Ivanov, P., Shemyakin, A., et al. (2017). Challenges and results in implementing a smart field concept. Society of Petroleum Engineers. SPE-187773-MS. https://doi.org/10.2118/187773-MS.
- Kyrnaev, D., et al. (2018). Valuable improvements A basic part of a smart-field concept usage: Case study. Offshore Technology Conference. OTC-28293-MS. https://doi.org/10.4043/28293-MS.
- Litvak, M., Rosenzweig, J., Marblestone, G., Matringe, S., & Wang, P. (2023). Scenario based optimization methodology for field development planning. Society of Petroleum Engineers. SPE-214387-MS. https://doi.org/10.2118/214387-MS.
- Murray, R., Edwards, C., Gibbons, K., Jakeman, S., de Jonge, G., Kimminau, S., Ormerod, L., Roy, C., & Vachon, G. (2005). Making our mature fields smarter An industrywide position paper from the 2005 SPE Forum. Society of Petroleum Engineers. SPE-100024-MS. https://doi.org/10.2118/100024-MS.
- Naqy, A., Mammadli, I., Zhang, P., Stigliani, R., Rastogi, V., & Al-Shammali, A. (2025). Analytical approach for development plan optimization for fields at early development stage Case study in the Greater Burgan Field. International Petroleum Technology Conference, Kuala Lumpur. IPTC-25090-EA. https://doi.org/10.2523/IPTC-25090-EA.
- Narayanan, K. (2021). Technology focus: Intelligent operations. Journal of Petroleum Technology, 73(5), 51–53. Society of Petroleum Engineers.

- Nnakenyi, N., Amos, S. O., Abegunde, M., Ayo-Dayisi, I., Anozie, N., Gari, T., Akintade, O., Musa, A., & Ibrahim, H. (2022). Effective asset/portfolio management: NAmerican petroleum institute MS perspective. Society of Petroleum Engineers. SPE-211998-MS. https://doi.org/10.2118/211998-MS.
- Noller, D., Myren, F., Haaland, Ø., Brisco, J., & Bryan, E. (2012). Improved decision-making and operational efficiencies through integrated production operations solutions. Offshore Technology Conference, Houston. OTC-23510-MS. https://doi.org/10.4043/23510-MS.
- Ojuekaiye, O. S. (2024). Petroleum industry value chain optimization: The inevitability of midstream and downstream development Asset management and information. Society of Petroleum Engineers. SPE-221689-MS. https://doi.org/10.2118/221689-MS.
- Ouimette, J., & Oran, K. (2006). Implementing Chevron's i-field at the San Ardo, California, asset. Society of Petroleum Engineers. SPE-99548-MS. https://doi.org/10.2118/99548-MS
- Swadesi, B., Hariyadi, H., Wardhana, D. N., Jayadianti, H., Imasuly, G. B., Prayitno, S. H., ... & Cahyaningtyas, N. (2025). The Application of Machine Learning (Dt-Chan-Performance) in Determining Idle Well Reactivation Candidates at Pt. Pertamina Ep Regional 4 Zone 11 Cepu Field. Scientific Contributions Oil and Gas, 48(2), 69-94. https://doi.org/10.29017/scog.v48i2.1657
- Reddicharla, N., Sharma, A., Al Kaabi, A., & Subramanian, S. (2017). New dimension to field-development well planning using smart-field tools. Society of Petroleum Engineers. SPE-188969-MS. https://doi.org/10.2118/188969-MS.
- Reddicharla, N., Rubio, E., Alshehhi, S. S., El Naggar, H. M. M., Selvamoorthy, G., Mathew, J., Kumar, A., & Ali, M. S. (2023). Reservoir monitoring data-driven workflow automation in giant onshore oil fields. Society of Petroleum Engineers. SPE-216160-MS. https://doi.org/10.2118/216160-MS.
- Rosa, M. B., Delgado, A., Andrade, A., & Vieira, E. (2023). Mero giant field: A successful case of recovery optimization during development. Offshore Technology Conference. OTC-32450-

- MS. https://doi.org/10.4043/32450-MS.
- Ross, D. A., Kalfayan, L., & Smith, K. (2006). Technology implementation to enhance reserves recovery in mature fields requires a new business model between service companies and operators. Society of Petroleum Engineers. SPE-102149-MS. https://doi.org/10.2118/102149-MS.
- Serbini, F., Low, K. W., Wong, L. H., & Gomez, N. (2009). Integrated field development— Improved field planning and operation optimisation. International Petroleum Technology Conference, Doha. IPTC-14010-MS. https://doi.org/10.2523/14010-MS.
- Temizel, C., Sanyal, S., Erdogan, G., & AlSultan, M. (2019). A comprehensive review of smart/intelligent oil-field technologies. Society of Petroleum Engineers. SPE-195095-MS. https://doi.org/10.2118/195095-MS.
- Volkov, S. V., Karandashova, I. I., Kagarmanov, E. V., & Mogilnikov, S. I. (2016). Optimization of oil and gas production based on integrated planning. Society of Petroleum Engineers. SPE-181955-MS. https://doi.org/10.2118/181955-MS.